
H.264 / MPEG-4 AVC

Nimrod Peleg
Update: April. 2007

Encoder

..
image sequence

0101...
bit stream

+
DCT Q VLC

Q-1

DCT-1

+

MEMM.C.

-
+

Intra / Inter
switch

+
+

M.E.

Encoder

..
image sequence

0101...
bit stream

+
DCT Q VLC

Q-1

DCT-1

+

MEMM.C.

-
+

Intra / Inter
switch

+
+

M.E.

Encoder

..
image sequence

0101...
bit stream

+
DCT Q VLC

Q-1

DCT-1

+

MEMM.C.

-
+

Intra / Inter
switch

+
+

M.E.

Encoder

..
image sequence

0101...
bit stream

+
DCT Q VLC

Q-1

DCT-1

+

MEMM.C.

-
+

Intra / Inter
switch

+
+

M.E.

Encoder

..
image sequence

0101...
bit stream

+
DCT Q VLC

Q-1

DCT-1

+

MEMM.C.

-
+

Intra / Inter
switch

+
+

M.E.

Previous Standards

What is H.264/AVC ?
• The most state-of-the-art video coding standard
• Suitable for a wide range of applications

– Video conferencing, TV, storage, streaming video,
surveillance, digital cinema…

• First video codec that has been explicitly designed
for fixed-point implementation

• First network-friendly coding standard
• Higher complexity than previous standards
• Significantly better coding efficiency than

previous standards
– Do we need this?

Motivation

MPEG-2
@ 1 [Mbps]

Artifacts – Example (MPEG-2)

Ringing /
Mosquito noise

Color bleeding

Blur

Blocking / Tiling

H.264 Vs. Other Standards

Rate Saving Related to MPEG-2PSNR of Y-Frames Vs. Bit-rate

H.264 Brief review
• Goal:

– Develop a high-performance video coding standard.
• Start from zero: no backward compatibility.

• Assumptions:
– Block based.
– Software implementation.
– Network friendly.

Main New Features
• Integer transform
• Predictive Intra-coding
• Multi-frame variable block size motion

compensation
– ¼ pixel accurate

• Adaptive in-loop de-blocking filter
• Advanced entropy coding
• Hierarchical block transform

H.264/AVC Encoder

The Transform: ICT
• AC coefficients – 4x4 Integer DCT

– DCT-like transform
– 16-bit integer arithmetic only
– Provides exact-match inverse transform
– Low complexity

• Can be implemented using only additions and
bit-shifting operations without multiplications

• Small block size
– Reduces noise around edges (“ringing”)
– Due to the improved intra- and inter-prediction,

the residual signal has less spatial correlation

Another Transform…Hadamard

• For the DC coefficient – Hadamard transform
– Luma of each 16 blocks – 4x4 Hadamard
– Chroma of each 4 blocks – 2x2 Hadamard
– Further reduces the correlation inside the

macroblock, e.g. in a smooth area

Transforms: summary

16x16 Macroblock

Luma

Luma block
4x4 Integer
Cosine Transform

Luma DC terms block
4x4 Hadamard Transform

Cb Cr

Chroma DC terms blocks
2x2 Hadamard Transform

Chroma block
4x4 Integer
Cosine Transform

Quantization

• Compounding quantization step.
• 52 scalar non-uniform quantization step sizes.

– The step sizes are increased at a compounding rate
of approximately 12.5%.

• Different quantizers for luminance and
chrominance.

Scanning

• Two different coefficient-scanning patterns:
– Zigzag scan

• Used for scanning coefficients of
frame non-interlaced macroblocks

– Alternate scan
• Used for scanning coefficients of field-based

interlaced macroblocks

Encoder Scheme: Motion

Motion Estimation & Compensation
• Motion Estimation is where H.264 makes

most of its gains in coding efficiency.
• Quarter pixel accurate motion compensation.
• Translation only.
• The standard does not determine which

algorithm should be used.

Motion Estimation
• Variable block size:

– 16x16, 16x8, 8x16, 8x8
– Additional sub-partitions as small as 4x4
– Total of 259 possible partitions

Block Division Example

• Large blocks in
– Smooth areas
– Static areas

Motion In H.264 Model

• The H.264 standard offers the option of having
multiple reference frames in inter picture coding
– Up to five different reference

frames could be selected

• Resulting in better subjective video quality and
more efficient coding of the video frame under
consideration

• Using multiple reference frames might help
making the H.264 bit-stream error resilient

Motion Estimation & Compensation

• ¼ pixel accurate motion compensation
• Motion vectors over frame boundaries
• Motion vectors prediction
• B frames could be used as references for prediction
• Weighted average prediction

– For scene fading
• Deblocking filter within the motion compensation

prediction loop
• SP and SI frames

– For synchronization or switching between different data
rates

Motion Vectors Prediction

• Beneficial since adjacent motion vectors are
correlated

Distribution of adjacent motion vectors

H.264/AVC Encoder Scheme

Intra Prediction
• Purpose: reduce spatial redundancy in Intra-

coded macroblocks
• Two modes are available

– Variable block sizes
– Intra-PCM mode:

• Bypass prediction and transform
• The raw values of the samples are simply sent

without compression
• “For use in unusual situations”

Intra Predication Cont’d

• Spatial prediction from neighboring pixels in
current frame
– 16x16 or 4x4 spatial luma predication
– 8x8 spatial chroma prediction

• 9 optional prediction modes for 4x4 luma blocks
• 4 optional prediction modes for luma 16x16

blocks and for chroma 8x8 blocks

• The standard does not determine which mode to
choose !

Intra Prediction - 4x4 Modes

Intra Prediction Example

For example, mode 3
gives the following
expressions:

Another Intra Prediction Example

Original 4x4 block Intra-predicted block

Adjacent
vertical
pixels

• Horizontal prediction by adjacent strips:

4x4 Modes Example

Intra Prediction - 16x16 Modes

16x16 Modes Example

Intra Prediction Example

Intra-coded picture Block partition

• Block size selection example:

16x16 Intra block 4x4 Intra block

Intra Prediction vs. JPEG 2000

• Surprise – H.264 intra prediction in the winner !

H.264/AVC Deblocking Filter

In-Loop Deblocking Filter
• Purpose: Reduce visible blocking artifacts
• Operation: Adaptively smooth block boundaries,

while retaining the true edges

• Applied adaptively at several levels
– Slice level: The global filtering strength can be adjusted to

individual characteristics of the video sequence
– Block-edge level: Depends of the Intra/Inter prediction

decision, motion difference, and presence of coded residual

• A stronger filter is applied and for intra MB and for flat areas

Deblocking Filter Activation

Profile of a one-dimensional
edge along block boundary

q0
q1

p0p1

– Sample level: Sample values and quatizer-
dependant thresholds can turn off filtering
for each individual sample
• If a relatively large difference between

samples near a block edge is measured,
this is probably a blocking artifact that
should be removed

• If the difference is too large, this is
probably not a blocking artifact and
should not be smoothed

Deblocking Filter Effects
– Reduces bit rate by 5%-10% while producing the

same objective quality as the non-filtered
sequence

– Improved subjective quality:

Another Example

H.264/AVC Entropy Coding

Entropy Coding

• All syntax elements are coded using a single
codeword table
– Exponential Golomb VLC

• Quantized transform coefficients are coded using
one of two alternatives
– CAVLC (Context Adaptive VLC)
– CABAC (Context-Adaptive Binary Arithmetic Coding)

Entropy Coding

• Universal Variable Length Codes (UVLCs)
– One single exponential-Golomb codeword table is used for all

symbols - except for transform coefficients

• The transform coefficients are coded using :
– CAVLC: tables are switched depending on already transmitted

coefficients
– CABAC:

• Adaptive arithmetic coding
• Improves coding efficiency
• Higher complexity …

Algorithm Summery
• Transforms

– IDCT and Hadamard
– Optional use of a 4x4 transform block size.

• Quantizer
– 52 step sizes increased at rate of approximately 12.5%.
– Two coefficient-scanning patterns.

• Motion estimation and compensation
– Translation only.
– Different block sizes.
– Quarter pixel positions.

• Frames store
– Multiple reference frames may be used for prediction.

• Entropy coding
– Two optional coding methods: CAVLC or CABAC

H.264 Profiles

Profiles
• Baseline Profile

– Mainly for video conferencing and telephony/mobile applications
– Low complexity and low delay

• Main Profile
– Mainly for broadcast video applications, video storage and playback,

and studio distribution
– Best quality at the cost of higher complexity and higher delay

• Extended Profile
– Mainly for streaming video applications

• In addition, levels determined maximum allowed resolution,
frame rate, bitrate and number of reference frames

Baseline Profile
• Supports:

– Features for reducing latency
• ASO – Arbitrary Slice Ordering

– Features for improving error resiliency
• FMO – Flexible Macroblock ordering
• Redundant slices

• Does not support:
– B slices
– Weighted Prediction
– Field coding
– MB-AFF – Adaptive switching between frames and fields
– CABAC
– SP and SI slices
– Slice data partitioning

Main Profile
• Supports:

– Most features that are not supported by baseline
profile

• Does not support:
– SP and SI slices
– ASO – Arbitrary Slice Ordering
– FMO – Flexible Macroblock ordering
– Redundant slices

Extended Profile

• Supports:
– All features that are not supported by baseline

profile and main profile

• Does not support:
– CABAC
– Slice data partitioning

Profiles

Standards Comparison

Summary of the Standard

• H.264/AVC is the state-of-the-art video
coding standard

• Suitable for a wide range of applications
– Video conferencing, TV, storage, streaming

video, surveillance, digital cinema…
• Maintains overall structure of previous

standards
– A hybrid DPCM / transform coder

And the Results

• Substantially higher coding efficiency
comparing to former standards at the cost of
higher complexity

‘Foreman’ sequence
QCIF (176x144), 10 Hz

And the Results

MPEG-2
2400 Kbps

MPEG-2
400 Kbps

MPEG-2
100 Kbps

H.264
100 Kbps

More Details:

Reminder: Why Transform ?

–Keep the most significant
coefficients

–Reduce correlation in spatial
domain (redundency !)

“Regular” DCT

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

=

cbbc
aaaa
bccb

aaaa

Hwhen

HXHY t • The original DCT used in
JPEG, MPEG etc. can be
presented as a
multiplication with a
matrix

⎟
⎠
⎞

⎜
⎝
⎛=

⎟
⎠
⎞

⎜
⎝
⎛==

8
3cos

2
1

,
8

cos
2
1,

2
1

π

π

c

baand
Problems:
- Complexity (NlogN)
- Floating point arithmetics

Solution:
- Integer transform needed …

The “JPEG DCT”

• H gives an
orthogonal basis for
a, b, c,

• The mission is to
find a similar H with
integer a, b, c

⎟
⎠
⎞

⎜
⎝
⎛=

⎟
⎠
⎞

⎜
⎝
⎛==

8
3cos

2
1

,
8

cos
2
1,

2
1

π

π

c

baand

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

cbbc
aaaa
bccb

aaaa

H

Lets try to find integer a, b, c
Quantize the coefficients.
Define:

e.g. , for α=26 we get a similar DCT matrix, with:
a=13, b=17, c=7.

)(DCTHroundH α=

717177
13131313
177717

13131313
)26(

−−
−−

−−

== DCTHroundH

Any problem with it ?
Yes !

The dynamic range of the result grows:
For input in the range of 8bit: [-128, 127] , the output

range becomes : [-52*128, 52*127]

And that’s not all !
Since we use a 2D transform it will grow by 522 !!
which means 12 bits more needed to store X(k) ….

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−
=

−

2/1111
112/11
112/11
2/1111

1221
1111
2112

1111

1
ICT

ICT

H

H

Any solution ?
• If we choose α=2.5, than :
a=1, b=2, c=1
• We get DCT matrix:

• Important byproduct:
No need for multiplications !
Just (+, - , shift) operations !

• The dynamic range grows by 6
and we need only 6 bits ((log262)
• We call it:
Integer Cosine Transform

Butterfly ICT available

ICT

Inverse ICT

Disadvantage
• We build a new basis – but is it Orthonormal ?
• NO... Each raw got a different norm and we can’t

“normalize” by division since we loose all the integer
arithmetic

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

1221
1111
2112

1111

10/1
2/1
10/1
2/1

ICTH

But… why to normalize ???

• If we like to have an integer inverse transform
we’ll need to divide by 0.2, 0.25, 0.1

Inv(H) is:

Luckily…we can normalize inside the
quantization process ….

• The normalized transform

52

5.0

=

=

b

a
)(*. aloneitemeachmult≡⊗

ICT Normalization Table

Still, these numbers are not the integers we look for.

-Since we use multiplication in the quantization process we’ll
normalize together with the quantization

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

25/120/125/120/1
20/116/120/116/1
25/120/125/120/1
20/116/120/116/1

We combine the normalization of ICT and Inv-ICT
together:

ICT Normalization Table

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

3162.06324.06324.03162.0
5.05.05.05.0

6324.03162.03162.06324.0
5.05.05.05.0

ICTH

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−
−−

−−

2727.06565.06565.02727.0
5.05.05.05.0

6565.02727.02727.06565.0
5.05.05.05.0

DCTH

DCT Vs. Normalized ICT

016.0)ˆ,(

86.3
10.6
90.1
15.1

))((ˆ

801.1
5.1

042.3
5.6

)(

4
6
2
1

1 <⇒

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

==

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

−
−

=⇒

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

− xxmsexDCTICTx

xDCTxlet

Actually, they are so close that we can use DCT and Inv-ICT and get
close result to the original vector:

Are they similar ?

DCT Vs. ICT: Correlation Reduction Test

Compare the normalized covariance coefficient (ρ) matrices
(for Lenna)

Correlation between the vectors
of the original image:

High correlation, as we expect….

DCT ResultsResults ICT

DCT Vs. ICT Vs. KLT

KLT - the Optimal Linear Transform

1000
0100
0010
0001

DCT Vs. ICT Results 1
12345678910

294.04241.55105.6298.3472.72845.49943.23135.57625.00417.444
294.04241.2104.3897.171.78544.55642.63535.06524.5817.915

MSE: ICT vs. DCT

0
50

100
150
200
250
300
350

1 2 3 4 5 6 7 8 9 10

MSC# (Most Significant Coefficient in ZigZag Order)

M
SE DCT

ICT

ICT:
DCT:

DCT Vs. ICT Results 2 (Q-step)
MSE: ICT vs. DCT

0

10

20

30

40

50

60

5811141720

Quant Step

M
S

E

DCT
ICT

DCT Vs. ICT Results 3: Speed…

Run-time: ICT vs. DCT

0

50

100

150

200

250

300

350

1

M
Hz

DCT
ICT

Measured in “MHz” since direct comparison is difficult

Low-Complexity Quantization

()/qX round X Qstep=

We want :
no Divide operations – just Shift and Multiply !

Quantization Implementation with
Integer Arithmetic

()
/

{ } /
q

q

X X Qstep

X sign X X Qstep

=

=

1. Identify the sign and separate
from the operation

()
/

{ } /
q

q

X X Qstep

X sign X X Qstep

=

=

()LQAXXsign >>=)(}{

2. Divide by fraction using integer
multiplication and shift:
Choose such Qstep so exists A(Q)
That holds:
X/Qstep = X*A(Q)>>L

E.g. : Qstep= 2.9090=32/11
We choose A(Q)=11 and shift 5 times.

Qstep must be limited to a known set of values !

Integer Inverse-Quantization

QstepXX qr *=

NQBXX qr >>=)(*

Multiply by fraction using integer multiplication and shift ops. :

Inv-Q:

We choose B(Q) that holds:
X*Qstep = X*B(Q)>>N

Choosing A(Q), B(Q)

()

valuenormtheisjiGwhen

GQBQA

XQBQAGX

XQstepQstepX

NL

NL

),(

2*)(*)(
2

)(*
2

)(**

/*

2

2

2

+≈

≈

=

-Each ICT coefficient should be multiplied
with its normalization factor.

-After Q, IQ, and normalization we need to be
back to original range !

PF (Post-scaling Factor)
Is one of the normalization
factors, with index (i,j)

MF (Multiplication Factor)
Given in a constant table 4/,2/, 22 baba

⎥⎦
⎥

⎢⎣
⎢=⎥

⎦

⎥
⎢
⎣

⎢
=

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
= Lij

ijij
t

q
MFX

Qstep
PFX

Qstep
HxH

X
2

*
*)(

Example: Choosing A(Q)

• For Qstep=1 ,L=15 (QP=4 in H.264)
• (i,j)=(0,0) → PF = a2=0.25
• So:

81921/)25.0*32768(
2

==⇒= MF
Qstep

PFMF
L

A(Q) cont’d

⎥⎦
⎥

⎢⎣
⎢=⎥

⎦

⎥
⎢
⎣

⎢
=

⎥
⎥
⎦

⎥

⎢
⎢
⎣

⎢
= Lij

ijij
t

q
MFX

Qstep
PFX

Qstep
HxH

X
2

*
*)(

Quality Parameter: Q(P)
• To control the trade-off between number of bits and
quality, we use Q(P): small Q(P) leads to high quality
and vice versa.

• For fine tuning, we have 52 Q-steps (0..51) and each
q-step is x1.125 times the previous one.

• This structure causes miss-match between H.264 and
MPEG1/2, and makes transcoding very difficult.

• Sub-solution in H.264 Amendment 1: Fidelity Range
(FRExt): Not in the scope of this lecture…

Until now we get :

()

1

2

{ } ()

()

()

: () () 2

q

r q

r r
L N

X sign X X A Q L

X X B Q

x H X N

and A Q B Q G

−

+

= >>

=

= >>

≅

where G2 is the norm of each index in H.

• In order not to loose
precision we divide by
2N only after the Inverse
transform

• Since the transform is
linear and the two
operations submitted in the
decoder – we don’t loose
precision and don’t enlarge
the dynamic range.

Quantization Tables Size

In H.264 there are 52 quantization steps.

Each step needs two tables: A(Q) and B(Q)

There are 3 different normalization factors
for each term of the matrix.

52 * 2 * 3 = 312 double bytes, which is too large

Solution: cyclic quantization

Cyclic Quantization

()

⎣ ⎦ 6mod,6/

6)2(

)(

17)(}{

51

QQQQwhen

eXHx

QQBXX

QQAXXsignX

ME

rr

EMqr

EMq

≡≡

>>+=

<<=

+>>=

−

In order to keep the quantization tables small:
• Every 6 q-steps (QP=0..51), we multiply

Q-step by 2
• Technique: one shift-right of B(Q)

•We receive:
6 (basic tables) * 2 (A,B) * 3 (normalization factors)
= 36 double bytes

Summary
.כפל מטריציי "ע DCTניתן לממש התמרת •
, ICT - כימוי למטריצה זו נתן את מטריצת שלמים של ה•

.מבחינת דרישות הדחיסה DCT הדומה ביותר להתמרת ה
הכימוי של תוצאת , ובנוסף, הדבר הצריך נירמול שיברי•

.בשברים) לכפול IQוב (ההתמרה הצריך חלוקה
מימוש החלוקה בכפולה י "נפתרו ע שתי הבעיות יחדיו•

.בשלם והזזות
י "בחומרה ע ICTראינו כי ניתן לממש את התמרת ה •

,)3(היפוכי סימן ,)2(פרפרים כאשר כל הפעולות הן הזזות
.)ללא הכפלות כלל(בלבד bit 16ב –) 8(וחיבור שלמים

כל מקדם , בכימויפעולת הכפל היחידה שנצטרכנו לה היא •
הוכפל בכופל המתאים לו

.גם פעולה זו ניתן למקבל בחומרה•

More References ….
• I.E.G. Richardson, Video Codec Design - Developing Image and

Video Compression Systems, Wiley, 2002.
• B.G. Haskell et al., Digital video: An introduction to MPEG-2,

International Thompson Publishing, 1997.
• M. Orzessek, P. Sommer, ATM & MPEG-2 - Integrating Digital

Video into Broadband Netwrorks, Prentice Hall, 1998.
• K.R. Rao, J.J. Hwang, Techniques & Standards for Image, Video,

and Audio Coding, Prentice Hall, 1996.
• http://www.mpeg.org/MPEG/MSSG/tm5/

MPEG-2 Test Model 5
• T. Wiegand et al., “Overview of the H.264/AVC Video Coding

Standard”, IEEE Trans. Circuits. Syst. Video Technol., vol. 13, July
2003.

• http://www.vcodex.com
H.264 / MPEG-4 Part 10 White Papers

http://www.mpeg.org/MPEG/MSSG/tm5/
http://www.vcodex.com/

	H.264 / MPEG-4 AVC
	Encoder
	Encoder
	Encoder
	Encoder
	Encoder
	Previous Standards
	What is H.264/AVC ?
	Motivation�
	Artifacts – Example (MPEG-2)
	H.264 Vs. Other Standards
	H.264 Brief review
	Main New Features
	H.264/AVC Encoder
	The Transform: ICT
	Another Transform…Hadamard
	Transforms: summary
	Quantization
	Scanning
	Encoder Scheme: Motion
	Motion Estimation & Compensation
	Motion Estimation
	Block Division Example
	Motion In H.264 Model
	Motion Estimation & Compensation
	Motion Vectors Prediction
	H.264/AVC Encoder Scheme
	Intra Prediction
	Intra Predication	Cont’d
	 Intra Prediction - 4x4 Modes
	Intra Prediction Example
	Another Intra Prediction Example
	4x4 Modes Example
	Intra Prediction - 16x16 Modes
	16x16 Modes Example
	Intra Prediction Example
	Intra Prediction vs. JPEG 2000
	H.264/AVC Deblocking Filter
	In-Loop Deblocking Filter
	Deblocking Filter Activation
	Deblocking Filter Effects
	Another Example
	H.264/AVC Entropy Coding
	Entropy Coding
	Entropy Coding
	Algorithm Summery
	H.264 Profiles
	Profiles
	Baseline Profile
	Main Profile
	Extended Profile
	Profiles
	Standards Comparison
	Summary of the Standard
	And the Results
	And the Results
	More Details:
	Reminder: Why Transform ?
	“Regular” DCT
	The “JPEG DCT”
	Lets try to find integer a, b, c
	Any problem with it ?
	Any solution ?
	Butterfly ICT available
	Disadvantage
	But… why to normalize ???
	ICT Normalization Table
	ICT Normalization Table
	DCT Vs. Normalized ICT
	Are they similar ?
	DCT Vs. ICT: Correlation Reduction Test
	DCT Vs. ICT Vs. KLT
	DCT Vs. ICT Results 1
	DCT Vs. ICT Results 2 (Q-step)
	DCT Vs. ICT Results 3: Speed…
	Low-Complexity Quantization
	Quantization Implementation with Integer Arithmetic
	Integer Inverse-Quantization
	Choosing A(Q), B(Q)
	Slide Number 81
	Slide Number 82
	Quality Parameter: Q(P)
	Until now we get :
	Quantization Tables Size
	Cyclic Quantization
	Summary
	More References ….

