MPEG-2 And Scalability Support

Nimrod Peleg Update: Dec .2005

MPEG-2 Target

- "...Generic coding method of moving pictures and associated sound for ...digital storage, TV broadcasting and communication..."
- Dedicated for high quality services e.g. HDTV, Networked data services etc.
- Developed from CCIR-601, CCIR-648, JPEG, H.261 and MPEG-1 former standards

Profiles and Levels

- Each profile defines a set of capabilities, e.g. interlaced video support, B pictures, etc.
- Each level defines <u>spatial and temporal resolutions</u>
- <u>Examples</u>:
 - Main profile at main level (mp@ml) is used for standard TV
 - Main profile at high level (mp@hl) is used for HDTV

MPEG-2 Levels

- Low Level : 352x240 Pixel/Frame Match CPB MPEG 1
- Main Level : 720x480 Pixel/Frame Standard for NTSC-Broadcast-Quality
- High1440 Level : 1440x1152 Pixel/Frame High Definition TV
- High Level : 1920x1080 Pixel/Frame High Definition TV

MPEG-2 Profiles

Profiles indicate limitations for MPEG2-Syntax

- <u>Main-Profile</u> : Match MPEG1-Syntax Compatible with Interlacing
- <u>Simple-Profile</u> : Main, with no B-Frames

Profiles and Levels

0			Profile						
			Simple (I, P) (4:2:0)	Main (I, P, B) (4:2:0)	SNR (I, P, B) (4:2:0)	Spatial (I, P, B) (4:2:0)	High (I, P, B) (4:2:0; 4:2:2)	Multiview (I, P, B) (4:2:0)	4:2:2 (I, P, B) (4:2:0; 4:2:2)
	Low	Pels/line Lines/frame fps mbps		\frown	352 288 30 4	352 288 30 4		352 288 30 8	
Level	Main	Pels/line Lines/frame fps mbps	720 576 30 15	720 576 30 15	720 576 30 15		720 576 30 20	720 576 30 25	720 512/608 30 50
	High- 1440	Pels/line Lines/frame fps mbps	1440 1152 60 60		1440 1152 60 60	1440 1152 60 80	1440 1152 60 100		
	High	Pels/line Lines/frame fps mbps	1920 1152 60 80			1920 1152 60 100	1920 1152 60 130	1920 1152 60 300	

^oI, P, B: allowable picture types. Maximum bit rates include all layers in case of scalable bit streams.

MPEG-1 Compatible

MPEG-2 Btstream structure

Scalability Modes

- SPATIAL SCALABILITY
- TEMPORAL SCALABILITY
- **SNR** SCALABILITY
- DATA PARTITIONING

Spatial Scalability Diagram

SNR Scalability

• Refinement of the DCT coefficients encoded in base layer by the enhancement layer coefficients

• Base layer contains <u>coarser quantization</u> then enhancement layer

• Enhancement layer contains coded refinement DCT coefficients and <u>a small overhead</u>

Scalable SNR Encoder Scheme

SNR Scalability Decoding

- DCT coefficients in base layer are added to DCT coefficients in enhancement layer
- The combined layer decoding process is identical to decoding of a non-scalable bitstream
- Different rate control for the 2 layers

SNR Scalability Decoder Scheme

Data Partitioning

• The base layer contains the most 'critical' components, such as header information, motion vectors and (optionally) low-frequency DCT coefficients

• The enhancement layer contains <u>all remaining</u> <u>coded data</u> (usually less critical to successful decoding)

Data Partitioning (Cont'd)

- The bitsteam is split into 2 layers: partition0, partition1
- The <u>Priority Breakpoint</u> (in sequence header) indicates which syntax elements are placed in partition0 which is the base or high priority partition

Data Partitioning (Cont'd)

- The remainder of the bitstream is placed in partition1 which is the low priority partition
- Sequence, GOP, picture and slice headers are duplicated from partition0 to partition1
- VBV refers to the sum of the 2 partitions
- Partition0 contains sequence scalable extension

Data Partitioning (Cont'd)

• No Data Partitioning

Quant ScaleDC coeffDCT coeff1DCT coeff2DCT coeff3	EOB DC	DCT eff coeff1	EOB	
--	--------	-------------------	-----	--

• Partitions for Priority Break Point 64:

Data Partitioning

Possible Breakpoints:

- After slice header
- After macroblock address increment (macroblock header)
- Before coded block pattern (after Motion Vector)
- After any number of DCT coefficients (excluding one)