MPEG-1: A Standard for Digital Storage of Audio and Video

Nimrod Peleg Update: Feb. 2005

MPEG-1 Target (1988-1990)

- MPEG-1 has been developed for storage of CIF format video and its associated audio at about 1.5Mbps on various digital storage media such as *CD-ROM*, DAT, Winchester disks, Optical drives etc.
- Primary application perceived as Multimedia systems (Similar quality to VHS)
- Similar to H.261 + Additional features

Main Features

- Standartizes a <u>Syntax</u> that supports ME, MC, DCT, Quantization, VLC etc.
- <u>Does not define</u> specific algorithms needed to produce valid data
- A number of parameters, contained in the coded bitstream, allowing more flexibility than H.261

Application Specific Features

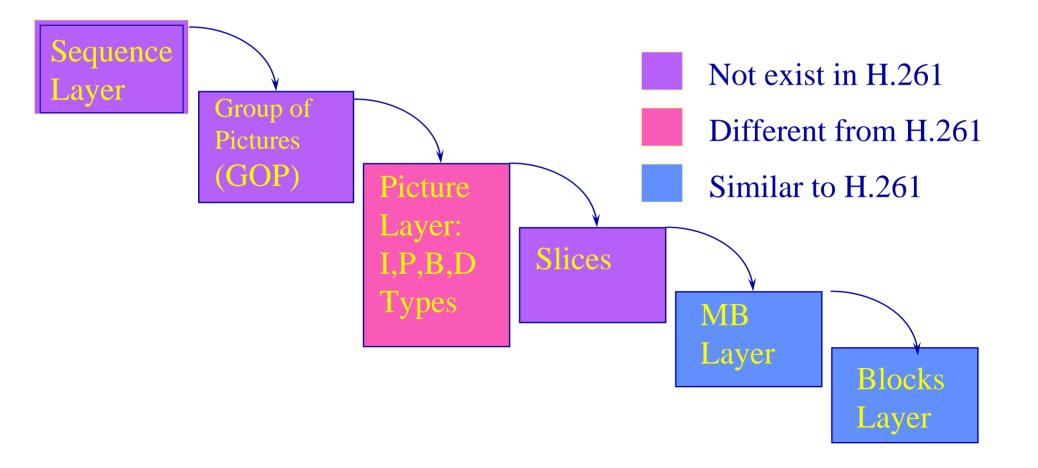
- <u>(No) Random Access</u> to any frame in a limited amount of time
- <u>Fast Forward/Reverse Search</u> to display only selected frames (also Freeze mode)
- <u>Coding/Decoding Delay</u> of about 1Sec (vs. 150mSec in H.261)

Input Video Format

- Progressive (Non-Interlaced) video only
- Input format usually converted to *Standard Input Format (SIF)*:

352x240, 8b/pixel, Chroma subsampled by 2 in both axis (Similar to H.261), 30fps

• Color space (YCbCr) adopted from CCIR-601


Constrained Parameters

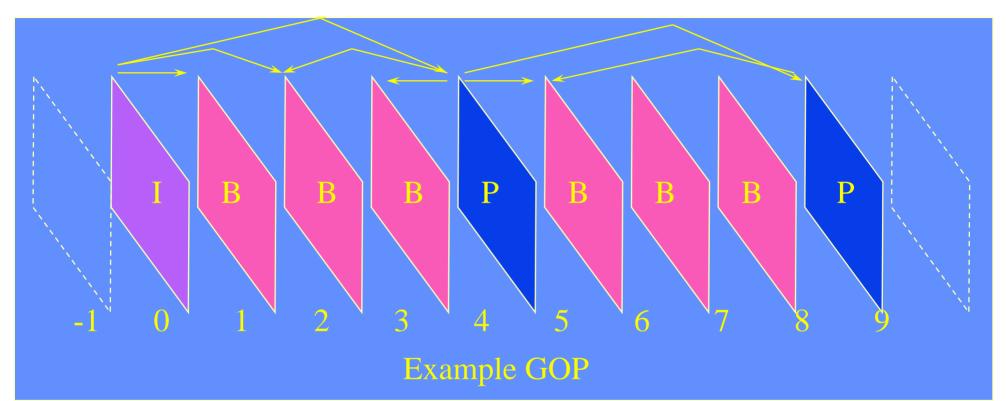
- Max. Horizon. resolution:
- Max. Vertical resolution:
- Max. Temporal rate:
- Max. number of MB/picture: 3
- Max. MB rate:
- Max. Bitrate:
- Max. Decoder buffer size:
- Max. MV Range:

720 pixels/line 576 lines/pict. 30 frames/sec. 396 9900 MB/sec. 1.86 Mbps 376,832 bits -64 to +63.5 pels

Data Structure

Hierarcical structure, with similarity to H.261

Compression Modes


- <u>Sequences</u>: Several GOPs,
- <u>Group of Pictures (GOP)</u>: Smallest unit that can be independently decoded
- <u>*Pictures*</u>: 4 compression modes defined
 - *Intra (I)*: No reference to any other picture, JPEG-like coding, serve as "random access" points
 - *Predicted (P)*: MC prediction errors are coded. Forward prediction from previous I or P frames

Compression Modes (Cont'd)

- Bi-directional (B): MC prediction errors are coded.
 Forward/Backward/Bidirctional prediction from both previous and future I or P
- *DC* (*D*): Contains only DC component of each block, serve fast forward search mode, for very low bitrates

The number of I,P,B frames in a GOP are application-dependent (see next slide)

GOP Arrangement

• Encoding order options: 0,4,1,2,3,8,5,6,7 or 0,1,4,2,3,8,5,6,7

Compression Modes (Cont'd)

- <u>Slices</u>: Made up of <u>MacroBlocks</u>. One or more in a picture, provide some header information for a fast error recovery
- MacroBlocks (MB): Basic unit for MC and Quantizer table. Composition similar to H.261 (see next slides for MB types)
- *Block:* Smallest DCT unit, 8x8 pixel array

	MB Types				
I-Picture	P-Picture	B-Picture			
Intra	Intra	Intra			
Intra-A	Intra-A	Intra-A			
	Inter-D	Inter-F			
	Inter-DA	Inter-FD			
	Inter-F	Inter-FDA			
	Inter-FD	Inter-B			
	Inter-FDA	Inter-BD			
	Skipped	Inter-BDA			
		Inter-I			
		Inter-ID			
		Inter-IDA			
		Skipped			

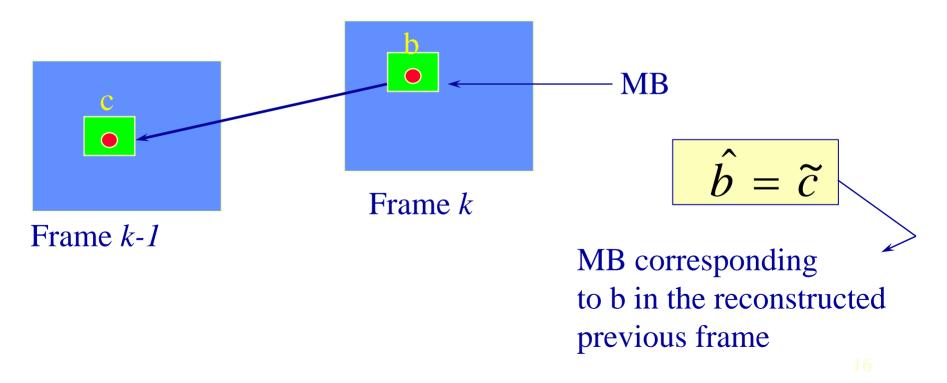
Intraframe Compression Modes

- For 8-bit input image, DCT Coeff. is 11-bit, [0,2040] for DC and [-1024,1023] for AC
- Quantized coeff. obtained by dividing DCT coeff. value by quantized step size + rounding
- Default Intra Q-Table:

8	16	19	22	26	27	29	34
16	16	22	24	27	29	34	37
19 2	22	26	27	29	34	34	38
22 2	22	26	27	29	34	37	40
22 2	26	27	29	32	35	40	48
26 2	27	29	32	35	40	48	58
26 2	27	29	34	38	46	56	<u>69</u>
27 2	29	35	38	46	56	69	83

Intraframe Types

- *Intra*: MBs are coded with current quantization table
- <u>Intra-A</u>: Quantization table is scaled by MQuant (transmitted in the header), that can be varied on a MB basis
- HVS suggests that "busy" MBs can be quantized relatively coarsely

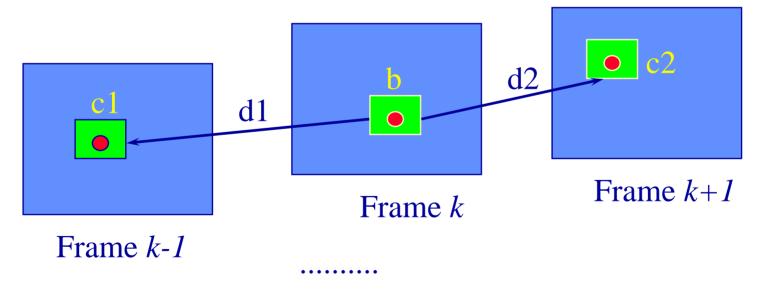

Due to adaptive quantization, MPEG (Intra) provides 30% better compression compared with JPEG ! (No adaptation in JPEG)

Intraframe Coding

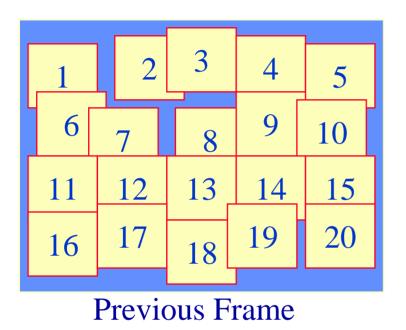
- DC coeff. are DPCM coded with a fixed Huffman table (with logarithmic amplitude similar to JPEG)
- AC coeff. are Zig-Zag scanned and converted into run-length pairs (similar to JPEG)
- A single code table is used for <u>all</u> blocks. Only <u>highly-probable pairs</u> are VLC coded, and the rest with a fixed length code, to avoid extremely long codewords
- Codebook is superset of H.261 (<u>Not JPEG !</u>)

Interframe Compression Modes

• <u>P-Pictures</u>: Forward prediction, with reference to previous I or P pictures:


P-Interframe Types

- Intra / Intra-A : same as in Intraframe
- <u>Inter-D</u>: DCT of prediction error will be coded
- *Inter-F*: Forward MC active
- *Inter-A*: Adaptive quantization (new MQuant)
- <u>Skipped</u>: If the MB at the same position in the previous frame (without MC) is good enough (stationary area)

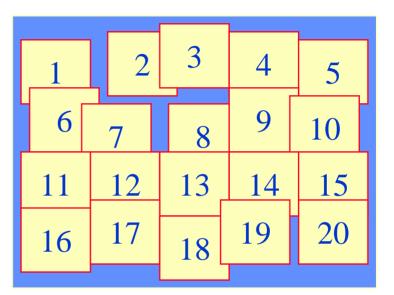

Note: D/F/A combinations also possible

Interframe Modes (Cont'd)

• <u>B-Picture</u>: Allows interpolative coding (Bi-directional prediction)

Backward Prediction

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20


Predicted (current) Frame

- No holes or overlap is created in the predicted image
- All standards use this approach
- Introduces less delays

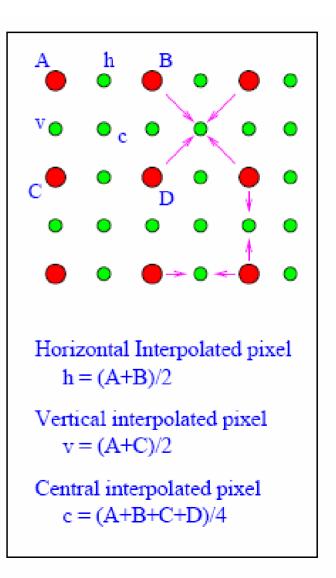
Forward Prediction

1	2	3	4	5
6	7	8	9	10
11	12	13	14	15
16	17	18	19	20

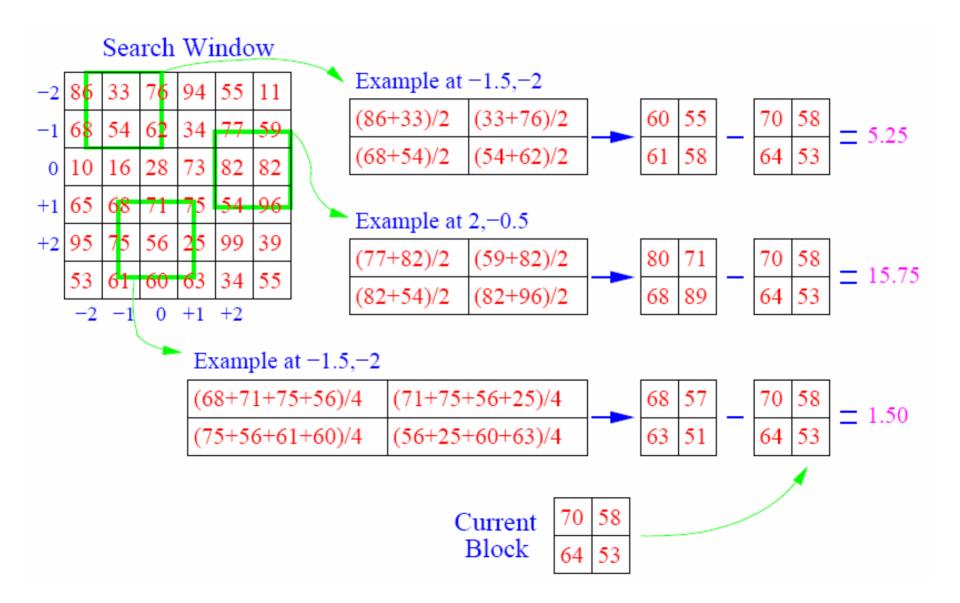
Current Frame

Predicted (future) Frame

Holes or overlap regions are created in the predicted image

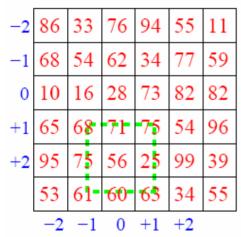

B-Picture Prediction Types

- a1=0 ; a2=1 : Backward prediction
- a1=1 ; a2=0 : Forward prediction


a1=a2=0.5 : Bidirectional prediction
For this type, 2 displacement vectors (d1, d2) and prediction error (b-b~) need to be coded for each MB b.

Half-Pel refinement

 motion estimation from previous reconstructed and <u>interpolated</u> frame



Half-Pel Refinement Example

Half-Pel Refinement Example cont'd

Search Window

-2	11.50	5.25	18.50	13.25	15.75	12.75	20.25	13.25	20.25	19.25
-1.5	16.00	13.00	18.50	12.75	6.75	9.75	12.75	9.25	15.25	13.00
-1	24.25	22.75	23.25	16.50	22.00	15.50	23.25	16.75	13.75	16.00
-0.5	22.75	20.50	18.25	16.50	16.00	12.50	15.75	13.25	15.75	14.00
0	29.50	28.25	26.50	20.25	21.50	15.00	9.75	13.75	22.25	20.50
+0.5	20.75	17.25	13.75	9.00	9.75	9.50	13.00	10.50	15.25	15.50
+1	17.00	12.25	7.25	7.25	13.50	10.50	23.50	10.00	25.75	13.75
+1.5	12.25	8.25	4.25	1.50	7.25	8.25	18.25	8.50	6.50	9.50
+2	15.25	9.50	4.25	8.25	15.25	9.75	26.50	10.50	20.00	14.25
+2.5	18.25	16.00	14.50	17.50	20.25	21.00	25.75	21.50	21.50	28.50
	-2	-1.5	-1	-0.5	0	+0.5	+1	+1.5	+2	+2.5

2

 Current
 70
 58

 Block
 64
 53

Motion Vector: (-0.5, +1.5) + Error: $\frac{2}{10}$

Mode Decision

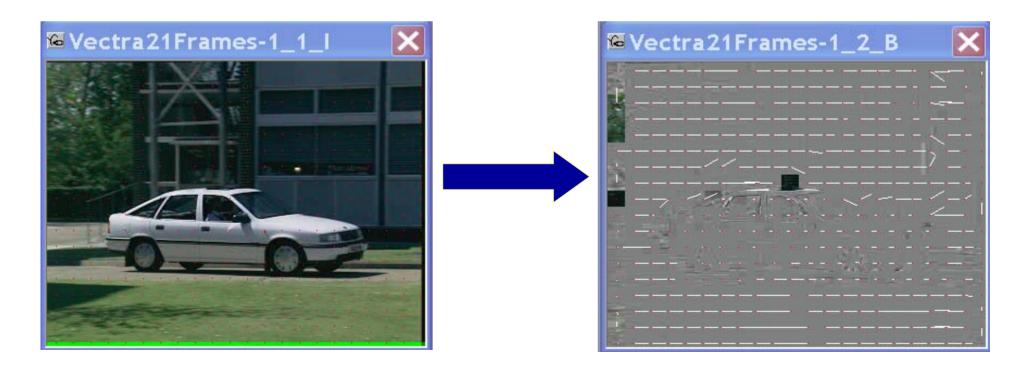
• Macroblock MSE < tsh_1:

transmit motion only

- tsh_1 < MB MSE < tsh_2:
 - transmit motion + DCT on DFD
 - Displaced Frame Difference: motion compensated error image (predicted-original)
 - Adapted DCT quantization (around 0)
- Macroblock MSE > tsh_2:
 - INTRA MB

Not Standardized !

B-frame Encoding Process

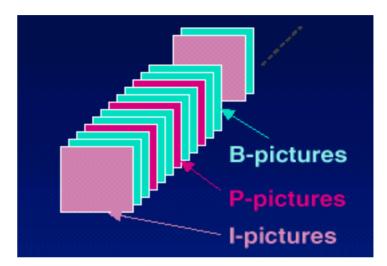

- For each GOP, we first encode all I and P frames (typically 1/3 of all frames)
- The remaining (B frames) can be interpolated from the reconstructed I and P frames
- The resulting interpolation error is DCT encoded

B-frame Pro's and Con's

- Solution Solution Control Allow effective handling of covered / uncovered problems
- © Better MC provides a better SNR
- © Since not used to predict other frames, they can be encoded with fewer bits
- Frame buffers needed (both decoder and encoder)
- If too many: more bits needed to encode reference frames, and coding delay increase

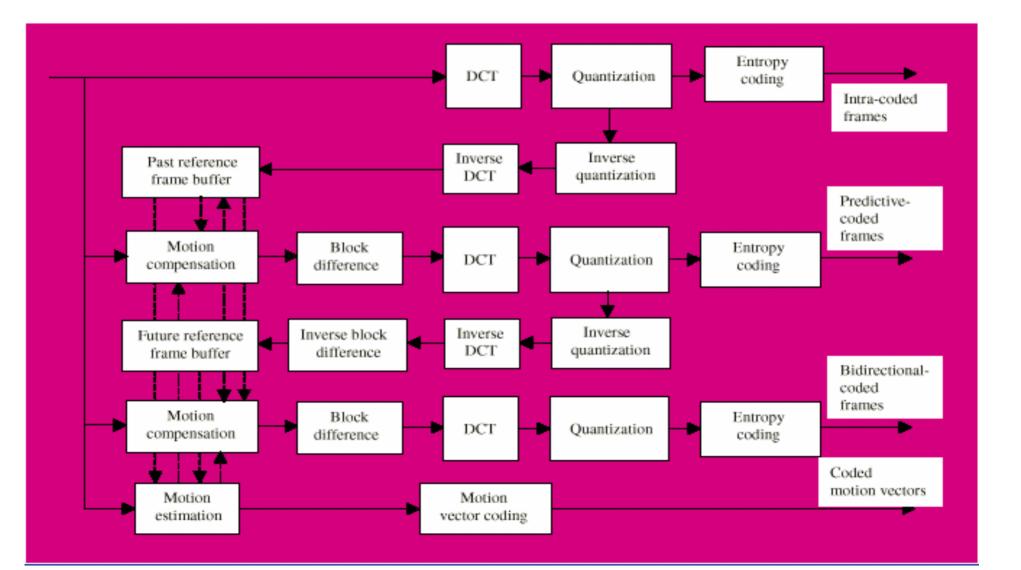
B-Interframe Types

- *Inter-B*: Backward MC active
- The rest types are same as for P-Interframe (see slide 17)



B-Interframe Quantization

- All DCT coeff. are 11-bit [-2048,2047]
- Q-Table relatively coarser than for I-frame
- All coeff. (including DC) are Zig-Zag scanned for [*run,Level*] pairs, and then VLC coded
- Displacement vectors are DPCM coded
- Huffman tables different than P-frames tables


I-P-B Summary

- Intra I- frames:
 - random access
 - error robustness
- Predicted P- frames

- backward predicted from previous <u>anchor</u> picture
- Bi-directionally predicted **B-** frames
 - forward/ backward predicted from previous <u>anchor</u> picture (I or P)

MPEG-1 Block Diagram

H.261 Vs. MPEG-1

<u>H.261</u>

MPEG-1

Sequential Access

1 basic frame rate

CIF/QCIF only

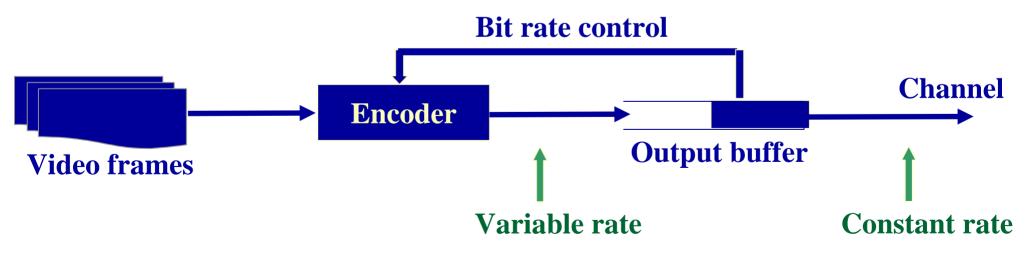
I and P frames

MC over 1 frame

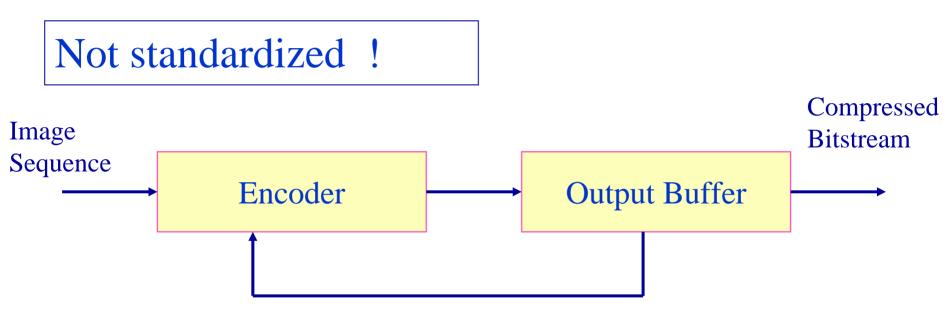
1 pixel MV accuracy

Optional filter in loop

Variable Th.+Uniform Q Quantization matrix


BOB structure (no GOF) GOF and Slice structures

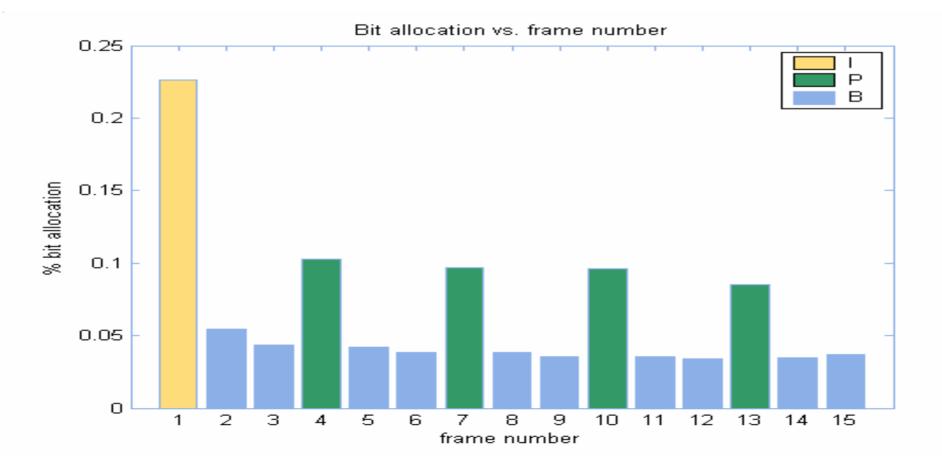
Random Access Flexible frame rates Flexible image size I,P and B frames MC over 1 or more frames 1/2 pel MV accuracy No filter


Bit Rate Control (BRC)

Objectives

- Smart bit allocation:
 - picture level & MB level
- Prevent buffer overflow

Rate Control

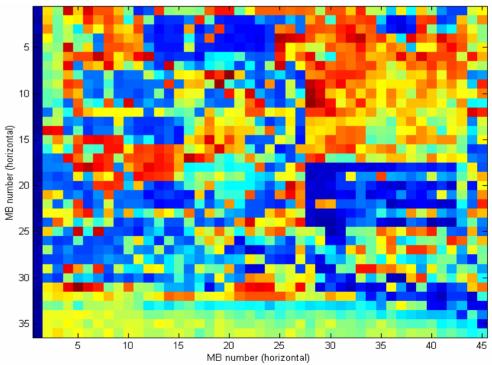


Increase/Decrease Quantization factor

DCT quantizers *mode decision* scheme can also be changed !

BRC – Test Model 5

• Frame level target bit allocation Frame type, remaining bits in the GOP, previous picture complexity


BRC – Test Model 5 (cont'd)

- MB level buffer monitoring Choose quantizer step size to meet the target frame rate
- MB level adaptive quantization

Current frame

MB activity map (logarithmic scale)

