H.261: A Standard for VideoConferencing Applications

Nimrod Peleg
Update: Dec. 2005
“... A Video compression standard developed to facilitate videoconferencing (and videophone) services over the integrated services digital network (ISDN) at $p \times 64Kbps$ ($p=1..30$) ...”

- Acceptable quality usually above $p=6$ (384Kbps)

- Maximum bitrate over ISDN is 1.92Mbps ($p=30$), better than VHS-quality!
Important Features

• Maximum coding *delay* of 150mSec., due to the need for bi-directional communication.

• *Low-cost* VLSI implementation is possible.
Input Image Format

• To enable use of both 525-lines and 625-lines TV standards, a new input format was defined: _Common Intermediate Format (CIF)_

• **Maximum rate:** CIF, 30fps → 37.3Mbps for 384Kbps channel rate, 54:1 compression ratio needed

• **Minimum rate:** QCIF, 7.5fps → 2.3Mbps for 64Kbps channel rate, 36:1 compression ratio needed
Input Image Format (Cont’d)

<table>
<thead>
<tr>
<th></th>
<th>CIF</th>
<th>QCIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active pels/line</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lum (Y)</td>
<td>360(352)</td>
<td>180(176)</td>
</tr>
<tr>
<td>Chroma (U,V)</td>
<td>180(176)</td>
<td>90(88)</td>
</tr>
<tr>
<td>Active Lines/picture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lum (Y)</td>
<td>288</td>
<td>144</td>
</tr>
<tr>
<td>Chroma (U,V)</td>
<td>144</td>
<td>72</td>
</tr>
<tr>
<td>Interlacing/Aspect Ratio</td>
<td>1:1 / 4:3</td>
<td>1:1 / 4:3</td>
</tr>
<tr>
<td>Temporal Rate</td>
<td>30,15,10,7.5</td>
<td>30,15,10,7.5</td>
</tr>
</tbody>
</table>
Video Multiplex

- Decoder should interpret the received bit stream without any ambiguity
- Hierarchical structure:
Video Multiplex: Picture Layer

- Picture Start Code: fix word (00010H).
- Temporal Reference: Position of the picture in the sequence (zero’s every 32 pictures!).
- PType: Picture format (CIF, QCIF, NTSC) and type.
- Picture Extra Information: Signaling if PSpare exists.
- Picture Spare: Spare information, repeated by PEI till PEI=0.
Video Multiplex: GOB

GOB Layer: Every picture is divided into 12 GOBs for CIF or 3 GOBs for QCIF:

<table>
<thead>
<tr>
<th>QCIF</th>
<th>CIF</th>
</tr>
</thead>
<tbody>
<tr>
<td>144 Pixels</td>
<td>352 Pixels</td>
</tr>
<tr>
<td>176 Pixels</td>
<td>288 Pixels</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>
Video Multiplex: GOB (Cont’d)

- **GOB Start Code**: fix word (0001H).
- **GOB Number**: Position of the group in the picture (zero’s every 16 GOBs!).
- **GQuant**: GOB Quantization step (step size=2*GQuant), fixed till changed by MQuant (see later).
- **GOB Extra Information**: Signaling if GSpare exists.
- **GOB Spare**: Spare information, repeated by GEI till GEI=0.
Video Multiplex: MB

- Smallest data unit for selecting compression mode
- Each **GOB** is divided into 33MB. Each MB contains 16x16 pixels
- A MB which contains no new information is not transmitted
• **MacroBlock Address**: Position within the GOB, 1st MB has absolute address, others: differential.
Video Multiplex: MB (Cont’d)

- **MType**: Information about coming MB (Inter or Intra, MV included or not, MQuant exists, etc.)
- **MQuant**: Replacing GQuant till the end of the GOB or a new Mquant.
- **Motion Vector Data**: Motion vector for the MB, relative to the former picture and differential from former MB. Absolute value in several cases:
 - MB is first in the line (1, 12, 22).
 - Former MB is not attached (MBA not 1).
 - Last MB was not of MC type.
Video Multiplex: MB (Cont’d)

– The MV includes two words: Horizontal change and Vertical change
• **Coded Block Pattern**: Shows which blocks in the MB were transmitted:
 \[CBP = 32P_1 + 16P_2 + 8P_3 + 4P_4 + 2P_5 + P_6 \]

\[
P_n = \begin{cases}
1 & \text{At least one coeff. was transmitted} \\
0 & \text{No coeff. transmitted}
\end{cases}
\]
Video Multiplex: Block Layer

- A MB contains 6 Blocks, 8x8 pixels each:
 - 4 Luminance (Y) and 2 Chrominance (Cb, Cr)

![Composition of MacroBlock]

Position of Lum. And Chroma Pixels
Video Multiplex: Block (Cont’d)

• Coeff. are Run-Length, Huffman coded.
• For Intra Blocks, all 64 coeff. transmitted.
• All other cases: CBP points which blocks are transmitted.
• Coeff. consists of 2 words: Run and Level according to Zig-Zag scan.
• Every block ends with the code: 1H.
Video Compression Algorithm

• Two main modes:
 – *Inter Mode*: Temporal prediction employed, with or without MC. Then, prediction error is DCT encoded.

• For each mode, several options can be selected (quantization, filters etc.)
Inter frame coding steps

- Estimate (one) MV for each MB, max. value: ±15.
 - motion estimation technique is NOT mentioned!
- Select a compression mode for each MB, based on Displaced Block Difference criterion (dbd):
 $$dbd(x,k) = b(x,k) - b(x-d, k-1)$$
 b: block, x: pixel coordinates, k: time index
 d: displacement vector (k frame vs. $k-1$)

 if $d=0$, then dbd becomes block difference (bd)
- Process each MB to generate header + data bitstream, according to chosen compression mode.
Video Encoder Scheme

- **image sequence**
- **M.C.** - Motion Compensation
- **M.E.** - Motion Estimation
- **MEM** - Frame store
- **DCT** - Discrete Cosine Transform
- **Q** - Quantization
- **Q^(-1)** - Inverse Quantization
- **DCT^(-1)** - Inverse DCT
- **VLC** - Variable Length Code
- **0101...** bit stream

Diagram:
- Intra / Inter switch
- M.C. - Motion Compensation
- M.E. - Motion Estimation
- MEM - Frame store
- DCT - Discrete Cosine Transform
- Q - Quantization
- VLC - Variable Length Code
Compression modes

<table>
<thead>
<tr>
<th>Prediction</th>
<th>MQuant</th>
<th>MVD</th>
<th>CBP</th>
<th>TCoeff</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intra</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>0001</td>
</tr>
<tr>
<td>Intra</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>0000 001</td>
</tr>
<tr>
<td>Inter</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>Inter</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>0000 1</td>
</tr>
<tr>
<td>Inter+MC</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>0000 0000 1</td>
</tr>
<tr>
<td>Inter+MC</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>0000 0001</td>
</tr>
<tr>
<td>Inter+MC</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>0000 0000 01</td>
</tr>
<tr>
<td>Inter+MC+Fil</td>
<td>+</td>
<td></td>
<td></td>
<td>+</td>
<td>001</td>
</tr>
<tr>
<td>Inter+MC+Fil</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>01</td>
</tr>
<tr>
<td>Inter+MC+Fil</td>
<td>+</td>
<td>+</td>
<td></td>
<td>+</td>
<td>0000 01</td>
</tr>
</tbody>
</table>
Compression modes (Cont’d)

Table codes:

- **MQuant:** + indicates a new value.
- **MVD:** Motion vector data exists.
- **CBP:** If at least one transform coeff. is transmitted.
- **TCoeff:** Transform coeff. are encoded.
- **Code:** indicating the compression mode.
Compression modes (Cont’d)

- *Inter + MC* is selected if \(\text{var}(dbd) < bd \)

 Transmission of the prediction error (\(TCoeff \)) is optional.

- Otherwise, no MV sent. If original MB has a small variance, *Intra* mode selected (DCT computed). In both *Inter* and *Inter+MC* blocks, prediction error is DCT encoded.

- For MC blocks, prediction error can be modified by 2-D (separable) *spatial Filter*.
Coding Model

• Quantized coefficients are \textit{Zig-Zag} scanned, and \textit{Events} are defined and then entropy coded.

• Events are defined as combination of run-length of zero coeff. preceding a non-zero coefficient.

That is:

\[\text{Event} = (\text{Run, Level}) \]
Rate and Buffer Control

Options for rate control are:

• PreProcessing
• Quantizer step size
• Block significance criterion
• Temporal sub-sampling

All options are NOT subject to the recommendation!
H.263 Demo ...