MPEG Audio Coding

Nimrod Peleg
Update: March 2004
Introduction

- *High quality low bit-rate audio coding*
- **MPEG-1**: Mono & Stereo, sampling rates of 32KHz, 44.1KHz and 48KHz.
- **MPEG-2**: Backward compatible coding of 5+1 multi-channel sound, more sampling rates: 16KHz, 22.05KHz and 24KHz.
Some Facts

• MPEG-1: 1.5 Mbits/sec for audio and video:
 ~1.1Mbps for video, 0.3-0.4Mbps for audio

• Uncompressed CD audio is 44,100 samples/sec
 * 16 bits/sample * 2 channels > 1.4Mbps

• Typical Compression factors: from 2.7 to 24

• With Compression rate 6:1 (16 bits stereo
 sampled at 48 KHz is reduced to 256 kbps) and
 optimal listening conditions, expert listeners
 could not distinguish between coded and
 original audio clips.
Some Facts (Cont’d)

• MPEG-1 audio supports sampling frequencies of 32, 44.1 and 48 KHz.

• Supports one or two audio channels in one of the four modes:
 – Monophonic: single audio channel
 – Dual-monophonic: two independent channels (similar to stereo)
 – Stereo: for stereo channels that share bits, but not using joint-stereo coding
 – Joint-stereo: takes advantage of the correlation between stereo channels
Basic Idea: PsychoAcoustics

• How much noise can be introduced to the signal without being audible?

PsychoAcoustic Model

Masking in the frequency domain
Reminder: Cochlear filter mechanism

- The bandwidth of filters (in the ‘filter bank’) varies strongly from low to high frequencies
- Center frequencies are call ‘critical bands’: mapping frequency onto a linear distance measure along the basiliar membrane.
- Filters bandwidth variation: 40:1
- Filters time response variation: 1:40
- Simultaneous control of time/frequency artifacts at 40:1 resolution range is difficult!
Barks

• Assuming that each critical band corresponds to a fixed distance along the basiliar membrane, we define a unit of length $z(f)$ to be one critical band, and call it “Bark” (after Barkhausen).

• The approximation of $z(f)$ is done using:

$$\frac{z}{\text{Bark}} = 13 \arctan(0.76/1\text{KHz}) + 3.5 \arctan[(f/7.5\text{kHz})^2]$$

• Bark width vary from $\sim100\text{Hz}$ in low freq. and 4kHz at $\sim15\text{kHz}$.
The Barks table

<table>
<thead>
<tr>
<th>Bark#</th>
<th>$f_{low}(\text{Hz})$</th>
<th>$f_{high}(\text{Hz})$</th>
<th>$f_{center}(\text{Hz})$</th>
<th>BandWidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>100</td>
<td>50</td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>100</td>
<td>200</td>
<td>150</td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>300</td>
<td>250</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>1270</td>
<td>1480</td>
<td>1370</td>
<td>210</td>
</tr>
<tr>
<td>11</td>
<td>1480</td>
<td>1720</td>
<td>1600</td>
<td>240</td>
</tr>
<tr>
<td>22</td>
<td>9500</td>
<td>12000</td>
<td>10500</td>
<td>2500</td>
</tr>
<tr>
<td>23</td>
<td>12000</td>
<td>15500</td>
<td>13500</td>
<td>3500</td>
</tr>
<tr>
<td>24</td>
<td>15500</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reminder: Auditory mechanism (HAS)
PsychoAcoustics Model

• Frequency is divided into “Barks”: bands of **non-uniform width** (narrower in lower freq.) according to the ear’s “resolution”

• Masking is influenced by two major parameters:
 – **Tonal component** (Masks the near frequency)
 – **Noise component** (Masks near and lower noises)

• Given an audio signal, the model creates a **masking function**
Measures

- **SMR**: Signal to Mask Ratio
- **SNR**: Signal to Noise Ratio
- **MNR = SNR - SMR**

Is the ratio between the mask energy and the quantization noise

- **Positive MNR**: The noise injected in the quantization process is higher than masking level, *and will be heard* after reconstruction
Basic Coding Structure

Audio In

Analysis FilterBank

1

Quantization + Bit Allocation

2

Perceptual Model

3

Bitstream Encoding

Bitstream Output

Side information (Bit allocation etc.) Included in bitstream

Side info. Block switching info.

Perceptual threshold

Quantization + Bit Allocation

Perceptual Model
Basic Coding Structure (Cont’d)

1. Input signal is decomposed into sub-sampled spectral components (time/freq. domain)

2. A time-dependent mask threshold is estimated

3. Spectral components are quantized and coded, keeping the noise (introduced in quantization) below the mask threshold (Many implementations)

• Bit-Allocation:
1 bit of quantization introduces about 6 dB of noise
Bit-Stream Structure

Frame 1 | Frame 2 | Frame ... | Frame N

Header (32 bits) | CRC (16 bits) | Coded Data | Ancillary Data
Header Contents

• \textit{SyncWord} (12 bits)
• \textit{Layer Code} (2 bits): Layer I, II or III
• \textit{Bit-rate Index} (4 bits): according to the table in next slide, 32Kbps up-to 448Kbps.
• \textit{Sampling Frequency} (2 bits): 48, 44.1 or 32kHz.
• \textit{Padding} (1 bit): number of slots, \(N\) or \(N+1\)
• \textit{Mode} (2 bits): Stereo, Joint Stereo, Dual or Single Channel.
<table>
<thead>
<tr>
<th>Index</th>
<th>Layer I</th>
<th>Layer II</th>
<th>Layer III</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>free format</td>
<td>free format</td>
<td>free format</td>
</tr>
<tr>
<td>0001</td>
<td>32</td>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>0010</td>
<td>64</td>
<td>48</td>
<td>40</td>
</tr>
<tr>
<td>0011</td>
<td>96</td>
<td>56</td>
<td>48</td>
</tr>
<tr>
<td>0100</td>
<td>128</td>
<td>64</td>
<td>56</td>
</tr>
<tr>
<td>0101</td>
<td>160</td>
<td>80</td>
<td>64</td>
</tr>
<tr>
<td>0110</td>
<td>192</td>
<td>96</td>
<td>80</td>
</tr>
<tr>
<td>0111</td>
<td>224</td>
<td>112</td>
<td>96</td>
</tr>
<tr>
<td>1000</td>
<td>256</td>
<td>128</td>
<td>112</td>
</tr>
<tr>
<td>1001</td>
<td>288</td>
<td>160</td>
<td>128</td>
</tr>
<tr>
<td>1010</td>
<td>320</td>
<td>192</td>
<td>160</td>
</tr>
<tr>
<td>1011</td>
<td>352</td>
<td>224</td>
<td>192</td>
</tr>
<tr>
<td>1100</td>
<td>384</td>
<td>256</td>
<td>224</td>
</tr>
<tr>
<td>1101</td>
<td>416</td>
<td>320</td>
<td>256</td>
</tr>
<tr>
<td>1110</td>
<td>448</td>
<td>384</td>
<td>320</td>
</tr>
</tbody>
</table>
Perceptual Model

• A good estimation of actual masked threshold is essential for a better quality

• A very simple model would allocate bits according to: \[n_{\text{bits}} = \frac{27 \text{dB} \times (lu - lo)}{6.02 \text{dB}} \]

 \(lu \): upper band limit \(lo \): lower band limit

 (Measured in Bark)

• More advanced models (SMR) are in use
Perceptual Model: reminder

- The masking occurs in each critical band.
- Critical band represents the bandwidth at which subjective response change rather fast.
- The bandwidth of the critical bands varies from 100Hz at low frequencies to about \((0.2 \times f)\) for frequencies above 500Hz.
- The loudness of a band of noise at a constant sound pressure remains constant in the critical band.
- The corresponding unit for the critical band is bark.
Filter Banks

• Sub-Band Coders use low number of channels, connected with processing of adjacent samples in time

• Transform Coders use high number of sub-bands and joint processing of adjacent samples in frequency

No Basic difference between both approaches
Quantization

Two basic approaches

• **Block Companding** (block floating point):

A number of values, ordered either in time domain or in frequency domain are normalized to maximum absolute value (by scale factor)

– Number of bits **allocated for the block** (derived from the perceptual model) derives the quantization step size
Quantization (Cont’d)

• **Noise allocation + Scalar Quant. + Huffman:**
 Instead of bit allocation, an amount of allowed noise equal to the estimated masked threshold is calculated for each scale-factor sub-band

Quantization noise is colored using scale factors, by changing quantization step size
 – Quantized values are Huffman coded
 – Process is controlled by iteration loops
MPEG-1 System

• First international standard for digital audio compression
• Joint effort of ASPEC (AT&T, CNET ...) and MUSICAM (Philips, Matsushita, ...)
• A three layer coding algorithms defined with main system properties are increased complexity (encoder mainly) and quality (at low bit-rates)
MPEG-1 Layers

• MPEG defines 3 layers for audio. Basic model is same, but Codec complexity increases with each layer.

• Data is divided into frames, each of them contains 384 samples, 12 samples from each of the 32 filtered sub-bands as shown in the next slide.

• All layers share definition of basic bitstream format (4 bytes header, sync. Etc.)
MPEG-1, Layer 1

- Input signal transformed into 32 uniform sub-bands (same frequency width for each band).
- For each sub-band an adaptive bit allocation (based on PA model) and quantization.
- Psychoacoustic model uses only frequency masking.
- No control on the amount of noise introduced for each sub-band: bit allocation continues until needed output rate achieved.
Layer I : more details

- **Filter bank**: Equally spaced Polyphase filter: design flexibility of generalized QMF and low computational complexity
- **511 tap prototype** used, optimized for very steep response, and stop band attenuation better than 96dB (equivalent to 16 bit resolution)
 - reconstruction error: LSB (of 16) if no quantization
- **Impulse response** of 10.6ms (@48kHz)
- **Time resolution**: 0.66ms (@48kHz)
- The prototype filter keeps pre-echo artifacts!
Layer I: more details (Cont’d)

- Quantization step uses **block companding** of 12 subband samples
 - Basic block length: $12 \times 32 = 384$ samples
- A 4-bit field signals the bit allocation: 0-16 bits for each subband
- A 6-bit field scale factor (G) for each band,
 - the exponent of the block companding quantization
- This method allows changes in the **bit allocation procedure**
Layer 1 features

- A simplified version of MUSICAM
- Appropriate for consumer applications such as studio use
 (where very low data rated not necessary)
- Compatible with PASC by Philips
- Basic frame length: 8mSec (for 48KHz rate)
MPEG-1, Layer 2

- Further compression, by removing redundancy (a little bit of the temporal masking) and a more precise quantization
- Basic frame length: 24mSec (for 48KHz sampling freq.): 1152 samples
- Identical to MUSICAM (Except frame header)
- Application fields: consumer and professional studio-like broadcasting, recording, multi-media, audio workstations.
MPEG-1, Layer 2 (Cont’d)

• Additional coding of bit-allocation, scale factors and different frame structure.
• Encoder forms larger groups of 3 blocks, 12 samples/block, and 32 sub-bands (total of 1152 samples per frame).
• One bit-allocation type and 3 scale factors for every 3 blocks frame.
• Radix coding allows allocation of fractional bits for small quantized values.
MPEG-1, Layer 3 (mp3)

- Signal mapping resolution is increased (in freq. domain: non-equal frequencies)
- Signal is divided into “critical bands”, according to human ear resolution
- Adaptive allocation of noise to each critical band, and logarithmic quantization
- Further compression by Huffman coding
- PA model includes temporal masking effects, takes into account stereo redundancy.
Non-Linear Critical Bands

Critical Bands [KHz]

Bark Numbers
Layer 3 Basic Scheme

PCM In

PsychoAcoustic Model (Optional)

Filter Bank (Polyphase)

MDCT

Quantizer + Huffman

Frame Packet and error corr.

Packet Bitstream
Layer 3 Basic Scheme (Cont’d)

- **PolyPhase FilterBank**: Filters the input into 32 time domain signals, representing 32 uniform frequency bands.
- **MDCT**: Transforms each band into freq. domain, getting 576 spectral lines (32*18 samples): additional frequency resolution: 18 sub-subbands
- **PA Model**: Analyses the input, and controls the quantization step size
- **Quantizer + Coder**: Quantizes according to PA and needed rate + Huffman coding
Layer 3 Basic Scheme (Cont’d)

- **Adaptive block switching**: Dynamic switching of the time-frequency decomposition (filter bank resolution) is allowed
- This is important in order to ensure that the time spread of the filter bank does not exceed the pre-masking period (to avoid pre-echo)
- **Adaptive window switching** uses four optional windows: normal (long), start, short and stop.
Window types

Normal window for stationary signals
576 spectral lines

Start window to switch from long to short
right 1/3 is zero to cancel aliasing

Short window
1/3 length followed by 1/3 length MDCT
time resolution: 4ms (@48KHz)
192 spectral lines

Stop window to switch from short to long
left 1/3 is zero to cancel aliasing
Example sequence of window forms
Layer III Quantization and Structure

• Non-uniform quantization and VLC (Huffman)

• A-by-S iteration loop

• No bit direct allocation, but ‘Noise allocation’ (indirect allocation) using two iteration loops
Iteration loops

- **Two nested iteration loops:**
 - **Rate loop:** Inner iteration for quantization and coding of spectral lines (using Huffman tables) - repeats with increasing step size, until number of allocated bits does not exceed the allowed maximum.
 - **Distortion Control loop:** Outer iteration, keeping quantization noise below masking threshold according to the PA model
 - **Noise coloration:** scale factors reduced until injected noise is small enough
Layer 3 Features

• **Short Blocks** of 12 samples (in addition to regular 36 samples blocks) improve **time resolution** to cope for transients.

• PA Model and coding technique are **NOT** part of the standard - related information should be included in bit-stream

• Optional **variable rate mode**

• Application in Telecommunication, mainly narrow-band **ISDN, satellite links, Internet DVD, etc.**
Joint Stereo Coding

• Can be used for **stereo redundancy** reduction.
• Stereo and Dual-Channel signals require twice the bandwidth if we code them separately.
• To decrease bit-rate (or increase quality) we can use **intensity stereo mode** or **Middle/Side (MS)** stereo coding.
• **MS stereo coding** is supported only in Layer III
Joint Stereo Coding (cont’d)

Intensity stereo coding:

• instead of separate L and R subband samples, a single summed signal is transmitted with R and L Scale Factors.

• The frequency spectra of the decoded stereo signals are the same but the magnitudes are different.
Middle/Side Stereo Mode:

- **Middle** (sum of L and R) and **Side** (difference of L and R) are transmitted instead of L and R.
- M is transmitted in the L channel and S in the R channel.
- R and L channels can be reconstructed using:

\[
L = \frac{(M + S)}{\sqrt{2}} \quad R = \frac{(M - S)}{\sqrt{2}}
\]
Effectiveness of MPEG audio

<table>
<thead>
<tr>
<th>Layer</th>
<th>Target bitrate</th>
<th>Ratio</th>
<th>Quality @ 64 kbits</th>
<th>Quality @ 128 kbits</th>
<th>Theoretical Min. Delay</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>192 kbit</td>
<td>4:1</td>
<td>---</td>
<td>---</td>
<td>19 ms</td>
</tr>
<tr>
<td>2</td>
<td>128 kbit</td>
<td>6:1</td>
<td>2.1 to 2.6</td>
<td>4+</td>
<td>35 ms</td>
</tr>
<tr>
<td>3</td>
<td>64 kbit</td>
<td>12:1</td>
<td>3.6 to 3.8</td>
<td>4+</td>
<td>59 ms</td>
</tr>
</tbody>
</table>

5 = perfect, 4 = just noticeable, 3 = slightly annoying, 2 = annoying, 1 = very annoying
More About the PA Model

• The difference between max. signal level and min. masking threshold is used in the bit or noise allocation to determine Q level
• Two models given in the informative part of the standard. model 1 recommended for layers 1,2 and model 2 for layer 3
• PA model output is SMR for each band (L1, L2) or group of bands (L3)
PA Model I (Layer 1,2)

• Transform length (FFT) is 512 samples for layer 1 and 1024 for layer 2.
• The filter bank suffers lack of selectivity at low frequencies.
• To compensate it: FFT in parallel to sub-band filtering.
• Sound Pressure Level (SPL) is computed for each band.
• Tonal and non-tonal components are extracted from the power spectrum.
PA Model I (Cont’d)

• Using “decimation”, number of maskers is reduced: only components (tonal and non-tonal) greater than the absolute threshold are considered.

• Two or more components that are smaller than the highest power within the distance of 0.5 bark are removed from the list of tonal components.

• Masking thresholds (both t and non-t) are defined by adding the masking index and masking function to the masking component (both index and function are provided in the standard as formal equations).
PA Model I (Cont’d)

- Global masking threshold, LTg, (for the frequency component) is derived by summing the powers of the individual masking thresholds (tonal: LT_{tm}, non-tonal LT_{nm}) and the threshold in quite:

$$LTg(i) = 10 \log_{10} \left[10^{LT_q(i)/10} + \sum_{j=1}^{m} 10^{LT_{tm}(j,i)/10} + \sum_{j=1}^{n} 10^{LT_{nm}(j,i)/10} \right] \text{ [dB]}$$
To determine the Signal-to-Mask Ratio \((SMR)\) in sub-band \(n\), the minimum global masking threshold \(LT_{\text{min}}\) is used:

\[
SMR_{SB}(n) = L_{SB}(n) - LT_{\text{min}}(n) \quad [\text{dB}]
\]

Where \(L_{SB}(n)\) is the signal component in sub-band \(n\).
PA Model II: Layer 3

• The size of FFT (+ *Hann* window) can be varied. In practice: *model is computed twice in parallel* (192 samples for short block and 576 samples for long block).

• **Masking in time** (forward and backward) is taken into calculations (spreading energy).

• Final energy threshold obtained by the convolution (via FFT) of “spreading” energy and partitioned original energy.
PA Model II (Cont’d)

• SMR is calculated by the ratio between energy in the “scale factor” band (e_{part_n}) and the noise level in the scale factor band (n_{part_n}):

$$SMR_n = 10 \log_{10} \left(\frac{e_{part_n}}{n_{part_n}} \right) \text{ [dB]}$$

n: index of coder partition

Scale factor: the maximum of the absolute values of 12 samples in a sub-band is determined. (6 bits)
MPEG-2 Audio

• **Backwards compatible** - defines extensions:
 – MultiChannel coding
 • 5 channel audio (L, R, C, LS, RS)
 – Multilingual coding
 • 7 multilingual channels
 – Lower sampling frequencies (LSF)
 – Optional Low Frequency Enhancement (LFE)
MultiChannel Coding

- Up to 5 audio channels

 Matrixation of channels for compatibility:

 \[
 Lc = b \left[L + \frac{C}{\sqrt{2}} + a \cdot Ls \right] \quad Rc = b \left[R + \frac{C}{\sqrt{2}} + a \cdot Rs \right]
 \]

 \[
 b = \frac{1}{1 + \frac{1}{\sqrt{2}} + a} \quad a = \frac{1}{\sqrt{2}}; \frac{1}{2}; \frac{1}{2\sqrt{2}}; 0
 \]

 C: center \quad Ls, Rs: surround

- Lc and Rc are MPEG-1 encoded

- Layer 1,2: Use syntax of MPEG1-L2

- Layer 3: flexible number of extension channels
Multi-channel Configurations

And more options...

Bi/multilingual, hearing impaired etc.

And more options...
Multilingual Coding

• Up to 7 additional channels for multilingual purposes
Low Sampling Frequency Coding

• For **narrow band frequencies**, no need for high sampling rates (wide-band speech and medium quality audio)

• Added sampling rates are the halves of the MPEG-1 rates: **16K, 22.05K and 24KHz**

• Need to change PA model tables

• Optional sixth channel: **LFE** capable of handling signals from 15Hz to 120Hz (Sub-Woofer), added to 5 regular channels
Encoder Scheme

PCM Input

Mapping → Composite Channel Coding → Quant. and Coding → Packet Frame

PA Model

Bit Stream
Decoder Scheme

Bit-Stream

Frame UnPacking → Rc, Lc Decoding → Composite status information Decoding

Reconstruction of Quantized Audio Data → Rebuilding Audio Channels → Inverse Mapping → PCM Out
MPEG-2, Layer-I extensions

• A “slot” consists of 32 bits.
• The number of slots in frame depends on the sampling frequency and bit-rate.
• Each frame contains information on 384 samples of the original input signal.
• $Frame_{size} = 384 \times (1/f_s)$ (16mSec for $fs=24$KHz)
• $Num_{of_slots} = bit_rate \times (384/32)/f_s$
 (32 for $fs=24$KHz)
MPEG-2, Layer II extensions

• Difference from MPEG-1 only in formatting, possible quantization and PA model.
• A slot consists of 8 bits.
• Each frame contains information on 1152 samples of the original input signal.
MPEG-2, Layer III extensions

• Different scale factor band tables.
• Omission of some side information (due to changed frame layout).
• Some changes in PA model tables.
• 21 Scale factors bands for each f_s (long windows)
• 12 Scale factors bands for each f_s (short windows)

• Scale factor band: a set of frequency lines that are scaled by the same scale factor.
Witches: “Dingo” at 22.05Khz