
JPEG Syntax and Data Organization

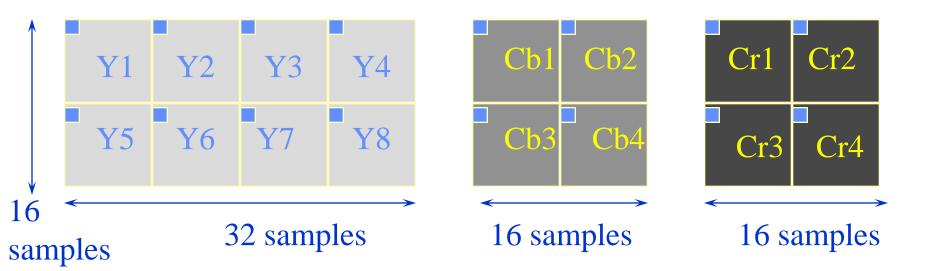
Nimrod Peleg Update: Dec. 2006

Control and Data Structure

- Two classes of segments:
 - Entropy coded segments: data
 - Marker segments: headers, tables and other general information
- Markers start with a unique two-byte code.

Interchange/Abbreviated Data Formats

- 3 formats for JPEG compressed data:
- <u>Interchange format</u> for compressed data: includes all required tables (for the decoder)
- <u>abbreviated format</u> for compressed data: may omit some or all tables (decoder must have them some other way)
- <u>abbreviated format</u> for table specification: only tables are sent (no frames, entropy coded data etc.)


Image Data Ordering

- Internal representation:
 - Upto 255 unique components for each image
 - Each component is represented as a rectangular array of samples
 - All processing of those rectangulars are from left to right, top to bottom
- Those are merely convenience, except the rectangular array which <u>must</u> be.

Data Units

- For lossless modes: arrays are processed sample at a time, left-to-right, top-to-bottom
- For DCT modes: a block of 8x8 samples is a basic unit
- Minimum Coded Units (MCU), are groups containing interleaved/non-interleaved data from different components (if more than one).

MCU Example

- Each block is 8x8 samples
- The preceding DC value is always the predictor for the current one (first is 0)

Data units ordering example:

Non-Interleaved data units			Horizontally Interleaved		
Component	block	MCU	Component	block	MCU
Scan 1:	Y 1	1	Scan 1:	Y 1	1
	Y 2	2		Y 2	1
	•			Cb1	1
	Y8	8		Cr1	1
				•	
Scan 2:	Cb1	1		•	
	•			•	
	Cb4	4		Y7	4
				Y8	4
Scan 3:	Cr1	1		Cb4	4
	•			Cr4	4
	Cr4	4			

Marker Definitions

- Each marker segment begins with X'FF and a non-zero one byte 'marker code' to identify its function.
- An occasionally created X'FF (in the entropy coded data) is followed by a stuffed zero byte.
- All marker segments and entropy coded segments contain an integer number of bytes, so in Huffman coding one-bits used to pad data to achieve byte alignment for the next marker.

Start-of-Frame (SOF) Markers

For example: Huffman coded frames:

SOF₀ X'FFC₀ Baseline DCT

SOF₁ X'FFC₁ Extended Sequential DCT

SOF₂ X'FFC₂ Progressive DCT

SOF₃ X'FFC₃ Lossless (Sequential)

• • • •

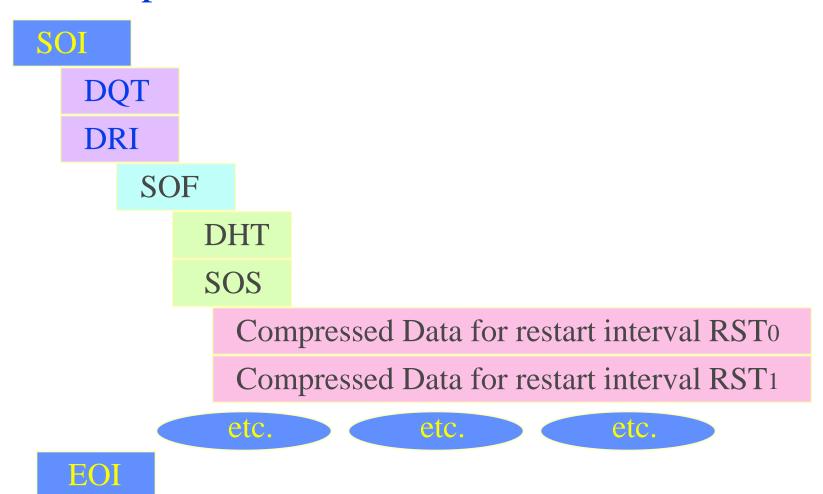
SOF₁₅ X'FFCF Differential Lossless

(Arithmetic Coding)

Non-SOF Markers

• APP X'FFE0 - X'FFEF Reserved for application use

• DHT X'FFC4 Define Huffman table


• DQT X'FFD4 Define Quant. table

• SOS X'FFDA Start of Scan

• (About 20 non-SOF markers)

Structure of Compressed Data

• Example of non-hierarchical data:

Frame Header

• Frame: Basic attributes of the image

Frame header length	16 bits			
Sample precision	8			
Number of lines	16			
Number of samples/line	16			
Number of components	8			
Frame component specification				
Identifier	8			
Horiz. sampling factor	4			
Vertical sampling factor	4			
Quantization table	8 (4 optional tables)			

Scan Header

- Many scans can occur in a frame
- If scan has only one component than data is non-interleaved (MCU contains one data unit)
- If more than one component interleaved data
- Components are <u>always</u> coded independently
- Scan parameters are: Number of components, DC and AC entropy coding table, Spectral selection and successive approximation parameters etc.

Number of Data Units in MCU

- Data Unit = Block or samples (in lossless)
- If more than one component in a scan, the total number of data units in the MCU up to 10 units.
- Any combination of components and sampling factors that gives more than 10 is forbidden.

Other Markers

- Define Huffman Table (DHT) segment
- Arithmetic Conditioning table (DAC) segment
- Quantization table (DQT) segment
- Restart interval (DRI) segment

Web sites & Reviews

• Official site of JPEG group:

http://www.jpeg.org/

• JPEG FAQ:

http://www.faqs.org/faqs/jpeg-faq/

Wallace, K. Gregory,

The JPEG Still Picture Compression Standard,

Commun. of the ACM. 34:4, 1991, pp.30–44.

Furht B.

A Survey of Multimedia Compression Techniques and Standards.

Part I: JPEG Standard, Journal of Real-Time Imaging,

vol. 1, no. 1, April 1995, pp. 49-67.