JPEG:
An Image Compression System

ISO/IEC DIS 10918-1
ITU-T Recommendation T.81
http://www.jpeg.org/

Nimrod Peleg
update: April 2009
Basic Structure

Source Image Data → Encoder → Compressed Data → Decoder → Reconstructed Image Data
Encoder Structure

Source Image Data

Encoder Model

Model Parameters

Descriptors

Statistical Model

Entropy Coding Tables

Entropy Encoding

Compressed Data
Image Compression Models

• A Unit that generates a set of “descriptors”
• The simplest model: send the data itself to the entropy encoder: PCM

The set of descriptors is all possible values of the samples
Compression Models: DPCM

A simple **predictor**:

We use the **former sample(s)** to **predict** the current one, and send (to the entropy encoder) the difference between the predicted and real value:

“**prediction error**”
Lena: The original
Histogram of Lena

Matlab: imhist
Sample Position

Sample Intensity

Intensity of difference

1 Line Histogram

Difference Sample Position
DPCM (Cont’d)

The better performance of DPCM relative to PCM is due to the high degree of correlation found in most images.

Note that this model is lossless!

Histogram of differences (Lena, one neighbor to the left predictor)
DCT Encoder Model

- Used in **Lossy JPEG** modes
- Output is fed to Entropy encoder
DCT Decoder Model

- Quantization is the principal source of distortion to the reconstructed image.
- Q is done to each coeff. independently, so it can match the HVS response.
Block Oriented DCT Reconstruction
(A too strong quantization effect)

32x32 block

A strong quantization
The “DCT” Coefficients Image
2D DFT….The Jewish Case

Fourier analysis shows us

a) Typical **horizontal lines** with appropriate frequency (12 lines in height) [red]
b) High frequencies for the small holes (30 per line) [blue]
c) No signs for Chamets!
Quantization – Color Example

Fine quantization

Coarse quantization
Reconstruction from Fourier Magnitude or Phase

Original | Magnitude | Phase

IDFT with constant Phase | IDFT with constant Magnitude

DFT
Transform Coding - Example

16×16 block of pixels

DCT coefficients
Other Compression Models

- Other models were candidates for JPEG:
 - Block Truncation Coding (BTC)
 - Vector quantization (VQ)
 - Other Transform Coding (TC) schemes
 - Sub-band coding (SBC)
 - Other predictive coding models

- The DCT model provided (Jan. 1988) best average image quality for a given bit-rate
Zig-Zag scan (instead of Raster scan) achieves longer “zero coefficients sequences”, after quantization.
Zig-Zag example

<table>
<thead>
<tr>
<th>124</th>
<th>25</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>0</th>
<th>23</th>
<th>0</th>
</tr>
</thead>
<tbody>
<tr>
<td>147</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>78</td>
<td>190</td>
</tr>
<tr>
<td>126</td>
<td>147</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>83</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>94</td>
<td>0</td>
<td>0</td>
<td>173</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>56</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>203</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
2 entropy coding structures used in JPEG:

- **Huffman coding**:
 - Good old wine … (1952)
 - Computationally simpler
 - Implementation simpler
 - Requires known / calculated code tables

- **Arithmetic Coding**
 - About 10% higher performance
 - Code book adapts dynamically to coded data
 - IBM Patented…
Huffman Entropy Encoder

- **Statistical model**: converts descriptors into symbols, each assigned to particular code word
- **Adapter**: responsible for the assignments of code words needed by the encoder
- **Code Tables**: can be fixed or adapted to data to improve efficiency by a few percent

- Note that 1 pass (fixed tables) or 2 passes (adaptive table) are options
Arithmetic Coding

- One pass adaptive binary coder.
- Achieves about 10% better compression.
- More complicated than Huffman.
- Option to transcoding between the two.
- Almost not in use in JPEG (used in JBIG)
- IBM Patent.
JPEG Lossless Mode

• Based on DPCM only (without DCT and Q)
• Poor compression relative to Lossy mode (1:1 Vs. 20:1 for color natural image)
• (Almost) Not in use

Since 1997: JPEG-LS
Progressive Mode

- Allows the user to preview a **rough version** of the image
- Two or more passes through data
- Approximation of entire image coded first
- Finer details are coded with each succeeding scan
- Decoder follows same order in decoding
- Identical compression and quality (sometimes even better)
JPEG Base-line Scheme (Lossy)