Image and Colors

More dimensions for the 2D images:

- Color
- Time (Motion)
- Stereo
- Spherical (3D)
- Fractal

Digital Images

- A regular TV image is already segmented into a set of discrete lines
- To turn to a true digital image we need to:
- Take samples along each scan line (regular intervals).
- Convert the samples to into binary numbers to be stored in a "computer" system.

Sampling

- Discarding an enormous amount of information (spatial and amplitude)
- So, lossless implies only to preservation of the sampled data...
- Important parameters:
- Precision (\# of bits per sample)
- Interval (\# of samples per time unit)
- Aperture (\# of averaged dots per each sample)

SubSampling

- A useful tool for space (cost) saving.
- For example, subsampling by factor of 2 : every other pixel is discarded
- net results equivalent to:
- Sampling with too small aperture
- Sampling with too large sampling interval meaning: severe aliasing effects

Sub-Sampling (Cont'd)

- Sub-sampling with a LPF:

Pixels and Pels

- Pixel: Picture element (display industry) Pel: Print element (printing industry)
- Grayscale image: Continuous-tone, usually 8/10/12 bits/pixel (displays, laser printers...)
- Binary image: bi-level representation,

1 bit/pixel, high-resolution and halftoning process to create effect of continuous tone.
(fax, newspapers...)

Color Images

Additive color: model involves light emitted directly from a source or illuminant of some sort: light from source of different colors added together (e.g.: CRT)

Subtractive color: model explains the mixing of paints, dyes, inks: Passive systems, light from a given source is selectively absorbed at different wavelengths that will perceived as the desired color (e.g.. Printing industry)

Color Spaces

- Trichomatric theory tells us that, ideally, 3 components should be sufficient to present a color image
- However, output devices are limited, so not all colors can be obtained
- Red-Green-Blue (RGB) is used for displays
- Cyan-Magenta-Yellow-Black (CMYK) for printing

Color Spaces (Cont'd)

- Brightness: intensity of light, related to Luminance of the source
- Hue: color of the source, related to dominant wavelength of the light
- Saturation: describes how pure is the color, related to the narrowness of the spectral distribution of the source

Linear Color Transformations

- YUV representation:
- 1 Luminance and 2 Chrominace components
- scale from 0 to 1 for each
- Gray level results when R, G and B are equal
- $\mathrm{Y} \approx 0.3 \mathrm{R}+0.6 \mathrm{G}+0.1 \mathrm{~B}$
- U= R-Y
- $V=B-Y$
- HSI, YIQ, YUV, YCbCr ,LAB ...

JPEG Color Space Conversion

Color Spaces: in VCDemo

Color Spaces: VCDemo

Co vCDemo - Birds

Luminance Sensitivity

- Sensitivity of the eye to luminance changes is greatest for objects at dimensions of about 0.2 cm , if viewed at a distance of 1 m .
- At the same distance the eye has trouble resolving objects smaller than $\sim 0.01 \mathrm{~cm}$
- Meaning: for 1 m distance, a 40 cm object should have 4,000 pixels for an ideal digital image.

Twice the performance of high-end commercial displays !

More Features (luminance)

- Vertical and horizontal patterns have similar response, but much higher than diagonals.
- Under ideal conditions (including linear color space), the eye can distinguish between 1,000 gray levels. For a regular display this goes down to a 100 gray levels, so 8 bit is usually enough.

Chrominance Sampling

- Much reduced sensitivity, should and is used in compression algorithms, by taking a lower resolution data for the chrominance components.

Color and False Colors (Lighthouse)

Lighthouse (detail)

Color and False Colors (Window)

Window (detail)

Mother of All Aliasing ;)

