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What is a fractal ?

• A fractal is a geometric figure, often 

characterized as being “self-similar”:  

irregular, fractured, fragmented, or loosely 

connected in appearance.

• Benoit Mandelbrot coined the term fractal to 

describe such figures, deriving the word from the 

Latin "fractus": broken, fragmented, or irregular.



Why Fractals ?

• Fractals seem to provide an excellent 

description of many natural shapes 

• Euclidean geometry provides concise 

accurate descriptions of man-made objects.

A coastline: 

No characteristic sizes, 

Hence a fractal



Euclidean Vs. Fractals

• Euclidean shapes have one, or several, 

characteristic sizes (the radius of a sphere, 

the side of a cube)

• fractals possess no characteristic sizes: the 

most important difference is that fractal 

shapes demonstrate self similarity of metric 

properties, up to being independent of scale 

or scaling.



Self Simliarity

• defined by the relation:

M(r⋅x)=rf(D)M(x)

• M(x) represents any metric property of the fractal 

(e.g. area or length), 

• x denotes the scale of measurement of the metric 

property, 

• r is a scaling factor, such that 0≤ r ≤1 

• f(D) is a function of the fractal dimension D for 

the given metric property.



Where did it start…? 

The Von-Koch curve

• The von Koch snowflake is a famous fractal 

curve that was first proposed in 1904 by the 

Swedish mathematician Helge von Koch.

• Starting with a line segment, the curve is 

produced by recursive steps

• The single line segment, shown in Step 0, is 

broken into four equal-length segments, as 

seen in Step 1. 



The Von-Koch curve (2)

• The same "rule" is 

applied an infinite number 

of times, resulting in 

a figure with an infinite

perimeter.



Analysis of The Von-Koch curve (3)

• Suppose the original line segment was of length L, 

after the first step each line segment is of length L/3. 

• For the second step, each segment has a length L/32, 

and so on. After the first step, the total length of the 

curve is 4L/3.

• Following the second step, the total length is 42L/32. 

• Finally, the length of the curve will be 4kL/3k after 

the kth step. The length of the curve grows by a factor 

of 4/3 after each step !



And after infinite number of iterations… 

• When repeated an infinite number of times, the 

perimeter becomes infinite…

• a repetition of a very simple rule ca produce 

seemingly complex shapes with some highly unusual 

properties. Unlike Euclidean shapes, this curve has 

detail on all length scales - the closer one looks, the 

more detail one finds. 

• Of greater importance is the self-similarity quality, 

which the curve possesses. Each small portion, when 

magnified, can exactly reproduce a larger portion. The 

curve is said to be invariant under changes of scale.



Generating a Fractal…



And now…Contractive Transform

There exists a unique Fixed-Point x f  :

T { x f } = x f

Tx

y Tx

Ty

E.g. :  
2

x
xT  X=0 is the fixed point of 

the transformation T{x}



And one more
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1D Affine contraction and iterative 

approximation of the fixed point
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Let

(M,d) be a complete metric space

T:M  M be a contractive mapping

Then

T has one and only one fixed point

The fixed point can be found by

repeated application of T on an

arbitrary vector x0, having:

n

n
0 *limT x x

* *Tx x



How to generate a Fractal ?

Basic “start” point

Contracting transformation by

Iterated Function System (IFS)



Fractal Generation (Cont‟d)



Fractal Generation (Cont‟d)



Fractal Generation (Cont‟d)



Fractal Generation (Cont‟d)

Sierpinski triangle



Another example

Basic “start” point
Contracting transformation by

Iterated Function System (IFS)



2nd Fractal Generation (Cont‟d)



2nd Fractal Generation (Cont‟d)



Some Nice Fractals



And the Sierpinski fractal



A Natural “Fractal”



Fractal Image Coding [Jacquin 1989]

2B

R

BB

Domain Range

Find a Contractive 

T such that

fx x



Quad-Tree Approach

 range blocks of

different sizes 
[ Fisher 92 ]

BBSplitting criteria is a key 

issue, of course...



Threshold- based criterion Rate-Distortion - based criterion

Range block sizes = 16x16, 8x8, 4x4, 2x2

PSNR  35.9 [dB] PSNR  36.9 [dB]

Comparison of Splitting Criteria

compression ratio  8:1



Threshold- based criterion Rate-Distortion - based criterion

Comparison of Splitting Criteria (cont’d)

compression ratio  1:8

Range block sizes = 16x16, 8x8, 4x4, 2x2

PSNR  35.9 [dB] PSNR  36.9 [dB]



Threshold- based criterion Rate-Distortion - based criterion

Comparison of Splitting Criteria (cont’d)

compression ratio  1:8

Range block sizes = 16x16, 8x8, 4x4, 2x2

PSNR  35.9 [dB] PSNR  36.9 [dB]



Threshold- based criterion Rate-Distortion - based criterion

Comparison of Splitting Criteria (cont’d)

compression ratio  1:8

Range block sizes = 16x16, 8x8, 4x4, 2x2

PSNR  35.9 [dB] PSNR  36.9 [dB]



Conventional Image Fractal Coder

Extract domain pool

For each Ri  :

2B

BB

iR

Offset

block

F

Domain

block

Range

block

+ a F



Finding the Fixed Point (Decoding)

• Start with any image X0 .

• Apply T iteratively until the result 

converges

Ti Ti

X0 X1
X2

Ti



Example

T is found to represent “Lena”



Image partition into range blocks

• Partition description is a part 

of the fractal code 

• Simplest partition – non-

overlapping fixed-size square 

BxB blocks

• Jacquin‟s 2-level partition –

particular case of the Quadtree

partition

• Other “exotic” partitions 

schemes, e.g. Delaunay 

triangulation

Fixed size blocks Jacquin‟s 2-level partition

Quadtree Delaunay triangulation



Possible mappings 34

ORIGINAL IDENTITY VERT. REFLECTION HOR. REFLECTION REFLECTION BY +45

REFLECTION BY45 ROTATION BY +90 ROTATION BY +180 ROTATION BY 90

ABSORPTION INTENSITY SHIFT CONTRAST SCALING COLOR REVERSAL

Intensity mappings

Isometric mappings



Decoding: Starting from „man‟



Decoding: Starting from „Baboon‟



IFS Vs. JPEG

1: FIF Image , 26169B, Fractal Imager 1.1

(lena.fif)

2: JPEG Image, 26478B, Lview 3.1, (Q=64)

(lena.jpg)

3: JPEG Image, 17924B, Fractal Imager 1.1

(lenait.jpg)

4: JPEG Image, 17409B, Lview 3.1, (Q=37)

(lenaeq.jpg)



FIF Image , 26169B, Fractal Imager 1.1



JPEG Image, 26478B, Lview 3.1, (Q=64)



JPEG Image, 17924B, Fractal Imager 1.1



JPEG Image, 17409B, Lview 3.1, (Q=37)



FIF Image , 28:1 compression



Pro‟s and Con‟s

• Fast decoding

• Iterative (progressive) 

decoding – the number of 

iterations dictates the image 

quality

• Compressed images are 

visually more plausible

(“look better”) compared to 

JPEG

• Resolution independence –

can achieve very high 

“effective” compression ratios 

up to ~1000:1

• Slow encoding

• Decoding dependent on 

initialization

• Not in public domain 

(patented)



Thanks to...

Hagai Krupnik and Reuven Franco for some 

of the slides, taken from his graduate 

seminar for M.Sc . And Michael Bronstein.
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Defining the Fractal Dimension

• The property of self-similarity or scaling, as in the Von 

Koch curve, is one of the central concepts of fractal 

geometry. It is closely connected with our intuitive 

notion of dimension.

• An object normally considered as one-dimensional, a 

line segment, for example, also posses a similar scaling 

property. 

• It can be divided into N identical parts each of which is 

scaled down by the ratio from the whole.1r
N





The fractal dimension  - cont‟d

• A line can be divided into 2 lines each twice 

smaller than the original. Likewise, two 

dimensional objects, such as a square area in the 

plane, can be divided into N self-similar parts, 

each of which is scaled down by a factor of 

r= 1 N. 



Shapes of different Dimension



Scaling Down

• As demonstrated, a 2 dimensional object can be divided 

into N=4 equal parts, when each is a scaled down 

version of the original (by a factor of 2).

• A three-dimensional object like a solid cube may be 

divided into N little cubes, each is scaled down by a 

ratio:  

• A cube in 3D can be divided into N=8 scaled down 

versions of the original, again with a scaling factor of 2.

3r N



The general relation: N Vs. D

• These examples demonstrate the general 

relation between N and D,   given by: 

• E.g., one can easily verify that the relation 

holds for {N=4, r=0.5 D=2} which describe 

the 2D example by substituting the 

constants into the last equation:

1DN r 

2
1

4 1
2

 
  
 



Self similarity & Fractal dimension

• With self-similarity, the generalization to 

fractal dimension is rather straightforward.

• A D-dimensional self-similar object can be 

divided into N smaller copies of itself each 

is scaled down by a factor of: 1
D

r
N





The fractal dimension

• Thus, the fractal dimension of a self-similar 

object of N parts, scaled by a ratio r from 

the whole, is given by:

• Unlike the more familiar notion of 

Euclidean dimension, the fractal dimension 

is not necessarily an integer.

log( )

1log( )

N
D

r





Example: the Von Koch case

• Every segment is composed of four sub-

segments, each is scaled down by a factor of 

1/3 from its parent, as seen before.

• Substituting this into the last equation, we 

get:

• This non-integer dimension, greater than 

one but less than two, reflects the unusual 

properties of the curve.

log( ) log(4)
1.26

1 log(3)log( )

N
D

r

  
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