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Abstract

We study the problem of maximizing a non-monotone submodular function subject to a car-
dinality constraint in the streaming model. Our main contribution is a single-pass (semi-)
streaming algorithm that uses roughly O(k/ε2) memory, where k is the size constraint. At
the end of the stream, our algorithm post-processes its data structure using any offline algo-
rithm for submodular maximization, and obtains a solution whose approximation guarantee
is α

1+α − ε, where α is the approximation of the offline algorithm. If we use an exact (expo-
nential time) post-processing algorithm, this leads to 1

2 − ε approximation (which is nearly
optimal). If we post-process with the algorithm of [7], that achieves the state-of-the-art
offline approximation guarantee of α = 0.385, we obtain 0.2779-approximation in polyno-
mial time, improving over the previously best polynomial-time approximation of 0.1715 due
to [24]. It is also worth mentioning that our algorithm is combinatorial and deterministic,
which is rare for an algorithm for non-monotone submodular maximization, and enjoys a fast
update time of O( log k+log(1/α)

ε2 ) per element. Additionally, we show that our main algorithm
can be naturally modified to maximize continuous DR-submodular functions subject to a
support cardinality constraint.
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1 Introduction
Submodular functions are a wide class of functions capturing the intuitive notion of dimin-
ishing returns. As diminishing returns occurs naturally in many scenarios, the optimization
of submodular functions subject to combinatorial constraints has found many applications in
diverse fields, including machine learning [20, 30, 39], social networks [31, 34] and algorithmic
game theory [21, 40].

In the context of many of the above applications, it is desirable for the submodular
optimization algorithm to be a (semi-)streaming algorithm because the input is either very
large (e.g., the friendships graph of a social network) or naturally occurs at the form of a
long stream (e.g., summarizations of the frames generated by a surveillance camera). In
response to this need, Badanidiyuru et al. [5] and Chakrabarti and Kale [13] developed two
semi-streaming algorithms for the maximization of non-negative submodular functions that
are also monotone. A set function f : 2V → R over a ground set V is submodular if for every
two sets A ⊆ B ⊆ V and element u ∈ V \B it holds that

f(A ∪ {u})− f(A) ≥ f(B ∪ {u})− f(B) ,

and it is monotone if f(A) ≤ f(B) for every two sets A ⊆ B ⊆ V . The algorithm of
Badanidiyuru et al. [5] maximizes non-negative monotone submodular functions subject to a
cardinality constraint up to an approximation ratio of 1/2; and the algorithm of Chakrabarti
and Kale [13] achieves a 1/4-approximation for the maximization of the same kind of func-
tions subject to a more general class of constraints known as matroid constraints.

Note again that the two above algorithms work only for monotone submodular functions.
To handle non-monotone submodular functions, it is usually necessary to use randomness.1
The algorithm of Chakrabarti and Kale [13] is local-search based, and easily integrates with
randomness, which has lead to multiple works adapting it to non-monotone functions [16, 25,
36]. The best of these adaptations achieves an approximation ratio of 1/(3 + 2

√
2) ≈ 0.1715

for maximizing a non-negative (not necessarily monotone) submodular function subject to a
matroid constraint [25]. In contrast, the algorithm of Badanidiyuru et al. [5] for cardinality
constrains, which is known as Sieve-Streaming, is based on a thresholding technique. In
a nutshell, the algorithm picks a threshold and then selects every element whose marginal
contribution to the current solution of the algorithm exceeds this threshold, until the solution
gets to the maximum cardinality allowed. The analysis of Sieve-Streaming then handles in
two very different ways the case in which the solution grew all the way to the maximum
cardinality allowed and the case in which this did not happen. Unfortunately, most natural
ways to add randomness to Sieve-Streaming result in input instances for which both these
cases might happen with a non-zero probability, which makes the analysis break down. Due
to this hurdle, prior to this work, no random adaptation of Sieve-Streaming managed to
improve over the 0.1715-approximation of [25] despite the significant advantage of Sieve-
Streaming over the local search approach of Chakrabarti and Kale [13] in the context of
monotone submodular functions.2

1Some works use alternative techniques involving the maintenance of multiple solutions. However, it is
often natural to view these solutions as the support of a distribution of solutions. See [6] for an explicit
example of this point of view.

2Chekuri et al. [16] claimed an improved approximation ratio of 0.212 for cardinality constraints based on
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In this thesis, we give a streaming algorithm3 (named StreamProcess) that is based
on the technique of maintaining multiple solutions and treating them as the support of
a distribution. Our algorithm is deterministic and combinatorial, has a relatively simple
analysis and enjoys a low space complexity of O(kε−2 logα−1) and a low update time of
O(ε−2 log(k/α)) marginal value computations per element. Furthermore, the algorithm per-
forms a single pass over the stream and outputs sets of size O(k/ε) that can be post-processed
using any offline algorithm for submodular maximization. The post-processing is itself quite
straightforward: we simply run the offline algorithm on the output set to obtain a solution
of size at most k. We show that, if the offline algorithm achieves α-approximation, then
we obtain

(
α

1+α − ε
)
-approximation. One can note that if we post-process using an exact

(exponential time) algorithm, we obtain (1
2 − ε)-approximation. This matches the inapprox-

imability result proven by [27] for the special case of a monotone objective function, which
shows that any streaming algorithm guaranteeing (1

2 + ε)-approximation for some positive
constant ε must use Ω(n/k3) space. Furthermore, we show that in the non-monotone case
the lower bound on the space complexity required by any algorithm can be improved to
Ω(n).4 Thus, we essentially settle the approximability of the problem if exponential-time
computation is allowed.

The best (polynomial-time) approximation guarantee that is currently known in the
offline setting is α = 0.385 [7]. If we post-process using this algorithm, we obtain 0.2779-
approximation in polynomial time, improving over the previously best polynomial-time ap-
proximation of 0.1715 due to [24]. The offline algorithm of [7] is based on the multilinear
extension, and thus is quite slow. One can obtain a more efficient overall algorithm by
using the combinatorial random Greedy algorithm of [10] that achieves 1

e
-approximation.

Furthermore, any existing heuristic for the offline problem can be used for post-processing,
exploiting their effectiveness beyond the worst case.

Variants of our algorithm. As mentioned above, every algorithm for non-monotone
submodular maximization includes a randomized component. Perhaps the most straightfor-
ward way to introduce a randomized component into the single-threshold Greedy algorithm
is to use the multilinear extension as the objective function and include only fractions of
elements in the solution (which corresponds to including the elements in the solution only
with some bounded probability). This has the advantage of keeping the algorithm almost
deterministic (in fact, completely deterministic when the multilinear extension can be eval-
uated deterministically), which allows for a relatively simple analysis of the algorithm and
a low space complexity of O(k logα−1/ε2). However, the time complexity of an algorithm
obtained via this approach depends on the complexity of evaluating the multilinear exten-
sion, which in general can be quite high. In Section 5, we describe and analyze a variant
of our algorithm (named StreamProcessExtension) which is based on the multilinear

such an adaptation of Sieve-Streaming, but an error was later found in the proof of this improved ratio [15].
See Appendix A for more detail.

3Formally, all the algorithms we present are semi-streaming algorithms, i.e., their space complexity is
nearly linear in k. Since this is unavoidable for algorithms designed to output an approximate solution (as
opposed to just estimating the value of the optimal solution), we ignore the difference between streaming
and semi-streaming algorithms in this thesis and use the two terms interchangeably.

4This result is a simple adaptation of a result due to Buchbinder et al. [11]. For completeness, we include
the proof in Appendix B.
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extension.
Although it is most common to discuss submodularity in the context of set functions,

optimization of continuous functions that have the diminishing returns (DR) property has
many applications in real-world problems. In Section 6 we present a variant of our main
algorithm for maximizing a subclass of continuous submodular functions, known as DR-
submodular functions, subject to a support cardinality constrained.

It is also worth mentioning that while the asymptotic approximation guarantees of all
three variants of our algorithm are identical given a black box offline α-approximation algo-
rithm, they might differ when the offline algorithm has additional properties. For example,
the approximation ratio of the offline algorithm might depend on the ratio between k and
the number of elements in its input (see [10] for an example of such an algorithm). Given
such an offline algorithm, it might be beneficial to set the parameters controlling the number
of elements passed to the offline algorithm so that only a moderate number of elements is
passed, which is a regime in which the three variants of our algorithm produce different
approximation guarantees. Hence, one of the variants of our algorithm might end up having
a better approximation guarantee if future research yields offline algorithms with relevant
properties.

Results and techniques that are used throughout this thesis were published in our joint
paper with Alina Ene, Huy L. Nguyen and Andrew Suh [1]. In particular, the algorithm
in Section 5 is one of the main results in [1]. However, in Sections 3 and 4 we present an
improved algorithm that was only submitted in a later journal version of the paper (available
in [2]), Furthermore, Section 6 contains a new variant of this algorithm for maximizing
DR-submodular functions, which does not appear so far in any paper that was published
or submitted for publication. In contrast, the published paper [1] contains an additional
algorithm (which is not a part of this thesis) that involves true randomization and gets
the same approximation ratio guarantee and update time as our main algorithm, but has a
slightly worse space complexity of Õ(k/ε3).

1.1 Additional Related Work
The problem of maximizing a non-negative monotone submodular function subject to a
cardinality or a matroid constraint was studied (in the offline model) already in the 1970’s.
In 1978, Nemhauser et al. [38] and Fisher et al. [28] showed that a natural greedy algorithm
achieves an approximation ratio of 1− 1/e ≈ 0.632 for this problem when the constraint is a
cardinality constraint and an approximation ratio of 1/2 for matroid constraints. The 1− 1/e
approximation ratio for cardinality constraints was shown to be optimal already on the same
year by Nemhauser and Wolsey [37], but the best possible approximation ratio for matroid
constraints was open for a long time. Only a decade ago, Calinescu et al. [12] managed to
show that a more involved algorithm, known as “continuous greedy”, can achieve (1 − 1/e)-
approximation for this type of constraint, which is tight since matroid constraints generalize
cardinality constraints.

Unlike the natural greedy algorithm, continuous greedy is a randomized algorithm, which
raised an interesting question regarding the best possible approximation ratio for matroid
constraints that can be achieved by a deterministic algorithm. Very recently, Buchbinder
et al. [9] made a slight step towards answering this question. Specifically, they described
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a deterministic algorithm for maximizing a monotone submodular function subject to a
matroid constraint whose approximation ratio is 0.5008. This algorithm shows that the
1/2-approximation of the greedy algorithm is not the right answer for the above mentioned
question.

Many works have studied also the offline problem of maximizing a non-negative (not
necessarily monotone) submodular function subject to a cardinality or matroid constraint [7,
10, 19, 22, 23, 26]. The most recent of these works achieves an approximation ratio of 0.385
for both cardinality and matroid constraints [7]. In contrast, it is known that no polynomial
time algorithm can achieve an approximation ratio of 0.497 for cardinality constraints or
0.478 for matroid constraints [29].

The study of streaming algorithms for submodular maximization problems is related to
the study of online algorithms for such problems. A partial list of works on algorithms of
the last kind includes [4, 8, 11, 14, 32, 35].

2 Preliminaries
Basic notation. Let V denote a finite ground set of size n := |V |. For two vectors
x, y ∈ RV , we let x ∨ y and x ∧ y be the vectors such that (x ∨ y)e = max{xe, ye} and
(x ∧ y)e = min{xe, ye} for all e ∈ V . For a set S ⊆ V , we let 1S denote the indicator vector
of S, i.e., the vector that has 1 in every coordinate e ∈ S and 0 in every coordinate e ∈ V \S.
Given an element e ∈ V , we use 1e as a shorthand for 1{e}.

Submodular functions. In this thesis, we consider the problem of maximizing a non-
negative submodular function subject to a cardinality constraint. A set function f : 2V → R
is submodular if f(A) +f(B) ≥ f(A∩B) +f(A∪B) for all subsets A,B ⊆ V . Additionally,
given a set S ⊆ V and an element e ∈ V , we use f(e | S) to denote the marginal contribution
of e to S with respect to the set function f , i.e., f(e | S) = f(S ∪ {e})− f(S).

Multilinear extension. In Section 5, we present an algorithm that makes use of a
standard continuous extension of submodular functions, known as the multilinear extension.
To define this extension, we first need to define the random set R(x). For every vector
x ∈ [0, 1]V , R(x) is defined as a random subset of V that includes every element e ∈ V with
probability xe, independently. The multilinear extension F of f is now defined for every
x ∈ [0, 1]V by

F (x) = E
[
f
(
R(x)

)]
=
∑
A⊆V

f(A) · Pr[R(x) = A] =
∑
A⊆V

f(A) ·
∏
e∈A

xe ·
∏
e/∈A

(1− xe)
 .

One can observe from the definition that F is indeed a multilinear function of the coordinates
of x, as suggested by its name. Thus, if we use the shorthand ∂eF (x) for the first partial
derivative ∂F (x)

∂xe
of the multilinear extension F , then ∂eF (x) = F (x ∨ 1e)− F

(
x ∧ 1V \{e}

)
.

3 Simplified Algorithm
The properties of our main algorithm (StreamProcess—the first variant discussed above)
are summarized by the following theorem.
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Theorem 1. Assume there exists an α-approximation offline algorithm OfflineAlg for
maximizing a non-negative submodular function subject to a cardinality constraint whose
space complexity is nearly linear in the size of the ground set. Then, for every constant
ε ∈ (0, 1], there exists an ( α

1+α − ε)-approximation semi-streaming algorithm for maximizing
a non-negative submodular function subject to a cardinality constraint. The algorithm stores
O(kε−2) elements and makes O(ε−2 log k) marginal value computations while processing each
arriving element.5 Furthermore, if OfflineAlg is deterministic, then so is the algorithm
that we get.

In this section, we introduce a simplified version of the algorithm used to prove Theorem 1.
This simplified version (given as Algorithm 1) captures our main new ideas, but makes the
simplifying assumption that it has access to an estimate τ of f(OPT) obeying (1 − ε/2) ·
f(OPT) ≤ τ ≤ f(OPT). Such an estimate can be produced using well-known techniques, at
the cost of a slight increase in the space complexity and update time of the algorithm. More
specifically, in Section 4 we formally show that one such technique due to [33] can be used
for that purpose, and that it increases the space complexity and update of the algorithm
only by factors of O(ε−1 logα−1) and O(ε−1 log(k/α)), respectively.

Algorithm 1 gets two parameters: the approximation ratio α of OfflineAlg and an
integer p ≥ 1. The algorithm maintains p solutions S1, S2, . . . , Sp. All these solutions start
empty, and the algorithm may add each arriving element to at most one of them. Specifically,
when an element e arrives, the algorithm checks whether there exists a solution Si such that
(1) Si does not already contain k elements, and (2) the marginal contribution of e with
respect to Si exceeds the threshold of cτ/k for c = α/(1 + α). If there is such a solution,
the algorithm adds e to it (if there are multiple such solutions, the algorithm adds e to an
arbitrary one of them); otherwise, the algorithm discards e. After viewing all of the elements,
Algorithm 3 generates one more solution So by executing OfflineAlg on the union of the
p solutions S1, S2, . . . , Sp. The output of the algorithm is then the best solution among the
p+ 1 generated solutions.

Algorithm 1: StreamProcess (simplified) (p, α)
1 Let c← α

1+α .
2 for i = 1 to p do Let Si ← ∅.
3 for each arriving element e do
4 if there exists an integer 1 ≤ i ≤ p such that |Si| < k and f(e | Si) ≥ cτ

k
then

5 Update Si ← Si ∪ {e} (if there are multiple options for i, pick an arbitrary
one).

6 Find another feasible solution So ⊆
⋃p
i=1 Si by running OfflineAlg with ⋃pi=1 Si as

the ground set.
7 return the solution maximizing f among So and the p solutions S1, S2, . . . , Sp.

Since Algorithm 1 stores elements only in the p+ 1 solutions it maintains, and all these
5Formally, the number of elements stored by the algorithm and the number of marginal value computations

also depend on logα−1. Since α is typically a positive constant, or at least lower bounded by a positive
constant, we omit this dependence from the statement of the theorem.
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solutions are feasible (and thus, contain only k elements), we immediately get the following
observation. Note that this observation implies (in particular) that Algorithm 1 is a semi-
streaming algorithm for a constant p when the space complexity of OfflineAlg is nearly
linear.

Observation 2. Algorithm 1 stores at most O(pk) elements, and makes at most p marginal
value calculations while processing each arriving element.

We now divert our attention to analyzing the approximation ratio of Algorithm 1. Let us
denote by Ŝi the final set Si (i.e., the content of this set when the stream ends), and consider
two cases. The first (easy) case is when at least one of the solutions S1, S2, . . . , Sp reaches
a size of k. The next lemma analyzes the approximation guarantee of Algorithm 1 in this
case.

Lemma 3. If there is an integer 1 ≤ i ≤ p such that |Ŝi| = k, then the output of Algorithm 1
has value of at least ατ

1+α .

Proof. Denote by e1, e2, . . . , ek the elements of Ŝi in the order of their arrival. Using this
notation, the value of f(Ŝi) can be written as follows.

f(Ŝi) = f(∅) +
k∑
j=1

f
(
ej | {e1, e2, . . . , ej−1}

)
≥

k∑
i=1

ατ

(1 + α)k = ατ

1 + α
,

where the inequality holds since the non-negativity of f implies f(∅) ≥ 0 and Algorithm 1
adds an element ej to Si only when f

(
ej | {e1, e2, . . . , ej−1}

)
≥ cτ

k
= ατ

(1+α)k . The lemma now
follows since the solution outputted by Algorithm 1 is at least as good as Si.

Consider now the case in which no set Si reaches the size of k. In this case our objective
is to show that at least one of the solutions computed by Algorithm 1 has a large value.
Lemmata 5 and 6 lower bound the value of the average solution among S1, S2, . . . , Sp and
the solution So, respectively. The proof of Lemma 5 uses the following known lemma.

Lemma 4 (Lemma 2.2 from [10]). Let f : 2V → R≥0 be a non-negative submodular function.
Denote by A(p) a random subset of A where each element appears with probability at most p
(not necessarily independently). Then, E[f(A(p))] ≥ (1− p) · f(∅).

Let O = OPT \ ⋃pi=1 Ŝi, and let b = |O|/k.

Lemma 5. If |Ŝi| < k for every integer 1 ≤ i ≤ p, then, for every fixed set A ⊆ V ,
p−1 ·∑p

i=1 f(Ŝi ∪ A) ≥ (1− p−1) · f(O ∪ A)− αbτ/(1 + α).

Proof. The elements in O were rejected by Algorithm 1. Since no set Si reaches a size of
k, this means that the the marginal contribution of the elements of O with respect to every
set Si at the time of their arrival was smaller than cτ/k. Moreover, since Algorithm 1 only
adds elements to its solutions during its execution, the submodularity of f guarantees that
the marginals of the elements of O are below this threshold also with respect to Ŝ1 ∪A, Ŝ2 ∪
A, . . . , Ŝp ∪ A. More formally, we get

f(e | Ŝi ∪ A) < cτ

k
= ατ

k(1 + α) ∀ e ∈ O and integer 1 ≤ i ≤ p .
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Using the submodularity of f again, this implies that for every integer 1 ≤ i ≤ p

f
(
Ŝi∪O∪A

)
≤ f(Ŝi∪A)+

∑
e∈O

f(e | Ŝi∪A) ≤ f(Ŝi∪A)+|O|· ατ

k(1 + α) = f(Ŝi∪A)+ αbτ

1 + α
.

Adding up the above inequalities (and dividing by p), we get

p−1 ·
p∑
i=1

f(Ŝi ∪ A) ≥ p−1 ·
p∑
i=1

f
(
Ŝi ∪O ∪ A

)
− αbτ

1 + α
.

We now note that p−1 ·∑p
i=1 f

(
Ŝi ∪ O ∪ A

)
can be viewed as the expected value of a non-

negative submodular function g(S) = f(S ∪ O ∪ A) over a random set S that is equal to
every one of the sets Ŝ1, Ŝ2, . . . , Ŝp with probability 1/p. Since the sets Ŝ1, Ŝ2, . . . , Ŝp are
disjoint, S contains every element with probability at most 1/p, and thus, by Lemma 4,

p−1 ·
p∑
i=1

f
(
Ŝi ∪O ∪ A

)
= E[g(S)] ≥ (1− p−1) · g(∅) = (1− p−1) · f(O ∪ A) .

The lemma now follows by combining the last two inequalities.

As mentioned above, our next step is to get a lower bound on the value of f(So). One
easy way to get such a lower bound is to observe that OPT\O is a subset of ⋃pi=1 Ŝi of size at
most k, and thus, is a feasible solution for the instance faced by the algorithm OfflineAlg
used to find So; which implies E[f(So)] ≥ α · f(OPT \ O) since OfflineAlg is an α-
approximation algorithm. The following lemma proves a more involved lower bound by
considering the vectors (b1Ŝi)∨ 1OPT\O as feasible fractional solutions for the same instance
(using rounding methods such as Pipage Rounding or Swap Rounding [12, 18], such feasible
factional solutions can be converted into integral feasible solutions of at least the same value).
Lemma 6. If |Ŝi| < k for every integer 1 ≤ i ≤ p, then E[f(So)] ≥ αbτ(1− p−1 − αb/(1 +
α)) + α(1− b) · f(OPT \O).
Proof. Fix some integer 1 ≤ i ≤ p, and consider the vector (b1Ŝi) ∨ 1OPT\O. Clearly,∥∥∥(b1Ŝi) ∨ 1OPT\O

∥∥∥
1
≤ b · |Ŝi|+ |OPT \O| ≤ |O|+ |OPT \O| = |OPT| ≤ k ,

where the second inequality holds by the definition of b since |Ŝi| < k. Given the last property
of the vector (b1Ŝi) ∨ 1OPT\O, standard rounding techniques such as Pipage Rounding [12]
and Swap Rounding [18] can be used to produce from this vector a set Ai ⊆ Ŝi∪(OPT\O) ⊆⋃p
i=1 Ŝi of size at most k such that f(Ai) ≥ F ((b1Ŝi)∨ 1OPT\O). Since So is produced by the

algorithm OfflineAlg whose approximation ratio is α and Ai is one possible output for
this algorithm, this implies E[f(So)] ≥ α · f(Ai) ≥ α · F ((b1Ŝi) ∨ 1OPT\O). Furthermore, by
averaging this equation over all the possible values of i, we get

E[f(So)] ≥ αp−1 ·
p∑
i=1

F ((b1Ŝi) ∨ 1OPT\O)

≥ αp−1 ·
[
(1− b) ·

p∑
i=1

f(OPT \O) + b ·
p∑
i=1

f(Ŝi ∪ (OPT \O))
]

≥ α(1− b) · f(OPT \O) + αb[(1− p−1) · f(OPT)− αbτ/(1 + α)] ,
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where the second inequality holds since the submodularity of f implies that F ((t · 1Ŝi) ∨
1OPT\O) is a concave function of t within the range [0, 1] (and b falls is inside this range),
and the last inequality holds by Lemma 5 (for A = OPT \ O). The lemma now follows by
recalling that f(OPT ) ≥ τ .

Combining the guarantees of the last two lemmata we can now obtain a lower bound on
the value of the solution of Algorithm 1 in the case that |Si| < k for every integer 1 ≤ i ≤ p
which is independent of b.

Corollary 7. If |Ŝi| < k for every integer 1 ≤ i ≤ p, then the output of Algorithm 1 has
value of at least

(
α
α+1 − 2p−1

)
τ .

Proof. The corollary follows immediately from the non-negativity of f when p = 1. Thus,
we may assume p ≥ 2 in the rest of the proof.

Since Algorithm 1 outputs the best solution among the p+ 1 solutions it creates, we get
by Lemma 5 (for A = ∅) and Lemma 6 that the value of the solution it outputs is at least

max
{
p−1

p∑
i=1

f(Ŝi), f(So)
}
≥ max{(1− p−1) · f(O)− αbτ/(1 + α),

αbτ(1− p−1 − αb/(1 + α)) + α(1− b) · f(OPT \O)}

≥ α(1− b)
α(1− b) + 1− p−1 ·

[
(1− p−1) · f(O)− αbτ/(1 + α)

]
+ 1− p−1

α(1− b) + 1− p−1 ·
[
αbτ(1− p−1 − αb/(1 + α)) + α(1− b) · f(OPT \O)

]
.

Note now that the submodularity and non-negativity of f guarantee together f(O)+f(OPT\
O) ≥ f(OPT) ≥ τ . Using this fact and the non-negativity of f , the previous inequality yields

max
{
p−1∑p

i=1 f(Ŝi), f(So)
}

ατ
≥

max
{

0, (1− b)(1− p−1)− αb(1− b)/(1 + α) + b(1− p−1)(1− p−1 − αb/(1 + α))
α(1− b) + 1− p−1

}

≥ max
{

0, (1− b)(1− p−1)− αb(1− b)/(1 + α) + b(1− p−1)(1− p−1 − αb/(1 + α))
α(1− b) + 1

}

≥ (1− b)− αb(1− b)/(1 + α) + b(1− αb/(1 + α))
α(1− b) + 1 − 2p−1 ,

where the last two inequalities hold since α ∈ (0, 1], b ∈ [0, 1] and p ≥ 2. Simplifying the
last inequality, we get

max
{
p−1∑p

i=1 f(Ŝi), f(So)
}

ατ
≥ (1− b)(1 + α)− αb(1− b) + b(1 + α− αb)

(1 + α)[α(1− b) + 1] − 2p−1

= 1 + α(1− b)
(1 + α)[α(1− b) + 1] − 2p−1 = 1

1 + α
− 2p−1 .

The corollary now follows by rearranging this inequality (and recalling that α ∈ (0, 1]).
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Note that the guarantee of Corollary 7 (for the case it considers) is always weaker than
the guarantee of Lemma 3. Thus, we can summarize the results we have proved so far using
the following proposition.

Proposition 8. Algorithm 1 stores O (pk) elements, makes at most p marginal value calcu-
lations while processing each arriving element and its output set has an expected value of at
least

(
α
α+1 − 2p−1

)
τ .

Using the last proposition, we can now prove the following theorem. As discussed at the
beginning of the section, in Section 4 we explain how the assumption that τ is known can be
dropped at the cost of a slight increase in the number of of elements stored by the algorithm
and its update time, which yields Theorem 1.

Theorem 9. Assume there exists an α-approximation offline algorithm OfflineAlg for
maximizing a non-negative submodular function subject to cardinality constraint whose space
complexity is nearly linear in the size of the ground set. Then, for every constant ε ∈ (0, 1],
there exists a semi-streaming algorithm that assumes access to an estimate τ of f(OPT) obey-
ing (1− ε/2) · f(OPT) ≤ τ ≤ f(OPT) and provides ( α

1+α − ε)-approximation for the problem
of maximizing a non-negative submodular function subject to cardinality constraint. This
algorithm stores O(kε−1) elements and calculates O(ε−1) marginal values while processing
each arriving element.

Proof. Consider the algorithm obtained from Algorithm 1 by setting p = d4/εe. By Propo-
sition 8 and the non-negativity of f , this algorithm stores only O(pk) = O(kε−1) elements,
calculates only p = O(ε−1) marginal values while processing each arriving element, and the
expected value of its output set is at least

max
{

0,
(

α

α + 1 − 2p−1
)
τ
}
≥
(

α

α + 1 −
ε

2

)
· (1− ε/2) · f(OPT) ≥

(
α

α + 1 − ε
)
· f(OPT) ,

where the first inequality holds since p ≥ 4/ε and τ obeys, by assumption, τ ≥ (1 − ε/2) ·
f(OPT).

4 Complete Algorithm
In this section, we explain how one can drop the assumption from Section 3 that the algorithm
has access to an estimate τ of f(OPT). This completes the proof of Theorem 1.

Technically, we analyze in this section the variant of Algorithm 1 given as Algorithm 2. It
gets the same two parameters α and p received by Algorithm 1 plus an additional parameter
ε′ ∈ (0, 1) controlling the guaranteed quality of the output. The algorithm is based on
a technique originally due to Kazemi et al. [33]. Throughout its execution, Algorithm 2
tracks in m a lower bound on the value of f(OPT). The algorithm also maintains a set
T = {(1 + ε′)i | m/(1 + ε′) ≤ (1 + ε′)i ≤ mk/c} of values that, given the current value of the
lower bound m, are (1) possible estimates for f(OPT) at the current point and (2) are not
so large that they dwarf this lower bound (of course, T includes only a subset of the possible
estimates obeying these requirements). For every estimate τ in T , the algorithm maintains
p sets Sτ1 , Sτ2 , . . . , Sτp . We note that the set of solutions maintained is updated every time
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that T is updated (which happens after every update of m). Specifically, whenever a new
value τ is added to T , the algorithm instantiate p new sets Sτ1 , Sτ2 , . . . , Sτp , and whenever a
value τ is dropped from T , the algorithm deletes Sτ1 , Sτ2 , . . . , Sτp .

While a value τ remains in T , Algorithm 2 maintains the sets Sτ1 , Sτ2 , . . . , Sτp in exactly
the same way that Algorithm 1 maintains its sets S1, S2, . . . , Sp given this value τ as an
estimate for f(OPT). Moreover, we show below that if τ remains in T when the algorithm
terminates, then the contents of Sτ1 , Sτ2 , . . . , Sτp when the algorithm terminates are equal to
the contents of the sets S1, S2, . . . , Sp when Algorithm 1 terminates after executing with
this τ as the estimate for f(OPT). Thus, one can view Algorithm 2 as parallel execution of
Algorithm 1 for many estimates of f(OPT) at the same time. After viewing the last element,
Algorithm 2 calculates for every τ ∈ T an output set S̄τ based on the sets Sτ1 , Sτ2 , . . . , Sτp in
the same way Algorithm 1 does that, and then outputs the best output set computed for
any τ ∈ T .

Algorithm 2: StreamProcess (p, α, ε′)
1 Let c← α

1+α .
2 Let m← f(∅) and T ←

{
(1 + ε′)h | m/(1 + ε′) ≤ (1 + ε′)h ≤ mk/c

}
.

3 for each arriving element e do
4 Let m′ ← max{f({e}),maxτ∈T,1≤i≤p f(Sτi )}.
5 if m < m′ then
6 Update m← m′, and then T ←

{
(1 + ε′)h | m/(1 + ε′) ≤ (1 + ε′)h ≤ mk/c

}
.

7 Delete Sτ1 , Sτ2 , . . . , Sτp for every value τ removed from T in Line 6.
8 Initialize Sτi ← ∅ for every value τ added to T in Line 6 and integer

1 ≤ i ≤ p.
9 for every τ ∈ T do

10 if there exists an integer 1 ≤ i ≤ p such that |Sτi | < k and f(e | Sτi ) ≥ cτ
k

then
11 Update Sτi ← Sτi ∪ {e} (if there are multiple options for i, pick an

arbitrary one).

12 for every τ ∈ T do
13 Find another feasible solution Sτo ⊆

⋃p
i=1 S

τ
i by running OfflineAlg with⋃p

i=1 S
τ
i as the ground set.

14 Let S̄τ be the better solution among Sτo and the p solutions Sτ1 , Sτ2 , . . . , Sτp .
15 return the best solution among {S̄τ}τ∈T , or the empty set if T = ∅.

We begin the analysis of Algorithm 2 by providing a basic lower bound on the value of
each set Sτi . This lower bound can be viewed as a generalized counterpart of Lemma 3.

Lemma 10. At every point during the execution of the algorithm, for every τ ∈ T and
1 ≤ i ≤ p it holds that f(Sτi ) ≥ ατ ·|Sτi |

(1+α)k .

Proof. Denote by e1, e2, . . . , e|Sτi | the elements of Sτi in the order of their arrival. Using this
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notation, the value of f(Sτi ) can be written as follows.

f(Sτi ) = f(∅) +
|Sτi |∑
j=1

f
(
ej | {e1, e2, . . . , ej−1}

)
≥
|Sτi |∑
i=1

ατ

(1 + α)k = ατ · |Sτi |
(1 + α)k ,

where the inequality holds since the non-negativity of f implies f(∅) ≥ 0 and Algorithm 2
adds an element ej to Sτi only when f

(
ej | {e1, e2, . . . , ej−1}

)
≥ cτ

k
= ατ

(1+α)k .

Using the last lemma we can now prove the following observation, which upper bounds
the size of each set Sτi maintained by Algorithm 2, and thus, serves as a first step towards
bounding the space complexity of this algorithm.
Observation 11. At the end of the every iteration of Algorithm 2, the size of the set Sτi is
at most mk/(cτ) + 1 for every τ ∈ T and integer 1 ≤ i ≤ p.
Proof. Let S̄τi denote the content of the set Sτi at the beginning of the iteration. Since at
most a single element is added to Sτi during the iteration, we get via Lemma 10 that the
value of the set S̄τi is at least

ατ · |S̄τi |
(1 + α)k ≥

ατ · (|Sτi | − 1)
(1 + α)k = cτ · (|Sτi | − 1)

k
.

The way in which Algorithm 2 updates m guarantees that immediately after the update of
m at the beginning of the iteration, the value of m was at least as large as the value of S̄τi ,
and thus, we get

m ≥ cτ · (|Sτi | − 1)
k

,

which implies the observation.

We are now ready to bound the space complexity and update time of Algorithm 2.
Lemma 12. Algorithm 2 can be implemented so that it stores O(pk(ε′)−1 logα−1) elements
and makes only O(p(ε′)−1 log(k/α)) marginal value calculations when processing each arriv-
ing element.
Proof. We begin the proof with two technical calculations. First, note that the number of
estimates in T is upper bounded at all times by

1 + log1+ε′

(
km/c

m/(1 + ε′)

)
= 2 + ln k − ln c

ln(1 + ε′) ≤ 2 + ln k − ln c
2ε′/3 = O((ε′)−1(log k − log c)) .

Second, note that∑
τ∈T

p∑
i=1

(|Sτi | − 1) ≤
∑
τ∈T

min
{
pk,

pmk

cτ

}
≤

∑
h∈Z

(1+ε′)h+1≥m

min
{
pk,

pmk

c(1 + ε′)h

}

≤ pk ·
∣∣∣∣{h ∈ Z | m

1 + ε′
≤ (1 + ε′)h < m/c

}∣∣∣∣+ ∞∑
h=0

pk

(1 + ε′)h

≤ pk ·
(

log1+ε′

(
m/c

m

)
+ 2

)
+ pk

1− 1/(1 + ε′) ≤
pk · (ln c−1 + 2)

ln(1 + ε′) + pk(1 + ε′)
ε′

= O(pk(ε′)−1 log c−1) +O(pk(ε′)−1) = O(pk(ε′)−1 log c−1) ,
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where the first inequality follows from Observation 11 and the fact that all the sets maintained
by Algorithm 2 are of size at most k; and the second inequality follows from the definition
of T .

We now observe that, while processing each arriving element, Algorithm 2 makes p
marginal value calculations in association with every value τ ∈ T and another set of O(p)
such calculations that are not associated with any value of T . Thus, the total number
of marginal value calculations made by the algorithm during the processing of an arriving
element is

p · |T |+O(p) = p ·O((ε′)−1(log k − log c)) +O(p)
= O(p(ε′)−1(log k − log c)) = O(p(ε′)−1 log(k/c)) .

We also note that Algorithm 2 has to store only the elements belonging to Sτi for some τ ∈ T
and integer 1 ≤ i ≤ p. Thus, in all these sets together the algorithm stores O(pk(ε′)−1 log c−1)
elements since

∑
τ∈T

p∑
i=1
|Sτi | =

∑
τ∈T

p∑
i=1

(| supp(Sτi )| − 1) + p|T |

= O(pk(ε′)−1 log c−1) + p ·O((ε′)−1(log k − log c)) = O(pk(ε′)−1 log c−1) .

To complete the proof of the lemma, it remains to note that c = α/(1 + α) ≥ α/2.

A this point we divert our attention to analyzing the approximation gaurantee of Algo-
rithm 2. Let us denote by m̂ and T̂ the final values of m and T , respectively.

Observation 13. c ∈ (0, 1/2], and thus, T̂ is not empty unless m̂ = 0.

Proof. Since α ∈ (0, 1] and α/(α + 1) is an increasing function of α,

c = α

α + 1 ∈
( 0

0 + 1 ,
1

1 + 1

]
= (0, 1/2] .

The last observation immediately implies that when T̂ is empty, all the singletons have
zero values, and the same must be true for every other non-empty set by the submodularity
and non-negativity of f . Thus, OPT = ∅, which makes the output of Algorithm 2 optimal
in the rare case in which T̂ is empty. Hence, we can assume from now on that T̂ 6= ∅. The
following lemma shows that T̂ contains a good estimate for f(OPT) in this case.

Lemma 14. The set T̂ contains a value τ̂ such that (1− ε′) · f(OPT) ≤ τ̂ ≤ f(OPT).

Proof. Observe that m̂ ≥ max
{
f(∅),maxe∈V

{
f
(
{e}

)}}
. Thus, by the submodularity of f ,

f(OPT) ≤ f(∅) +
∑

e∈OPT
[f({e})− f(∅)] ≤ max

f(∅),
∑

e∈OPT
f
(
{e}

) ≤ km̂ ≤ km̂

c
.

In contrast, one can note that m is equal to the value of f for some feasible solution, and
thus, f(OPT) ≥ m̂. Since T̂ contains all the values of the form (1 + ε′)i in the range
[m̂/(1 + ε′), km̂/c], the above inequalities imply that it contains in particular the largest
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value of this form that is still not larger than f(OPT). Let us denote this value by τ̂ . By
definition, τ̂ ≤ f(OPT). Additionally,

τ̂ · (1 + ε′) ≥ f(OPT)⇒ τ̂ ≥ f(OPT)
1 + ε′

≥ (1− ε′) · f(OPT) .

Let us now concentrate on the value τ̂ whose existence is guaranteed by Lemma 14, and
let Ŝ1, Ŝ2, . . . , Ŝp denote the sets maintained by Algorithm 1 when it gets τ̂ as the estimate
for f(OPT). Additionally, let us denote by e1, e2, . . . , en the elements of V in the order of
their arrival, and let ej be the element whose arrival made Algorithm 2 add τ̂ to T (i.e.,
τ̂ was added to T by Algorithm 2 while processing ej). If τ̂ belonged to T from the very
beginning of the execution of Algorithm 2, then we define j = 1

Lemma 15. All the sets Ŝ1, Ŝ2, . . . , Ŝp maintained by Algorithm 1 are empty immediately
prior to the arrival of ej.

Proof. If j = 1, then lemma is trivial. Thus, we assume j > 1 in the rest of this proof. Prior
to the arrival of ej, τ̂ was not part of T . Nevertheless, since τ̂ ∈ T̂ , we must have at all times

τ̂ ≥ m̂

1 + ε′
≥ m

1 + ε′
,

where the second inequality holds since the value m only increases over time. Therefore,
the reason that τ̂ did not belong to T prior to the arrival of ej must have been that m was
smaller than cτ̂/k. Since m is at least as large as the value of any singleton containing an
element already viewed by the algorithm we get, for every two integers 1 ≤ t ≤ j − 1 and
1 ≤ i ≤ p,

cτ̂

k
> f({et}) ≥ f({et} | ∅) ≥ f

(
et | Ŝi ∧ 1{e1,e2,...,et−1}) ,

where the second inequality follows from the non-negativity of f and the last from its sub-
modularity. Thus, et is not added by Algorithm 1 to any one of the sets Ŝ1, Ŝ2, . . . , Ŝp, which
implies that all these sets are empty at the moment ej arrives.

According to the above discussion, from the moment τ̂ gets into T , Algorithm 2 updates
the sets S τ̂1 , S τ̂2 , . . . , S τ̂p in the same way that Algorithm 1 updates Ŝ1, Ŝ2, . . . , Ŝp (note that,
once τ̂ gets into T , it remains there for good since τ̂ ∈ T̂ ). Together with the previous
lemma which shows that Ŝ1, Ŝ2, . . . , Ŝp are empty just like S τ̂1 , S τ̂2 , . . . , S τ̂p at the moment ej
arrives, this implies that the final contents of S τ̂1 , S τ̂2 , . . . , S τ̂p are equal to the final contents
of Ŝ1, Ŝ2, . . . , Ŝp, respectively. Since the set S̄τ̂ is computed based on the final contents of
S τ̂1 , S

τ̂
2 , . . . , S

τ̂
p in the same way that the output of Algorithm 1 is computed based on the

final contents of Ŝ1, Ŝ2, . . . , Ŝp, we get the following corollary.

Corollary 16. If it is guaranteed that the approximation ratio of Algorithm 1 is at least β
when (1− ε′) · f(OPT) ≤ τ ≤ f(OPT) for some choice of the parameters α and p, then the
approximation ratio of Algorithm 2 is at least β as well for this choice of α and p.

We are now ready to prove Theorem 1.
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Theorem 1. Assume there exists an α-approximation offline algorithm OfflineAlg for
maximizing a non-negative submodular function subject to a cardinality constraint whose
space complexity is nearly linear in the size of the ground set. Then, for every constant
ε ∈ (0, 1], there exists an ( α

1+α − ε)-approximation semi-streaming algorithm for maximizing
a non-negative submodular function subject to a cardinality constraint. The algorithm stores
O(kε−2 logα−1) elements and makes O(ε−2 log(k/α)) marginal value computations while pro-
cessing each arriving element. Furthermore, if OfflineAlg is deterministic, then so is the
algorithm that we get.

Proof. The proof of Theorem 9 shows that Algorithm 1 achieves an approximation guarantee
of α

1+α − ε when it has access to a value τ obeying (1 − ε/2) · f(OPT) ≤ τ ≤ f(OPT) and
its parameter p is set to d4/εe. According to Corollary 16, this implies that by setting the
parameter p of Algorithm 2 in the same way and setting ε′ to ε/2, we get an algorithm
whose approximation ratio is at least α

1+α − ε and does not assume access to an estimate τ
of f(OPT).

It remains to bound the space requirement and update time of the algorithm obtained in
this way. Plugging the equalities p = d4/εe and ε′ = ε/2 into the guarantee of Lemma 12,
we get that the algorithm we have obtained stores O(kε−2 logα−1) elements and makes
O(ε−2 log(k/α)) marginal value calculations while processing each arriving element.

5 Multilinear Extension Based Algorithm
The properties of the multlinear extension based variant of our algorithm are summerized
by the following theorem.

Theorem 17. Assume there exists an α-approximation offline algorithm OfflineAlg for
maximizing a non-negative submodular function subject to cardinality constraint whose space
complexity is nearly linear in the size of the ground set. Then, for every constant ε ∈ (0, 1],
there exists an ( α

1+α − ε)-approximation semi-streaming algorithm for maximizing a non-
negative submodular function subject to a cardinality constraint. The algorithm stores at
most O(kε−2 logα−1) elements.

For ease of the reading, we present below only a simplified version of the multlinear
extension based variant of our algorithm. This simplified version (given as Algorithm 3)
captures our main new ideas, but makes two simplifying assumptions that can be avoided
using standard techniques.

• The first assumption is that Algorithm 3 has access to an estimate τ of f(OPT) obeying
(1−ε/8)·f(OPT) ≤ τ ≤ f(OPT). Such an estimate can be produced using well-known
techniques, such as a technique of [33] used in Section 4, at the cost of increasing the
space complexity of the algorithm only by a factor of O(ε−1 logα−1).

• The second assumption is that Algorithm 3 has value oracle access to the multilinear
extension F . If the time complexity of Algorithm 3 is not important, then this as-
sumption is of no consequence since a value oracle query to F can be emulated using
an exponential number of value oracle queries to f . However, the assumption becomes
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problematic when we would like to keep the time complexity of the algorithm poly-
nomial and we only have value oracle access to f , in which case this assumption can
be dropped using standard sampling techniques (such as the one used in [12]). Inter-
estingly, the rounding step of the algorithm and the sampling technique are the only
parts of the extension based algorithm that employ randomness. Since the rounding
can be made deterministic given either exponential time or value oracle access to F ,
we get the following observation.
Observation 18. If OfflineAlg is deterministic, then our multinear extension based
algorithm is also deterministic when it is allowed either exponential computation time
or value oracle access to F .

A more detailed discussion of the techniques for removing the above assumptions can be
found in an earlier version of our published paper (available in [3]) that had this variant of
our algorithm as one of its main results.

Algorithm 3 has two constant parameters p ∈ (0, 1) and c > 0 and maintains a fractional
solution x ∈ [0, 1]V . This fractional solution starts empty, and the algorithm adds to it
fractions of elements as they arrive. Specifically, when an element e arrives, the algorithm
considers its marginal contribution with respect to the current fractional solution x. If this
marginal contribution exceeds the threshold of cτ/k, then the algorithm tries to add to x a
p-fraction of e, but might end up adding a smaller fraction of e if adding a full p-fraction of
e to x will make x an infeasible solution, i.e., make ‖x‖1 > k (note that ‖x‖1 is the sum of
the coordinates of x).

After viewing all of the elements, Algorithm 3 uses the fractional solution x to generate
two sets S1 and S2 that are feasible (integral) solutions. The set S1 is generated by rounding
the fractional solution x. As mentioned in Section 3, two rounding procedures, named Pipage
Rounding and Swap Rounding, were suggested for this task in the literature [12, 18]. Both
procedures run in polynomial time and guarantee that the output set S1 of the rounding is
always feasible, and that its expected value with respect to f is at least the value F (x) of
the fractional solution x. The set S2 is generated by applying OfflineAlg to the support
of the vector x, which produces a feasible solution that (approximately) maximizes f among
all subsets of the support whose size is at most k. After computing the two feasible solutions
S1 and S2, Algorithm 3 simply returns the better one of them.

Algorithm 3: StreamProcessExtension (simplified) (p, c)
1 Let x← 1∅.
2 for each arriving element e do
3 if ∂eF (x) ≥ cτ

k
then x← x+ min{p, k − ‖x‖1} · 1e.

4 Round the vector x to yield a feasible solution S1 such that E[f(S1)] ≥ F (x).
5 Find another feasible solution S2 ⊆ supp(x) by running OfflineAlg with supp(x)

as the ground set.
6 return the better solution among S1 and S2.

Let us denote by x̂ the final value of the fractional solution x (i.e., its value when the
stream ends). We begin the analysis of Algorithm 3 with the following useful observation.

15



In the statement of observation, and in the rest of the section, we denote by supp(x) the
support of vector x, i.e., the set {e ∈ V | xe > 0}.

Observation 19. If ‖x̂‖1 < k, then x̂e = p for every e ∈ supp(x̂). Otherwise, ‖x̂‖1 = k,
and the first part of the observation is still true for every element e ∈ supp(x̂) except for
maybe a single element.

Proof. For every element e added to the support of x by Algorithm 3, the algorithm sets xe
to p unless this will make ‖x‖1 exceed k, in which case the algorithm set xe to be the value
that will make ‖x‖1 equal to k. Thus, after a single coordinate of x is set to a value other
than p (or the initial 0), ‖x‖1 becomes k and Algorithm 3 stops changing x.

Using the last observation we can now bound the space complexity of Algorithm 3, and
show (in particular) that it is a semi-streaming algorithm for a constant p when the space
complexity of OfflineAlg is nearly linear.

Observation 20. Algorithm 3 can be implemented so that it stores at most O(k/p) elements.

Proof. To calculate the sets S1 and S2, Algorithm 3 needs access only to the elements of
V that appear in the support of x. Thus, the number of elements it needs to store is
O(| supp(x̂)|) = O(k/p), where the equality follows from Observation 19.

We now divert our attention to analyzing the approximation ratio of Algorithm 3. The
first step in this analysis is lower bounding the value of F (x̂), which we do by considering
two cases, one when ‖x̂‖1 = k, and the other when ‖x̂‖1 < k. The following lemma bounds
the value of F (x̂) in the first of these cases. Intuitively, this lemma holds since supp(x̂)
contains many elements, and each one of these elements must have increased the value of
F (x) significantly when added (otherwise, Algorithm 3 would not have added this element
to the support of x).

Lemma 21. If ‖x̂‖1 = k, then F (x̂) ≥ cτ .

Proof. Denote by e1, e2, . . . , e` the elements in the support of x̂, in the order of their arrival.
Using this notation, the value of F (x̂) can be written as follows.

F (x̂) = F (1∅) +
∑̀
i=1

(
F
(
x̂ ∧ 1{e1,e2,...,ei}

)
− F

(
x̂ ∧ 1{e1,e2,...,ei−1}

))

= F (1∅) +
∑̀
i=1

(
x̂ei · ∂eiF

(
x̂ ∧ 1{e1,e2,...,ei−1}

))

≥ F (1∅) + cτ

k
·
∑̀
i=1

x̂ei = F (1∅) + cτ

k
· ‖x̂‖1 ≥ cτ ,

where the second equality follows from the multilinearity of F , and the first inequality holds
since Algorithm 3 selects an element ei only when ∂eiF

(
x̂ ∧ 1{e1,e2,...,ei−1}

)
≥ cτ

k
. The last

inequality holds since f (and thus, also F ) is non-negative and ‖x̂‖1 = k by the assumption
of the lemma.
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Consider now the case in which ‖x̂‖1 < k. Recall that our objective is to lower bound
F (x̂) in this case as well. To do that, we need to a tool for upper bounding the possible
increase in the value of F (x) when some of the indices of x are zeroed. The next lemma
provides such an upper bound.

Lemma 22. Let f : 2V → R≥0 be a non-negative submodular function, let p be a number in
the range [0, 1] and let x, y be two vectors in [0, 1]V such that

• supp(x) ∩ supp(y) = ∅,

• and ye ≤ p for every e ∈ V .

Then, the multilinear extension F of f obeys F (x+ y) ≥ (1− p) · F (x).

Proof. Let us define the function Gx(S) = E[f(R(x) ∪ S)]. It is not difficult to verify that
Gx is non-negative and submodular, and that Gx(∅) = F (x). Additionally, since supp(x) ∩
supp(y) = ∅, R(x+ y) has the same distribution as R(x) ∪ R(y), and therefore,

F (x+ y) = E
[
f
(
R(x+ y))

]
= E

[
f
(
R(x) ∪ R(y)

)]
= E[Gx(R(y))] ≥ (1− p) ·Gx(∅) = (1− p) · F (x) ,

where the inequality follows from Lemma 4.

Using the last lemma, we next prove two lemmata proving upper and lower bounds
the expression F (x̂ + 1OPT\supp(x̂)). To prove the first of these lemmata, we make use of
another standard continuous extension for submodular functions. This extension is known
as the Lovász extension f̂ : [0, 1]V → R, and it is defined as follows. For every x ∈ [0, 1]V ,
f̂(x) = Eθ∼[0,1][f({e ∈ V : xe ≥ θ})], where we use the notation θ ∼ [0, 1] to denote a value
chosen uniformly at random from the interval [0, 1]. An important property of the Lovász
extension that we use in the proof of the following lemma, is that it always lower bounds
the multilinear extension, i.e., F (x) ≥ f̂(x) for every x ∈ [0, 1]V [41, Lemma A.4].

Lemma 23. If ‖x̂‖1 < k, then F
(
x̂+1OPT\supp(x̂)

)
≥ (1−p) ·

[
p ·f(OPT)+(1−p) ·f

(
OPT\

supp(x̂)
)]
.

Proof. Since ‖x̂‖1 < k, Observation 19 guarantees that x̂e = p for every e ∈ supp(x̂). Thus
x̂ = p · 1OPT∩supp(x̂) + p · 1supp(x̂)\OPT, and therefore,

F
(
x̂+ 1OPT\supp(x̂)

)
= F

(
p · 1OPT∩supp(x̂) + p · 1supp(x̂)\OPT + 1OPT\supp(x̂)

)
≥ (1− p) · F

(
p · 1OPT∩supp(x̂) + 1OPT\supp(x̂)

)
≥ (1− p) · f̂

(
p · 1OPT∩supp(x̂) + 1OPT\supp(x̂)

)
= (1− p) ·

[
p · f(OPT) + (1− p) · f

(
OPT \ supp(x̂)

)]
,

where the first inequality follows from Lemma 22, the second inequality holds since the
Lovász extension lower bounds the multilinear extension, and the last equality follows from
the definition of the Lovász extension.
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In the following lemma, and the rest of the section, we use the notation b = k−1 · |OPT \
supp(x̂)|. Intuitively, the lemma holds since the fact that the elements of OPT \ supp(x̂)
were not added to the support of x by Algorithm 3 implies that their marginal contribution
is small.

Lemma 24. If ‖x̂‖1 < k, then F
(
x̂+ 1OPT\supp(x̂)

)
≤ F (x̂) + bcτ .

Proof. The elements in OPT\supp(x̂) were rejected by Algorithm 3, which means that their
marginal contribution with respect to the fractional solution x at the time of their arrival
was smaller than cτ/k. Since the fractional solution x only increases during the execution
of the algorithm, the submodularity of f guarantees that the same is true also with respect
to x̂. More formally, we get

∂eF (x̂) < cτ

k
∀ e ∈ OPT \ supp(x̂) .

Using the submodularity of f again, this implies

F
(
x̂+ 1OPT\supp(x̂)

)
≤ F (x̂) +

∑
e∈OPT\supp(x̂)

∂eF (x̂) ≤ F (x̂) + |OPT \ supp(x̂)| · cτ
k

= F (x̂) + bcτ .

Combining the last two lemmata immediately yields the promised lower bound on F (x̂).
To understand the second inequality in the following corollary, recall that τ ≤ f(OPT).

Corollary 25. If ‖x̂‖1 < k, then F (x̂) ≥ (1−p) ·
[
p ·f(OPT)+(1−p) ·f

(
OPT\supp(x̂)

)]
−

bcτ ≥ [p(1− p)− bc]τ + (1− p)2 · f
(
OPT \ supp(x̂)

)
.

Our next step is to get a lower bound on the expected value of f(S2). One easy way
to get such a lower bound is to observe that OPT ∩ supp(x̂) is a subset of the support
of x̂ of size at most k, and thus, is a feasible solution for OfflineAlg to return; which
implies E[f(S2)] ≥ α · f(OPT ∩ supp(x̂)) since the algorithm OfflineAlg used to find
S2 is an α-approximation algorithm. The following lemma proves a more involved lower
bound by considering the vector (bx̂) ∨ 1OPT∩supp(x̂) as a fractional feasible solution (using
the rounding methods discussed above it, it can be converted into an integral feasible solution
of at least the same value). The proof of the lemma lower bounds the value of the vector
(bx̂)∨1OPT∩supp(x̂) using the concavity of the function F ((t · x̂)∨1OPT∩supp(x̂)) as well as ideas
used in the proofs of the previous claims.

Lemma 26. If ‖x̂‖1 < k, then E[f(S2)] ≥ αb(1− p− cb)τ + α(1− b) · f(OPT ∩ supp(x̂)).

Proof. Consider the vector (bx̂) ∨ 1OPT∩supp(x̂). Clearly,∥∥∥(bx̂) ∨ 1OPT∩supp(x̂)

∥∥∥
1
≤ b · ‖x̂‖1 +

∥∥∥1OPT∩supp(x̂)

∥∥∥
1

≤ |OPT \ supp(x̂)|+ |OPT ∩ supp(x̂)| = |OPT| ≤ k ,

where the second inequality holds by the definition of b since ‖x̂‖1 < k. Thus, due to the
existence of the rounding methods discussed in the beginning of the section, there must
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exist a set S of size at most k obeying f(S) ≥ F ((bx̂) ∨ 1OPT∩supp(x̂)). Since S2 is produced
by OfflineAlg, whose approximation ratio is α, this implies E[f(S2)] ≥ α · F ((bx̂) ∨
1OPT∩supp(x̂)). Thus, to prove the lemma it suffices to show that F ((bx̂) ∨ 1OPT∩supp(x̂)) is
always at least b(1− p− cb)τ + (1− b) · f(OPT ∩ supp(x̂)).

The first step towards proving the last inequality is getting a lower bound on F (x̂ ∨
1OPT∩supp(x̂)). Recall that we already showed in the proof of Lemma 24 that

∂eF (x̂) < cτ

k
∀ e ∈ OPT \ supp(x̂) .

Thus, the submodularity of f implies

F (x̂ ∨ 1OPT) ≤ F (x̂ ∨ 1OPT∩supp(x̂)) +
∑

e∈OPT\supp(x̂)
∂eF (x̂)

≤ F (x̂ ∨ 1OPT∩supp(x̂)) + cτ · |OPT \ supp(x̂)|
k

= F (x̂ ∨ 1OPT∩supp(x̂)) + cbτ .

Rearranging this inequality yields

F (x̂ ∨ 1OPT∩supp(x̂)) ≥ F (x̂ ∨ 1OPT)− cbτ ≥ (1− p) · f(OPT)− cbτ ≥ (1− p− cb)τ ,

where the second inequality holds by Lemma 22 since Observation 19 guarantees that every
coordinate of x̂ is either 0 or p. This gives us the promised lower bound on F (x̂∨1OPT∩supp(x̂)).

We now note that the submodularity of f implies that F ((t·x̂)∨1OPT∩supp(x̂)) is a concave
function of t within the range [0, 1]. Since b is inside this range,

F ((bx̂) ∨ 1OPT∩supp(x̂)) ≥ b · F (x̂ ∨ 1OPT∩supp(x̂)) + (1− b) · f(OPT ∩ supp(x̂))
≥ b(1− p− cb)τ + (1− b) · f(OPT ∩ supp(x̂)) ,

which completes the proof of the lemma.

Using the last two claims we can now obtain a lower bound on the value of the solution
of Algorithm 3 in the case of ‖x̂‖1 < k which is a function of α, τ and p alone. We note
that both the guarantees of Corollary 25 and Lemma 26 are lower bounds on the expected
value of the output of the algorithm in this case since E[f(S1)] ≥ F (x̂). Thus, any convex
combination of these guarantees is also such a lower bound, and the proof of the following
corollary basically proves a lower bound for one such convex combination—for the specific
value of c stated in the corollary.

Corollary 27. If ‖x̂‖1 < k and c is set to α(1−p)
α+1 , then E[max{f(S1), f(S2)}] ≥ (1−p)ατ

α+1 .

Proof. The corollary follows immediately from the non-negativity of f when p = 1. Thus,
we may assume p < 1 in the rest of the proof.
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By the definition of S1, E[f(S1)] ≥ F (x̂). Thus, by Corollary 25 and Lemma 26,

E[max{f(S1), f(S2)}] ≥ max{E[f(S1)],E[f(S2)]}
≥ max{[p(1− p)− bc]τ + (1− p)2 · f

(
OPT \ supp(x̂)

)
,

αb(1− p− cb)τ + α(1− b) · f(OPT ∩ supp(x̂))}

≥ α(1− b)
α(1− b) + (1− p)2 ·

[
[p(1− p)− bc]τ + (1− p)2 · f

(
OPT \ supp(x̂)

)]
+ (1− p)2

α(1− b) + (1− p)2 · [αb(1− p− cb)τ + α(1− b) · f(OPT ∩ supp(x̂))] .

To keep the following calculations short, it will be useful to define q = 1− p and d = 1− b.
Using this notation and the fact that the submodularity and non-negativity of f guarantee
together f

(
OPT \ supp(x̂)

)
+ f

(
OPT ∩ supp(x̂)

)
≥ f(OPT) ≥ τ , the previous inequality

implies

E[max{f(S1), f(S2)}]
ατ

≥ (1− b)[p(1− p)− bc] + b(1− p)2(1− p− bc) + (1− b)(1− p)2

α(1− b) + (1− p)2

= d[q(1− q)− (1− d)c] + q2(1− d)[q − (1− d)c] + dq2

αd+ q2

= d[q − (1− d)c] + q2(1− d)[q − (1− d)c]
αd+ q2 = [d+ q2(1− d)][q − (1− d)c]

αd+ q2

= q[d+ q2(1− d)](dα + 1)
(α + 1)(dα + q2) = d2α + dαq2 − d2αq2 + d+ q2 − dq2

dα + q2 · q

α + 1 , (1)

where the fourth equality holds by plugging in the value we assume for c.
The second fraction in the last expression is independent of the value of d, and the

derivative of the first fraction in this expression as a function of d is

(2dα + αq2 − 2dαq2 + 1− q2)[dα + q2]− α(d2α + dαq2 − d2αq2 + d+ q2 − dq2)
[dα + q2]2

= 1− q2

[dα + q2]2 · [q
2(1− α) + dα(dα + 2q2)] ,

which is always non-negative since both q and α are numbers between 0 and 1. Thus, we
get that the minimal value of the expression (1) is obtained for d = 0 for any choice of q and
α. Plugging this value into d yields

E[max{f(S1), f(S2)}] ≥ qατ

α + 1 = (1− p)ατ
α + 1 .

Note that Lemma 21 and Corollary 27 both prove the same lower bound on the expec-
tation E[max{f(S1), f(S2)}] when c is set to the value it is set to in Corollary 27 (because
E[max{f(S1), f(S2)}] ≥ E[f(S1)] ≥ F (x̂)). Thus, we can summarize the results we have
proved so far using the following proposition.
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Proposition 28. Algorithm 3 is a semi-streaming algorithm storing O (k/p) elements. More-
over, for the value of the parameter c given in Corollary 27, the output set produced by this
algorithm has an expected value of at least ατ(1−p)

α+1 .

Using the last proposition, we can now prove the following theorem. As discussed at the
beginning of the section, the assumption that τ is known can be dropped at the cost of a slight
increase in the number of of elements stored by the algorithm, which yields Theorem 17.

Theorem 29. For every constant ε ∈ (0, 1], there exists a semi-streaming algorithm that
assumes access to an estimate τ of f(OPT) obeying (1− ε/8) · f(OPT) ≤ τ ≤ f(OPT) and
provides ( α

1+α − ε)-approximation for the problem of maximizing a non-negative submodular
function subject to cardinality constraint. This algorithm stores at most O(kε−1) elements.

Proof. Consider the algorithm obtained from Algorithm 3 by setting p = ε/2 and c as is set
in Corollary 27. By Proposition 28, this algorithm stores only O(k/p) = O(kε−1) elements,
and the expected value of its output set is at least

ατ(1− p)
α + 1 ≥ α(1− ε/8)(1− ε/2)

α + 1 · f(OPT) ≥ α(1− ε)
α + 1 · f(OPT) ≥

(
α

α + 1 − ε
)
· f(OPT) ,

where the first inequality holds since τ obeys, by assumption, τ ≥ (1− ε/8) · f(OPT).

6 Algorithm for DR-SM Functions
In section 5 we saw that submodular function can be optimized via their continuous mul-
tilinear extensions. In this case, the extension to the continuous domain was a mean to-
wards optimizing a discrete function. However, in other settings it is interested to study
submodular-like continuous functions for their own sake. In this section we consider a family
of such functions known as DR-submodular functions, which includes the multilinear exten-
sions of submodular functions as a special case. Let a, b be two vectors in [0, 1]V such that
a ≤ b.6 Formally, a function F : [0, 1]V → R≥0 is DR-submodular if for every e ∈ V and
0 < k < 1− be,

F (a+ k · 1e)− F (a) ≥ F (b+ k · 1e)− F (b) .

Given an integer k, our goal is to construct a semi-streaming algorithm for maximizing a
non-negative DR-submodular function F : [0, 1]V → R≥0 subject to a support cardinality
constraint, meaning that a solution x ∈ [0, 1]V is feasible only if | supp(x)| ≤ k. We propose
for this problem the algorithm given as Algorithm 4. This algorithm makes two simplifying
assumptions. The first assumption is that it has access to an estimate τ of F (x∗), where
x∗ is an optimal solution for our problem, such that (1 − ε/2) · F (x∗) ≤ τ ≤ F (x∗). Recall
that in Section 4, we explained how one can drop the assumption that τ is known at the
cost of an increase in the space complexity of Algorithm 1. One can easily verify that the
same technique can also be used to omit this assumption from Algorithm 4. The second
simplifying assumption made by Algorithm 4 is that it can find the exact maximum of F
when the domain is restricted to a single dimension. We explain how to drop this assumption
in Section 7 at the cost of making slightly more value oracle queries.

6We say that a ≤ b, if ae ≤ be for every element e ∈ V .
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Algorithm 4: Deterministic (DR-SM) (p, α)
1 Let c← α

1+α .
2 for i = 1 to p do Let xi ← 1∅.
3 for each arriving element e do
4 for i = 1 to p do
5 Let qi ← arg maxq∈[0,1] F (xi + q · 1e).
6 if there exists an integer 1 ≤ i ≤ p such that | supp(xi)| < k and

F (xi + qi · 1e) ≥ F (xi) + cτ
k

then
7 Update xi ← xi + qi · 1e (if there are multiple options for i, pick an arbitrary

one).

8 Find another feasible solution xo ≤
∨p
i=1 1supp(xi) by running OfflineAlg with⋃p

i=1 supp(xi) as the ground set.
9 return the solution maximizing F among xo and the p solutions x1, x2, . . . , xp.

Since Algorithm 4 stores elements only in the p+ 1 solutions it maintains, and all these
solutions are feasible (and thus, their support contains at most k elements), we immedi-
ately get the following observation. Note that this observation implies (in particular) that
Algorithm 4 is a semi-streaming algorithm for a constant p when the space complexity of
OfflineAlg is nearly linear.

Observation 30. Algorithm 4 stores at most O(pk) elements.

We now divert our attention to analyzing the approximation ratio of Algorithm 4. Let us
denote by x̂i the final state of xi (i.e., the content of this vector when the stream ends), and
consider two cases. The first (easy) case is when the support of at least one of the solutions
x1, x2, . . . , xp reaches a size of k. The next lemma analyzes the approximation guarantee of
Algorithm 4 in this case.

Lemma 31. If there is an integer 1 ≤ i ≤ p such that | supp(x̂i)| = k, then the output of
Algorithm 4 has value of at least ατ

1+α .

Proof. Denote by e1, e2, . . . , ek the elements of supp(x̂i) in the order of their arrival, and let
us define x̂ji = x̂i∧1{e1,e2,...,ej}, and q

j
i =

(
x̂i
)
j
. Using these notations, the value of F (x̂i) can

be written as follows.

F (x̂i) = F (1∅) +
k∑
j=1

(
F (x̂ji )− F (x̂j−1

i )
)

=F (1∅) +
k∑
j=1

(
F (x̂j−1

i + qji · 1ej)− F (x̂j−1
i )

)

≥
k∑
j=1

ατ

(1 + α)k = ατ

1 + α
,

where the inequality holds since the non-negativity of F implies F (1∅) ≥ 0 and Algorithm 4
adds a fraction qji ·1ej to xi only when F (x̂j−1

i +qji ·1ej)−F (x̂j−1
i ) ≥ cτ

k
= ατ

(1+α)k . The lemma
now follows since the solution outputted by Algorithm 4 is at least as good as x̂i.
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Consider now the case in which no vector xi reaches a support of size k. In this case
our objective is to show that at least one of the solutions computed by Algorithm 4 has
a large value. Lemmata 35 and 36 lower bound the value of the average solution among
x1, x2, . . . , xp and the solution xo, respectively. The proof of Lemma 35 uses Corollary 33,
which is derived from the following known lemma.

Lemma 32 (Lemma 2.2 from [10]). Let f : 2V → R≥0 be a non-negative submodular function.
Denote by A(p) a random subset of A where each element appears with probability at most p
(not necessarily independently). Then, E[f(A(p))] ≥ (1− p) · f(∅).

Corollary 33. Let F : [0, 1]V → R≥0 be a non-negative DR-submodular function. Denote
by x(p) a random vector generated from x where

(
x(p)

)
i
is equal to the i-th element of x

with probability at most p (not necessarily independently), and is equal to 0 otherwise. Then,
E[F (x(p))] ≥ (1− p) · F (1∅).

Proof. Let A = supp(x), and define the function f(B) = F (x ∧ 1B) for each set B ⊆ V .
Clearly, f is submodular, and the random set A(p) = supp(x(p)) is a subset of A obeying
the conditions stated in Lemma 32. Therefore, Lemma 32 yields

E[F (x(p))] = E[f(A(p))] ≥ (1− p)f(∅) = (1− p)F (1∅) .

Before we proceed with the analysis of the case of | supp(x̂i)| < k for every 1 ≤ i ≤ p,
we need to introduce some additional notation. For two vectors x, y ∈ [0, 1]V , we let x ∗ y
be the vector such that (x ∗ y)e = 1 − (1 − xe)(1 − ye) = xe + ye − xeye for every element
e ∈ V . Additionally, we define the continuous function Gx(y) = F (x ∗ y). Intuitively, Gx is
obtained from F using the following two steps: (i) restrict F to the box lower bounded by
x and upper bounded by 1V , and (ii) apply a linear transformation to map this box back
to [0, 1]V . Given this intuition, it is not difficult to see that Gx should be DR-submodular.
The following observation shows this formally.

Observation 34. For every vector x ∈ [0, 1]V , Gx is DR-submodular.

Proof. Fix two vectors y, z ∈ [0, 1]V such that y ≤ z, and consider an element e ∈ V and
value δ ≥ 0 such that ze + δ ≤ 1. To prove the observation, we need to show that

Gx (y + δ · 1e)−Gx(y) ≥ Gx (z + δ · 1e)−Gx(z) .

To see that this is indeed the case, we note that x ∗ w is a monotone function of w, and
therefore, x ∗ y ≤ x ∗ z. By the DR-submodularity of F , this implies

Gx (y + δ · 1e)−Gx(y) = F (x ∗ (y + δ · 1e))− F (x ∗ y)
= F (x ∗ y + δ(1− xe) · 1e)− F (x ∗ y)
≥ F (x ∗ z + δ(1− xe) · 1e)− F (x ∗ z)
= F (x ∗ (z + δ · 1e))− F (x ∗ z)
= Gx (z + δ · 1e)−Gx(z) .
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We also denote by o the vector whose e-th coordinate equals (x∗)e if no fraction of e
was added during the execution of Algorithm 4 to any of the vectors x1, x2, . . . , xp, and 0
otherwise. More formally, o = OPT∧1V \⋃p

i=1 supp(x̂i). It is also useful to define the shorthand
b = | supp(o)|/k. Using this notation, we can now prove the promised lower bounds on the
values of the solutions that Algorithm 4 constructs when none of the vectors x1, x2, . . . , xp
reach a support of size k.

Lemma 35. If | supp(x̂i)| < k for every integer 1 ≤ i ≤ p, then, for every fixed vector
a ∈ [0, 1]V , p−1 ·∑p

i=1 Ga(x̂i) ≥ (1− p−1) ·Ga(o)− αbτ/(1 + α).

Proof. The elements in supp(o) were rejected by Algorithm 4. Since no solution xi reaches
a support of size k, this means that the marginal contribution of every fraction of an ele-
ment in supp(o) with respect to every solution xi at the time of their arrival was smaller
than cτ/k. Moreover, since Algorithm 4 only increases its solutions during its execu-
tion, the DR-submodularity of F guarantees that for every e ∈ supp(o) the contribution
maxq∈[0,1]

(
Ga(x̂i + q · 1e)−Ga(x̂i)

)
= maxq∈[0,1]

(
F ((x̂i ∗ a) + q · 1e)− F (x̂i ∗ a)

)
is also

below this threshold for every 1 ≤ i ≤ p since x̂i ∗ a ≥ x̂i ≥ xi. More formally, we get

max
q∈[0,1]

(
Ga(x̂i + q · 1e)−Ga(x̂i)

)
<
cτ

k
= ατ

k(1 + α) ∀ e ∈ supp(o) and integer 1 ≤ i ≤ p .

Using the DR-submodularity of Ga, this implies that for every integer 1 ≤ i ≤ p

Ga(o ∨ x̂i) ≤ Ga(x̂i) +
∑

e∈supp(o)
max
q∈[0,1]

(
Ga(x̂i + q · 1e)−Ga(x̂i)

)

≤ Ga(x̂i) + | supp(o)| · ατ

k(1 + α) = Ga(x̂i) + αbτ

1 + α
.

Adding up the above inequalities for all i (and dividing by p), we get

p−1 ·
p∑
i=1

Ga(x̂i) ≥ p−1 ·
p∑
i=1

Ga(o ∨ x̂i)−
αbτ

1 + α
.

We now note that p−1 · ∑p
i=1 Ga(o ∨ x̂i) can be viewed as the expected value of the non-

negative DR-submodular function H(x) = Ga(o∨x) over a random vector x that is equal to
every one of the solutions x̂1, x̂2, . . . , x̂p with probability 1/p. Since supp(x̂i)∩ supp(x̂j) = ∅
for every 1 ≤ i 6= j ≤ p, the support of x contains every element with probability at most
1/p, and thus, by Corollary 33,

p−1 ·
p∑
i=1

Ga(o ∨ x̂i) = E[H(x)] ≥ (1− p−1) ·H(1∅) = (1− p−1) ·Ga(o) .

The lemma now follows by combining the last two inequalities.

As mentioned above, our next step is to get a lower bound on the value of F (xo). One easy
way to get such a lower bound is to observe that supp(OPT−o) is a subset of ⋃pi=1 supp(x̂i) of
size at most k, and thus, x∗−o is a candidate to be xo; which implies E[F (xo)] ≥ α·f(OPT−o)
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since the algorithm OfflineAlg used to find xo is an α-approximation algorithm. The
following lemma proves a more involved lower bound by considering vectors whose values
are at least G(OPT−o)(b · x̂i), and whose support is of size at most k, as candidates to be
xo. The proof of the lemma obtains such vectors using rounding methods such as Pipage
Rounding and Swap Rounding [12, 18].

Lemma 36. If | supp(x̂i)| < k for every integer 1 ≤ i ≤ p, then E[F (xo)] ≥ αbτ(1− p−1 −
αb/(1 + α)) + α(1− b) · F (OPT− o).

Proof. Fix some integer 1 ≤ i ≤ p, and consider the set function g(S) = G(OPT−o)(x̂i ∧ 1S).
Clearly, g is submodular. Furthermore, since | supp(x̂i)| < k, the definition of b implies
that ‖(b · x̂i)‖1 ≤ b · | supp(x̂i)| ≤ | supp(o)|. Thus, using either Pipage Rounding [12] or
Swap Rounding [18] one can obtain a set S ⊆ | supp(x̂i)| of size at most | supp(o)| such that
g(S) ≥ G(OPT−o)(b · x̂i). Notice now that the support of x ∗ y is exactly the union of supp(x)
and supp(y), and therefore,

| supp((x̂i∧1S)∗(OPT−o))| ≤ |S|+| supp(OPT)|−| supp(o)| ≤ | supp(o)|+k−| supp(o)| = k .

Thus, each vector (x̂i ∧ 1S) ∗ (OPT− o) is a candidate to be xo, whose value is

F ((x̂i ∧ 1S) ∗ (OPT− o)) = G(OPT−o)(x̂i ∧ 1S) = g(S) ≥ G(OPT−o)(b · x̂i) .

Since the vector xo is produced by OfflineAlg, whose approximation ratio is α, this implies
E[F (xo)] ≥ α · G(OPT−o)(b · x̂i). Furthermore, by averaging this equation over the possible
values of i, we get

E[F (xo)] ≥ αp−1 ·
p∑
i=1

G(OPT−o)(b · x̂i)

≥ αp−1 ·
[
(1− b) ·

p∑
i=1

G(OPT−o)(1∅) + b ·
p∑
i=1

G(OPT−o)(x̂i)
]
,

where the second inequality holds since the DR-submodularity of G(OPT−o) implies that
G(OPT−o)(t · x̂i) is a concave function of t within the range [0, 1] (and b falls is inside this
range). Since G(OPT−o)(1∅) = F (OPT− o), using Lemma 35 with a = OPT− o yields

E[F (xo)] ≥ α(1− b) · F (OPT− o) + αb
[
(1− p−1) ·G(OPT−o)(o)− αbτ/(1 + α)

]
≥ α(1− b) · F (OPT− o) + αbτ [(1− p−1)− αb/(1 + α)] ,

where the last inequality holds since G(OPT−o)(o) = F (OPT) ≥ τ .

Combining the guarantees of the last two lemmata we can now obtain a lower bound
which is independent of b on the value of the solution of Algorithm 4 in the case in which
| supp(x̂i)| < k for every integer 1 ≤ i ≤ p.

Corollary 37. If | supp(x̂i)| < k for every integer 1 ≤ i ≤ p, then the output of Algorithm 4
has value of at least

(
α
α+1 − 2p−1

)
τ .
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Proof. The corollary follows immediately from the non-negativity of F when p = 1. Thus,
we may assume p ≥ 2 in the rest of the proof.

One can easily verify that G1∅(x) = F (x ∗ 1∅) = F (x). Since Algorithm 4 outputs the
best solution among the p + 1 solutions it creates, we get by Lemma 35 (for a = 1∅) and
Lemma 36 that the value of the solution it outputs is at least

max
{
p−1

p∑
i=1

F (x̂i), F (xo)
}
≥ max{(1− p−1) · F (o)− αbτ/(1 + α),

αbτ(1− p−1 − αb/(1 + α)) + α(1− b) · F (OPT− o)}

≥ α(1− b)
α(1− b) + 1− p−1 ·

[
(1− p−1) · F (o)− αbτ/(1 + α)

]
+ 1− p−1

α(1− b) + 1− p−1 ·
[
αbτ(1− p−1 − αb/(1 + α)) + α(1− b) · F (OPT− o)

]
.

Note now that the DR-submodularity and non-negativity of F guarantee together F (o) +
F (OPT − o) ≥ F (OPT) ≥ τ . Using this fact and the non-negativity of F , the previous
inequality yields

max {p−1∑p
i=1 F (x̂i), F (xo)}
ατ

≥

max
{

0, (1− b)(1− p−1)− αb(1− b)/(1 + α) + b(1− p−1)(1− p−1 − αb/(1 + α))
α(1− b) + 1− p−1

}

≥ max
{

0, (1− b)(1− p−1)− αb(1− b)/(1 + α) + b(1− p−1)(1− p−1 − αb/(1 + α))
α(1− b) + 1

}

≥ (1− b)− αb(1− b)/(1 + α) + b(1− αb/(1 + α))
α(1− b) + 1 − 2p−1 ,

where the last two inequalities hold since α ∈ (0, 1], b ∈ [0, 1] and p ≥ 2. Simplifying the
last inequality, we get

max {p−1∑p
i=1 F (x̂i), F (xo)}
ατ

≥ (1− b)(1 + α)− αb(1− b) + b(1 + α− αb)
(1 + α)[α(1− b) + 1] − 2p−1

= 1 + α(1− b)
(1 + α)[α(1− b) + 1] − 2p−1 = 1

1 + α
− 2p−1 .

The corollary now follows by rearranging this inequality (and recalling that α ∈ (0, 1]).

Note that the guarantee of Corollary 37 (for the case it considers) is always weaker than
the guarantee of Lemma 31. Thus, we can summarize the results we have proved so far using
the following proposition.

Proposition 38. Algorithm 4 stores O (pk) elements, makes at most O(p) value oracle
queries while processing each arriving element and its output has an expected value of at
least

(
α
α+1 − 2p−1

)
τ .

Using the last proposition, we can now prove the following theorem.
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Theorem 39. Assume there exists an α-approximation offline algorithm OfflineAlg for
maximizing a non-negative DR-submodular function F subject to a support cardinality con-
straint whose space complexity is nearly linear in the size of the ground set. Then, for every
constant ε ∈ (0, 1], there exists a semi-streaming algorithm that assumes access to an esti-
mate τ of F (x∗) obeying (1−ε/2) ·F (x∗) ≤ τ ≤ F (x∗) and provides ( α

1+α−ε)-approximation
for the same problem. This algorithm stores O(kε−1) elements and uses O(ε−1) value oracle
queries while processing each arriving element.

Proof. Consider the algorithm obtained from Algorithm 4 by setting p = d4/εe. By Propo-
sition 38 and the non-negativity of F , this algorithm stores only O(pk) = O(kε−1) elements,
uses only p = O(ε−1) value oracle queries while processing each arriving element, and the
expected value of its output vector is at least

max
{

0,
(

α

α + 1 − 2p−1
)
τ
}
≥
(

α

α + 1 −
ε

2

)
· (1− ε/2) · F (x∗) ≥

(
α

α + 1 − ε
)
· F (x∗) ,

where the first inequality holds since p ≥ 4/ε and τ obeys, by assumption, τ ≥ (1 − ε/2) ·
F (x∗).

7 Avoiding One Dimensional Optimization Problems
Line 5 of Algorithm 4 requires us to calculate arg maxq∈[0,1] F (xi+q·1e) for an arriving element
e and a maintained solution xi. If we are able to exactly solve 1-dimensional optimization
problems involving F , then this line can be implemented as is. Otherwise, we need to
approximate it. Section 7.1 explains how to get such an approximation efficiently. Then,
Section 7.2 analyzes the performance of Algorithm 4 when Line 5 is implemented in this
approximate manner.

7.1 Approximate Implementation of Line 5
When viewed as a function of q, F (xi + q · 1e) is a concave non-negative function. Thus,
the problem of approximating arg maxq∈[0,1] F (xi + q · 1e) is a special case of the following
more general problem. Given a 1-dimensional concave function H : [0, 1]→ R≥0, find a value
q̃ ∈ [0, 1] that approximately maximizes H(q̃). More formally, given a value δ ∈ [0, 1/4],
we want an algorithm that produces q̃ ∈ [0, 1] such that H(q̃) ≥ (1 − 4δ)H(q∗), where
q∗ = maxq∈[0,1] H(q). For the sake of simplicity, we assume below that δ−1 is an integer. If
this is not the case, then δ can be replaced with some value from the range [δ/2, δ] that has
this property.

The algorithm we suggest for the above problem appears below as Algorithm 5. This
algorithm discretizes the domain of H by considering only points that are integer multiples
of δ. Formally, the discretized version of H is denoted by the function Hδ : {0, 1, . . . , 1/δ} →
R≥0 defined as Hδ(t) = H(tδ). Algorithm 5 then uses binary search to find a pair of values
t1 and t2 such that t1 + 1 = t2 and q∗ ∈ [δt1, δ(t2 + 1)]. For the purpose of the binary search,
it is useful to define ∆Hδ(t) , Hδ(t+ 1)−Hδ(t). Intuitively, ∆Hδ(t) is a discrete derivative
of Hδ at t.
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Algorithm 5: 1-Dimensional Optimization (δ)
1 Let t1 ← 0 and let t2 ← 1/δ − 1.
2 while t2 − t1 > 1 do
3 Let t′ ← t1 + d(t2 − t1)/2e.
4 if ∆Hδ(t′) > 0 then
5 Update t1 ← t′.
6 else
7 Update t2 ← t′.

8 return q̃ ← arg maxt∈t1,t2+1 H(tδ).

The concavity of the H implies the following observation, which shows that we indeed
have q∗ ∈ [δt1, δ(t2 + 1)] when Algorithm 5 terminates.

Observation 40. For every t ∈ [0, 1/δ − 1], if ∆Hδ(t) = H(tδ + δ) − H(tδ) > 0, then
q∗ ≥ tδ. Otherwise, q∗ ≤ tδ + δ.

Using the last observation we can now analyze the approximation ratio of Algorithm 5.

Proposition 41. Given a non-negative 1-dimensional concave function H : [0, 1] → R≥0
with a maximum value at q∗ and an error parameter 0 ≤ δ ≤ 1/4, Algorithm 5 outputs an
estimate q̃ such that H(q̃) ≥ (1− 4δ)H(q∗).

Proof. Assume first that q∗ ≤ 1/2, and let a = [1−(t2+1)δ]/(1−q∗). Since 1 ≥ (t2+1)δ ≥ q∗,
a ∈ [0, 1] and (t2 + 1)δ = aq∗ + (1− a) · 1, and thus, the concavity of H implies

H((t2 + 1)δ) ≥ a ·H(q∗) + (1− a) ·H(1) ≥ a ·H(q∗)

= 1− (t2 + 1)δ
1− q∗ ·H(q∗) ≥ 1− q∗ − 2δ

1− q∗ ·H(q∗) ≥ (1− 4δ) ·H(q∗) ,

where the second inequality follows from the non-negativity of H. Similarly, in the case of
q∗ ≥ 1/2, we observe that t1δ = aq∗ + (1− a) · 0 for a = t1δ/q

∗ ∈ [0, 1]. Thus, the concavity
of H yields in this case

H(t1δ) ≥ a ·H(q∗) + (1− a) ·H(0) ≥ t1δ

q∗
·H(q∗) ≥ q∗ − 2δ

q∗
·H(q∗) ≥ (1− 4δ) ·H(q∗) ,

where the second inequality holds again by the non-negativity of H.

To complete the analysis of Algorithm 5, we bound its query complexity in the next
observation.

Observation 42. Algorithm 5 makes at most O(log δ−1) value oracle queries.

Proof. The binary search that Algorithm 5 performs starts in a range of size 1/δ − 1 and
ends when t2− t1 = 1, and thus, it runs for O(log δ−1) iterations. In each of these iterations,
the evaluation of ∆Hδ involves two queries to H. The observation follows.
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7.2 Algorithm without One Dimensional Optimization Problems
We proceed by analyzing the performance of a variant of Algorithm 4 that uses Algorithm 5
to maximize one dimensional concave functions, and is given below as Algorithm 6. In the
analysis of this algorithm we assume p ≥ 5.

Algorithm 6: Deterministic (DR-SM) (p, α)
1 Let c← α

1+α .
2 for i = 1 to p do Let xi ← 1∅.
3 for each arriving element e do
4 for i = 1 to p do
5 Use Algorithm 5, with accuracy parameter p−1, to get an approximation q̃i of

arg maxq∈[0,1]

(
F (xi + q · 1e)− F (xi)

)
.

6 if there exists an integer 1 ≤ i ≤ p such that | supp(xi)| < k and
F (xi + q̃i · 1e) ≥ F (xi) + (1−4p−1)cτ

k
then

7 Update xi ← xi + q̃i · 1e (if there are multiple options for i, pick an arbitrary
one).

8 Find another feasible solution xo ≤
∨p
i=1 1supp(xi) by running OfflineAlg with⋃p

i=1 supp(xi) as the ground set.
9 return the solution maximizing F among xo and the p solutions x1, x2, . . . , xp.

Algorithm 6 differ from Algorithm 4 only by the implementation of Line 5, and the
threshold in Line 6. Notice that for every arriving element Algorithm 6 uses Algorithm 5
p times with δ = p−1. Together with Observations 30 and 42 this implies the following
observation.

Observation 43. Algorithm 6 stores at most O(pk) elements, and makes at most O(p log p)
value oracle queries while processing each arriving element.

The next step is to bound the approximation ratio of the algorithm. Similarly to what we
have done in Section 6, we consider two cases, where in the first case there exists 1 ≤ i ≤ p
such that the support of xi reaches a size of k, and in the second case there is no such i.
The following lemma bounds the approximation ratio in the first case, and it corresponds to
Lemma 31.

Lemma 44. If there is an integer 1 ≤ i ≤ p such that | supp(x̂i)| = k, then the output of
Algorithm 6 has value of at least

(
α

1+α − 2p−1
)
τ .

Proof. The algorithm outputs a solution that is at least as good as x̂i, and thus, it is enough
to prove that F (x̂i)/τ ≥ α/(1+α)−2p−1. As in the proof of Lemma 31, we use e1, e2, . . . , ek to
denote the elements of supp(x̂i) in the order of their arrival, and define x̂ji = x̂i∧1{e1,e2,...,ej},
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and q̃ji = (x̂i)j. This allows us to bound the value of F (x̂i) as follows.

F (x̂i) = F (1∅) +
k∑
j=1

(
F (x̂ji )− F (x̂j−1

i )
)

=F (1∅) +
k∑
j=1

(
F (x̂j−1

i + q̃ji · 1ej)− F (x̂j−1
i )

)

≥
k∑
j=1

(1− 4p−1)ατ
(1 + α)k ≥

(
α

1 + α
− 2p−1

)
τ ,

where the first inequality follows from the non-negativity of F since the elements in supp(x̂i)
passed the threshold in Line 6.

Next, recall that, in Section 6, Corollary 37 gave a bound on the approximation ratio of
Algorithm 4 in the case where none of the maintained solutions fills up during the stream.
One can verify that if we prove that the guarantees of Lemma 35 also hold for Algorithm 6,
then the guarantees of Lemma 36 and Corollary 37 hold for Algorithm 6 as well. We give
such a proof in the following lemma, using the notations from Section 6.

Lemma 45. The guarantees of Lemma 35 apply to Algorithm 6 as well.

Proof. The only part in the proof of Lemma 35 that relies on properties that Algorithms 4
and 6 do not share is the inequality maxq∈[0,1]

(
Ga(x̂i + q · 1e)−Ga(x̂i)

)
< cτ/k for every

e ∈ supp(o) and integer 1 ≤ i ≤ p. Thus, it is enough to show that this inequality holds also
when considering Algorithm 6. Since the algorithm uses Algorithm 5 to get an estimate q̃ of
the argument q ∈ [0, 1] that maximizes F (xi + q · 1e)− F (xi), the rejection of the elements
in supp(o) implies that for every e ∈ supp(o) and 1 ≤ i ≤ p,

max
q∈[0,1]

(
Ga(x̂i + q · 1e)−Ga(x̂i)

)
≤ max

q∈[0,1]

(
F (x̂i + q · 1e)− F (x̂i)

)
≤ F (x̂i + q̃ · 1e)− F (x̂i)

1− 4p−1 <
cτ

k
,

where the first inequality follows from the DR-submodularity of F and the inequality x̂i ≤
x̂i ∗ a, which holds for every fixed vector a ∈ [0, 1]V . The second inequality in the display
math follows from Proposition 41 and our assumption that p ≥ 5.

The discussion above Lemma 45 immediately implies the following corollary, which cor-
responds to Corollary 37.

Corollary 46. If | supp(x̂i)| < k for every integer 1 ≤ i ≤ p, then the output of Algorithm 6
has value of at least

(
α
α+1 − 2p−1

)
τ .

Notice that Lemma 44 and Corollary 46 guarantee the same lower bound on the output
of the algorithm, and we can summerize these results in the following proposition, which
corresponds to Proposition 38 from Section 6.

Proposition 47. The output of Algorithm 6 has an expected value of at least
(

α
α+1 − 2p−1

)
τ .

Using the guarantees of Observation 43 and Proposition 47 we can now prove the following
theorem.
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Theorem 48. Assume there exists an α-approximation offline algorithm OfflineAlg for
maximizing a non-negative DR-submodular function F subject to a support cardinality con-
straint whose space complexity is nearly linear in the size of the ground set. Then, for every
constant ε ∈ (0, 1], there exists a semi-streaming algorithm that assumes access to an esti-
mate τ of F (x∗) obeying (1−ε/2) ·F (x∗) ≤ τ ≤ F (x∗) and provides ( α

1+α−ε)-approximation
for the same problem. This algorithm stores O(kε−1) elements and uses O(ε−1 log ε−1) value
oracle queries while processing each arriving element.

Proof. Note that Propositions 38 and 47 guarantee the same approximation ratio as a func-
tion of p. Therefore, the proof of Theorem 39 can be modified to prove the current theorem
by simply using Proposition 47 instead of Proposition 38.
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A Details about the Error in a Previous Work
As mentioned above, Chekuri et al. [17] described a semi-streaming algorithm for the prob-
lem of maximizing a non-negative (not necessarily monotone) submodular function subject
to a cardinality constraint, and claimed an approximation ratio of roguhly 0.212 for this
algorithm. However, an error was later found in the proof of this result [15] (the error does
not affect the other results of [17]). For completeness, we briefly describe in this appendix
the error found.

In the proof presented by Chekuri et al. [17], the output set of their algorithm is denoted
by S̃. As is standard in the analysis of algorithms based on single-threshold Greedy, the
analysis distinguishes between two cases: one case in which S̃ = k, and a second case in
which S̃ < k. To argue about the second case, the analysis then implicitly uses the inequality

E
[
f(S̃ ∪OPT) | |S| < k

]
≥ (1−max

e∈V
Pr[e ∈ S̃]) · f(OPT) . (2)

It is claimed by [17] that this inequality follows from Lemma 4 (originally due to [10]).
However, this lemma can yield only the inequalities

E
[
f(S̃ ∪OPT)

]
≥ (1−max

e∈V
Pr[e ∈ S̃]) · f(OPT)

and
E
[
f(S̃ ∪OPT) | |S| < k

]
≥ (1−max

e∈V
Pr[e ∈ S̃ | |S| < k]) · f(OPT) ,

which are similar to (2), but do not imply it.

B Inapproximability
In this appendix, we prove an inapproximability result for the problem of maximizing a non-
negative submodular function subject to cardinality constraint in the data stream model.
This result is given by the next theorem. The proof of the theorem is an adaptation of a
proof given by Buchbinder et al. [11] for a similar result applying to an online variant of the
same problem.

Theorem 49. For every constant ε > 0, no data stream algorithm for maximizing a non-
negative submodular function subject to cardinality constraint is (1/2+ε)-competitive, unless
it uses Ω(|V |) memory.

Proof. Let k ≥ 1 and h ≥ 1 be two integers to be chosen later, and consider the non-negative
submodular function f : 2V → R+, where V = {ui}k−1

i=1 ∪ {vi}
h
i=1 ∪ {w}, defined as follows.

f(S) =

|S| if w /∈ S ,

k +
∣∣∣S ∩ {ui}k−1

i=1

∣∣∣ if w ∈ S .

It is clear that f is non-negative. One can also verify that the marginal value of each element
in V is non-increasing, and hence, f is submodular.
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Let ALG be an arbitrary data stream algorithm for the problem of maximizing a non-
negative submodular function subject to a cardinality constraint, and let us consider what
happens when we give this algorithm the above function f as input, the last element of V
to arrive is the element w and we ask the algorithm to pick a set of size at most k. One
can observe that, before the arrival of w, ALG has no way to distinguish between the other
elements of V . Thus, if we denote by M the set of elements stored by ALG immediately
before the arrival of w and assume that the elements of V \ {w} arrive at a random order,
then every element of V \ {w} belongs to M with the same probability of E[|M |]/|V \ {w}|.
Hence, there must exist some arrival order for the elements of V \ {w} guaranteeing that

E
[
|M ∩ {ui}k−1

i=1 |
]

=
k−1∑
i=1

Pr[ui ∈M ] ≤ k · E[|M |]
|V \ {w}|

.

Note now that the above implies that the expected value of the output set produced by
ALG given the above arrival order is at most

k + k · E[|M |]
|V \ {w}|

.

In contrast, the optimal solution is the set {ui}k−1
i=1 ∪ {w}, whose value is 2k − 1. Therefore,

the competitive ratio of ALG is at most

k + k · E[|M |]/|V \ {w}|
2k − 1 = 1 + E[|M |]/|V \ {w}|

2− 1/k ≤ 1
2 + 1

k
+ E[|M |]
|V \ {w}|

.

To prove the theorem we need to show that, when the memory used by ALG is o(|V |), we
can choose large enough values for k and h that will guarantee that the rightmost side of
the last inequality is at most 1/2 + ε. We do so by showing that the two terms 1/k and
E[|M |]/|V \ {w}| can both be upper bounded by ε/2 when the integers k and h are large
enough, respectively. For the term 1/k this is clearly the case when k is larger than 2/ε. For
the term E[|M |]/|V \ {w}| this is true because increasing h can make V as large as want,
and thus, can make the ratio E[|M |]/|V \ {w}| as small as necessary due to our assumption
that the memory used by ALG (which includes M) is o(|V |).
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 תקציר 

 

 

תחת אילוץ ספירה    לא מונוטוניותמודולריות  -אנו חוקרים את בעיית המקסימיזציה של פונקציות תת

𝑂  -כרון של כיבמודל ההזרמה. תרומתנו העיקרית היא אלגוריתם הזרמה )למחצה( שמשתמש בז (
𝑘

𝜀2
) ,

פעיל  בסוף הזרמת הנתונים, האלגוריתם שלנו מ  הוא האילוץ על גודל הקבוצה המקסימלי.  𝑘כאשר  

לא פתרון    לבחירת המשתמשמקוון  -אלגוריתם  ופולט  הנתונים ששמר,  קירוב של    המבטיחעל  יחס 
𝛼

1+𝛼
− 𝜀 פתרון אופטימלי, כאשר ל ביחס𝛼 מקוון.-הוא יחס הקירוב של האלגוריתם הלא 

 

באלגוריתם   נשתמש  הנתונים  מקוון  -לאאם  בעיבוד  הקלט(  בגודל  מעריכי  ריצה  זמן  )ובעל  מדויק 

נקבל   של  יחס  השמורים,  קירוב 
1

2
− 𝜀  ,  ההזרמה.  כמעטשהוא במודל  זאת,    אופטימלי  אם  לעומת 

𝛼)[, שמשיג את יחס הקירוב הטוב ביותר שידוע כיום  7נשתמש באלגוריתם של ] = , נקבל (0.385

תוצאה ה  פני-על שיפור  מה שמהווה    ;0.2779שרץ בזמן פולינומי ובעל יחס קירוב של    הזרמה  אלגוריתם

 [.24] דיי-שהושגה על 0.1715הקודמת הטובה ביותר של קירוב  

 

ראוי לציין שהאלגוריתם שלנו הוא קומבינטורי ודטרמיניסטי, תכונות שנדיר למצוא באלגוריתמים עבור  

תת פונקציות  של  לא-מקסימיזציה  של -מודולריות  מהיר  עדכון  מזמן  נהנה  אף  והוא  מונוטוניות, 

𝑂 (
log𝑘+log(

1

𝛼
)

𝜀2
בנוסף, אנו מראים כיצד ניתן לשנות ולהתאים את האלגוריתם העיקרי    קלט.  איברלכל    (

פונקציות תת בצורה טבעית למקסימיזציה של  בעלות התכונה של תמורה    רציפותמודולריות  -שלנו 

 . התמיכה של הפתרוןתחת אילוץ ספירה על גודל  שולית פוחתת
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