

The Open University of Israel

Department of Mathematics and Computer Science

Maximizing Sums of Non-monotone Submodular and Linear

Functions: Understanding the Unconstrained Case

By

Kobi Bodek

Thesis submitted as partial fulfillment of the requirements

towards an M.Sc. degree in Computer Science

The Open University of Israel

Department of Mathematics and Computer Science

Prepared under the supervision of

Professor Moran Feldman and Professor Zeev Nutov

December 2022

A

Contents

1. Introduction 1

a. Thesis Structure 4

2. Preliminaries 4

a. Set Functions and Notation 4

b. Multilinear Extension 5

c. Value Oracle 5

3. Inapproximability for Monotone Functions 5

4. Algorithm for the General Case 7

5. Inapproximability for Negative Linear Functions 14

6. Results for Positive Linear Functions 17

a. Impossibility of the Naturally Expected Approximation Guarantee 17

b. Reanalysis of Deterministic Double Greedy 20

c. Reanalysis of Randomized Double Greedy 21

7. Appendix 23

a. Extended Result for Non-Positive Linear Functions 23

b. Proof of Theorem 3.1 26

List of Figures

1. Graphical presentation of the existing results for RegularizedUSM with a non-positive

linear function 3

List of Algorithms

1. Non-oblivious Local Search 10

2. Deterministic Double Greedy 20

3. Randomized Double Greedy 22

4. Distorted Measured Continuous Greedy 24

Abstract

Motivated by practical applications, recent works have considered maximization of sums of
a submodular function g and a linear function ℓ. Almost all such works, to date, studied only
the special case of this problem in which g is also guaranteed to be monotone. Therefore, in this
thesis we systematically study the simplest version of this problem in which g is allowed to be
non-monotone, namely the unconstrained variant, which we term Regularized Unconstrained

Submodular Maximization (RegularizedUSM).
Our main algorithmic result is the first non-trivial guarantee for general RegularizedUSM. For

the special case of RegularizedUSM in which the linear function ℓ is non-positive, we prove two
inapproximability results, showing that the algorithmic result implied for this case by previous
works is not far from optimal. Finally, we reanalyze the known Double Greedy algorithm to
obtain improved guarantees for the special case of RegularizedUSM in which the linear function
ℓ is non-negative; and we complement these guarantees by showing that it is not possible to
obtain (1/2, 1)-approximation for this case (despite intuitive arguments suggesting that this
approximation guarantee is natural).

B

1 Introduction

The field of submodular optimization has been rapidly developing over the last two decades, par-
tially due to new applications. Some of these applications have also motivated the optimization of
composite objective functions that can be represented as the sum of a submodular function g and
a linear function ℓ. Let us briefly discuss two such applications

The first application is optimization with a regularizer. To avoid overfitting in machine-learning,
it is customary to optimize a function of the form g−ℓ, where g is the quantity that we would like to
maximize and ℓ is a (often linear) function that favors small solutions. This function ℓ is known as
“regularizer” in the machine learning jargon, or “soft constraint” in the operations research jargon.

The other application we discuss is optimization with a curvature. Traditionally, the theoretical
study of submodular optimization problems looks for approximation guarantees that apply to all
submodular functions, or at least all monotone submodular functions. However, approximation
guarantees of this kind are often pessimistic, and do not capture the practical performance of the
algorithms analyzed. This has motivated studying how the optimal approximation ratios of various
submodular maximization problems depend on various numerical function properties. Historically,
the first property of this kind to be defined was the curvature property, which was suggested by
Conforti and Cornuéjol [5] already in 1984. The curvature measures the distance of the submodular
function from being linear, and a strong connection was demonstrated by Sviridenko et al. [18]
between optimizing a submodular function with a given curvature and optimizing the sum g+ ℓ of
a monotone submodular function g and a linear function ℓ.

Motivated by the above applications, Sviridenko et al. [18] also initialized the study of the
optimization of g + ℓ sums. In particular, they described algorithms with optimal approximation
guarantees for this problem when g is a non-negative monotone submodular function, ℓ is a linear
function and the optimization is subject to either a matroid or a cardinality constraint.1 Later
works obtained faster and semi-streaming algorithms for the same setting [8, 11, 12, 15]. However,
in contrast to all these (often tight) results for monotone submodular functions g, much less is
known about the case of non-monotone submodular functions. In fact, we are only aware of a
single previous work that considered g + ℓ sums involving such functions [13].2

Given the rarity of results so far for optimizing g+ℓ with a function g that is non-monotone, this
thesis is devoted to a systematic study of the simplest problem of this kind, namely, unconstrained
maximization of such sums. Formally, we study the Regularized Unconstrained Submodular

Maximization (RegularizedUSM) problem. In this problem, we are given a non-negative submod-
ular function g : 2N → R≥0 and a linear function ℓ : 2N → R over the same ground set N , and
the objective is to output a set T ⊆ N maximizing the sum g(T) + ℓ(T). Unfortunately, it is not
possible to prove standard multiplicative approximation ratios for RegularizedUSM (implied, e.g.,
by Theorem 1.3). Therefore, we follow previous works, and look in this work for algorithms that
output a (possibly randomized) set T ⊆ N such that E[g(T) + ℓ(T)] ≥ maxS⊆N [α · g(S) + β · ℓ(S)]
for some coefficients α, β ≥ 0. For convenience, we say that an algorithm having this guarantee is
an (α, β)-approximation algorithm.3

It is instructive to begin the study of RegularizedUSM with the special case in which the objec-

1Technically, Sviridenko et al. [18] proved optimal approximation guarantees only for the case in which the coeffi-
cient β of ℓ is 1 (see details below). However, their results were extended to the general case of β ≥ 0 by Feldman [8].

2Very recently, another work of this kind appeared as a pre-print [17]. However, the main result of [17] is identical
to the result of [13]. In particular, it is important to note that the result of [17] applies only to non-positive ℓ
functions, like the result of [13], although this is not explicitly stated in [17].

3Some previous works compare their algorithms against α · g(OPT) + β · ℓ(OPT), where OPT is a feasible set
maximizing g(OPT) + ℓ(OPT), instead of comparing against maxS⊆N [α · g(S) + β · ℓ(S)] like we do in this thesis.
This distinction is usually of little consequence.

1

tive function g is guaranteed to be monotone (in addition to being non-negative and submodular).
We refer below to this special case as “monotone RegularizedUSM”. The work of Feldman [8] on
constrained maximization of g + ℓ immediately implies (1 − e−β, β)-approximation for monotone
RegularizedUSM for every β ∈ [0, 1]. Our first result provides a matching inapproximability result.

Theorem 1.1. For every β ≥ 0 and ε > 0, no polynomial time algorithm can guarantee (1− e−β +
ε, β)-approximation for monotone RegularizedUSM even when the linear function ℓ is guaranteed
to be non-positive.

We would like to draw attention to two properties of Theorem 1.1. First, for β = 1 the
coefficient of g in the inapproximability proved by the theorem is 1 − 1/e, matching the optimal
approximation ratio for the problem of maximizing a monotone submodular function subject to a
matroid constraint. Therefore, in a sense, adding the linear part ℓ makes the unconstrained problem
as hard as this constrained problem. Interestingly, we get a similar result for RegularizedUSM

below.
The other noteworthy property of Theorem 1.1 is that it applies to any β ≥ 0, while the

algorithmic result of Feldman [8] applies only to β ∈ [0, 1]. This difference between the results
exists because, when ℓ can take positive values, setting the coefficient β to be larger than 1 might
require the algorithm to output a set T ⊆ N obeying ℓ(T) > maxS⊆N ℓ(S). However, it turns
out that, when ℓ is non-positive, the algorithmic result can be extended to match Theorem 1.1 for
every β ≥ 0. To understand how this can be done, we need to discuss the previous work in a bit
more detail.

Sviridenko et al. [18] designed two algorithms for maximizing g+ℓ sums, one of which was based
on the continuous greedy algorithm of Călinescu et al. [4]. It is possible to modify this algorithm to
be based instead on a related algorithm called “measured continuous greedy” due to [9]. In general,
this does not lead to any result for maximizing g+ℓ sums. However, Lu et al. [13] recently observed
that one can obtain in this way results when ℓ is non-positive. In particular, it leads to (1−e−β, β)-
approximation for the special case of monotone RegularizedUSM in which ℓ is non-positive for any
constant β ≥ 0, which settles the approximability of monotone RegularizedUSM.

We now get to the study of (not necessarily monotone) RegularizedUSM. The only result that
is known to date for this problem is (1/e, 1)-approximation for the special case in which ℓ is
non-positive, which was proved by Lu et al. [13] using the technique discussed above. Our main al-
gorithmic contribution is the first algorithm with a non-trivial approximation guarantee for general
RegularizedUSM.

Theorem 1.2. For every constant β ∈ (0, 1], let us define α(β) = β(1−β)/(1+β). Then, for every
constant ε ∈ (0, α(β)), there exists a polynomial time (α(β)− ε, β− ε)-approximation algorithm for
RegularizedUSM.

We also study in more detail the special cases of RegularizedUSM in which ℓ is either non-
negative or non-positive. The above mentioned result of Lu et al. [13] for RegularizedUSM with a
non-positive ℓ can be extended (using the ideas of Feldman [8]) to get (βe−β, β)-approximation for
the same special case for any β ∈ [0, 1]4 (see Appendix A for more details). It is not immediately
clear, however, how good this extended result is. For example, one can compare it with the
inapproximability result of Theorem 1.1 (which applies to the current setting as well), but there is
a large gap between the above algorithmic and inapproximability results when the β coefficient of ℓ
is relatively large (see Figure 1). This gap exists because Theorem 1.1 holds even in the special case

4Technically, this result can be extended to any constant β ≥ 0, but this is not interesting since βe−β is a decreasing
function for β ≥ 1.

2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

coefficient of ℓ

co
effi

ci
en
t
of

g

Algorithmic Guarantee

Inapproximability (Theorem 1.1)

Inapproximability (Theorem 1.3)

Figure 1: Graphical presentation of the existing results for RegularizedUSM with a non-positive
linear function ℓ. The x and y axes represent the coefficients of ℓ and g, respectively. The algorith-
mic guarantee drawn is the (βe−β, β)-approximation obtainable by generalizing Lu et al. [13]. The
shaded area represents the gap that still exists between the best known approximation guarantee
and inapproximability results.

in which g is monotone. Therefore, we prove the following theorem, which provides an alternative
inapproximability result designed for the non-monotone case. Since it is difficult to understand
the behavior of the expression stated in Theorem 1.3, we numerically draw it in Figure 1, which
demonstrates that Theorem 1.3 closes much of the gap left with regard to RegularizedUSM with
non-positive linear function ℓ.

Theorem 1.3. Given a value β ≥ 0, let us define

α(β) = min
t≥1

r∈(0,1/2]

{
t+ 1 +

√
(t+ 1)2 − 8tr

4t
− r

t+ 1
·

[
1− β − 2 ln

(
t+ 1−

√
(t+ 1)2 − 8tr

2

)]}
.

Then, for every ε > 0, no polynomial time algorithm can guarantee (α(β)+ ε, β)-approximation for
RegularizedUSM even when the linear function ℓ is guaranteed to be non-positive.

It is interesting to note that, for β = 1, Theorem 1.3 matches the state-of-the-art inapproxima-
bility result of Oveis Gharan and Vondrák [16] for maximizing a non-negative submodular function
subject to matroid constraint. Therefore, at least at the level of the known inapproximability re-
sults, RegularizedUSM with a non-positive ℓ is as hard as maximizing a non-negative submodular
function subject to a matroid constraint.

It remains to consider the special case of RegularizedUSM with a non-negative ℓ. Here g + ℓ
is a non-negative submodular function on its own right, and therefore, RegularizedUSM becomes
a special case of the well-studied problem of Unconstrained Submodular Maximization (USM). The
optimal approximation ratio for USM is 1/2 due to an inapproximability result of Feige et al. [7],
and the first algorithm to obtain this approximation ratio was the “Double Greedy” algorithm of
Buchbinder et al. [3]. Specifically, Buchbinder et al. [3] described two variants of their algorithm,

3

a deterministic variant guaranteeing 1/3-approximation, and a randomized variant guaranteeing
1/2-approximation. We refer below to these two variants as DeterministicDG and RandomizedDG,
respectively. Interestingly, we are able to show in the next two theorems that the performance
of DeterministicDG and RandomizedDG for RegularizedUSM is even better than what one would
expected based on the guarantees of these algorithms for general USM.

Theorem 1.4. When ℓ is non-negative, DeterministicDG is an (α, 1−α)-approximation algorithm
for RegularizedUSM for all α ∈ [0, 1/3] at the same time (the algorithm is oblivious to the value of
α).

Theorem 1.5. When ℓ is non-negative, RandomizedDG is an (α, 1−α/2)-approximation algorithm
for RegularizedUSM for all α ∈ [0, 1/2] at the same time (the algorithm is oblivious to the value of
α).

We conclude this section with an interesting observation. Up to this point, the most well studied
g + ℓ maximization problem was maximizing the sum of a non-negative monotone submodular
function g and a linear function ℓ subject to a matroid constraint. When ℓ is positive, the optimal
approximation guarantee for this problem is (1− 1/e, 1) [18], which is natural since 1− 1/e is the
optimal approximation ratio for maximizing such a function g subject to a matroid constraint [14].
Thus, one might expect to get (1/2, 1)-approximation for RegularizedUSM with a non-negative ℓ.
However, both Theorems 1.4 and 1.5 fail to prove such a guarantee, and we are able to show that
this is not a coincidence.

Theorem 1.6. Even when the linear function ℓ is guaranteed to be non-negative, no polynomial
time algorithm can guarantee (1/2, 1)-approximation for RegularizedUSM.

Thesis Structure. In Section 2 we give a few formal definitions and explain the notation used
throughout the thesis. Then, we prove our inapproximability result for monotone RegularizedUSM
(Theorem 1.1) in Section 3. Our results for general RegularizedUSM, RegularizedUSM with non-
positive ℓ and RegularizedUSM with non-negative ℓ can be found in Sections 4, 5 and 6, respec-
tively.

2 Preliminaries

Set Functions and Notation. Given a set function f : 2N → R, an element u ∈ N and a set
S ⊆ N , the marginal contribution of u to S with respect to f is f(u | S) ≜ f(S ∪ {u}) − f(S).
A set function f : 2N → R is called submodular if it satisfies the intuitive property of diminishing
returns. More formally, f is submodular if f(u | S) ≥ f(u | T) for every two sets S ⊆ T ⊆ N
and element u ∈ N \ T . An equivalent definition of submodularity is that f is submodular if
f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T) for every two sets S, T ⊆ N .

The set function f is called monotone if f(S) ≤ f(T) for every two sets S ⊆ T ⊆ N , and it is
called linear if there exist values {au ∈ R | u ∈ N} such that f(S) =

∑
u∈S au for every set S ⊆ N .5

One can verify that any linear set function is submodular, but the reverse does not necessarily hold.
Additionally, given a set S, a set function f and an element u, we often use S + u, S − u and f(u)
as shorthands for S ∪ {u}, S \ {u} and f({u}), respectively.

5Linear set functions are also known as modular functions.

4

Multilinear extension. It is often useful to consider continuous extensions of set functions, and
there are multiple ways in which this can be done. The proofs of our inapproximability results
employ one such extension known as the multilinear extension (due to [4]). Formally, given a set
function f : 2N → R, its multilinear extension is the function F : [0, 1]N → R defined, for every
vector x ∈ [0, 1]N , by F (x) = E[f(R(x))], where R(x) is a random subset of N including every
element u ∈ N with probability xu, independently.

One can verify that, as is suggested by its name, the multilinear extension F is a multilinear
function of the coordinates of its input vector. Furthermore, F is an extension of the set function f
in the sense that for every set S ⊆ N we have F (1S) = f(S), where 1S is the characteristic vector
of the set S (i.e., a vector that has the value 1 in coordinates corresponding to elements of S, and
the value 0 in the other coordinates).

Lovász extension. Given a vector x ∈ [0, 1]N and a scalar λ ∈ [0, 1], let Tλ(x) = {u ∈ N|xu ≥ λ}
be the set of elements in N whose coordinate in x is at least λ. Then,

f̂(x) =

∫ 1

λ=0
f(Tλ(x))dλ.

Lovász extension can also be interpreted in probabilistic terms as the expected value of f over the
set Tλ(x), where λ is selected uniformly at random from the range [0, 1].

Value Oracle. As is standard in the submodular optimization literature, we assume in this
thesis that algorithms access their set function inputs only through value oracles. A value oracle
for a set function f is a black box that given a set S ⊆ N returns f(S). One advantage of this
convention is that it makes it possible to use information theoretic arguments to prove unconditional
inapproximability results (i.e., inapproximability results that are not based on any complexity
assumption). Nevertheless, if necessary, these inapproximability results can usually be adapted to
apply also to succinctly represented functions (instead of functions accessed via value oracles) at
the cost of introducing some complexity assumption [6].

3 Inapproximability for Monotone Functions

In this section we show an inapproximability for monotone RegularizedUSM (Theorem 1.1). All
our inapproximability results in this thesis are proved using Theorem 3.1. Since the proof of this
theorem is a relatively straightforward adaptation of the symmetry gap framework of Vondrák [19],
we defer it to Appendix B.

Theorem 3.1. Consider an instance (g, ℓ) of RegularizedUSM consisting of a non-negative sub-
modular function g : 2N → R≥0 and a linear function ℓ : 2N → R≥0, and assume that there exists a
group G of permutations over N such that the equalities g(S) = g(σ(S)) and ℓ(S) = ℓ(σ(S)) hold
for all sets S ⊆ N and permutations σ ∈ G. Let G and L be the multilinear extensions of g and
ℓ respectively, and for every vector x ∈ [0, 1]N , let us denote x̄ = Eσ∈G [x], i.e., x̄ is the expected
vector σ(x) when σ is picked uniformly at random out of G. For any two constants α, β ≥ 0, if
maxS⊆N [α · g(S) + β · ℓ(S)] is strictly positive and

max
x∈[0,1]N

[G(x̄) + L(x̄)] ≤ max
S⊆N

[α · g(S) + β · ℓ(S)] ,

then no polynomial time algorithm for RegularizedUSM can guarantee ((1 + ε)α, (1 + ε)β)-appro-
ximation for any positive constant ε. Furthermore, this inapproximability guarantee holds also

5

when we restrict attention to instances (g′, ℓ′) of RegularizedUSM having the following additional
properties.

• If ℓ is non-negative or non-positive, then we can assume that ℓ′ also has the same property.

• If g is monotone, then we can assume that g′ is monotone as well.

In the common case in which the linear function ℓ is a non-positive, the following observation
allows us to produce slightly cleaner results using Theorem 3.1.

Observation 3.2. If ℓ is non-positive and α > 0, then one can replace the term “((1+ε)α, (1+ε)β)-
approximation” in Theorem 3.1 with the term “(α+ ε, β)-approximation”.

Proof. Recall that Theorem 3.1 proves, under some conditions, that no polynomial time algorithm
for RegularizedUSM has ((1 + ε)α, (1 + ε)β)-approximation. Furthermore, if we reduce the value
of the constant parameter ε of the theorem by a factor of α, then the theorem also shows that
no such algorithm can guarantee (α + ε, β + εβ/α)-approximation. This implies the observation
since, when ℓ is non-positive, any (α + ε, β)-approximation algorithm for RegularizedUSM is also
an (α+ ε, β + εβ/α)-approximation algorithm.

To prove Theorem 1.1 using Theorem 3.1, we need to define an instance I of monotone
RegularizedUSM. Specifically, consider a ground set N of size n ≥ 2 and a value r ∈ (0, 1], and let
us define

g(S) = min{|S|, 1} and ℓ(S) = −r · |S| ∀ S ⊆ N .

Lemma 3.3. For any constants ε > 0, β ≥ 0 and α = 1− e−β + ε, when n is large enough, there
exists a value r ∈ (0, 1] such that the inequality of Theorem 3.1 applies to I and maxS⊆N [α ·g(S)+
β · ℓ(S)] is strictly positive.

Proof. Observe that maxS⊆N [α ·g(S)+β ·ℓ(S)] ≥ α−βr = 1−e−β+ε−βr because S can be chosen
as a singleton subset of N . Let us now study the left hand side of the inequality of Theorem 3.1.
Since both g and ℓ are unaffected when an arbitrary permutation is applied to the ground set, we
can choose G as the group of all permutations over N . Thus, for every vector x ∈ [0, 1]N ,

x̄ =
∥x∥1
n
· 1N .

Therefore,

max
x∈[0,1]N

[G(x̄) + L(x̄)] = max
x∈[0,1]

[G(x · 1N) + L(x · 1N)]

= max
x∈[0,1]

[1− (1− x)n − xrn] = 1− r − r(n− 1)[1− r1/(n−1)] ,

where the last equality holds since the maximum is obtained for x = 1 − n−1
√
r. Note now that if

we denote y = (n− 1)−1, then by L’Hôpital’s rule,

lim
n→∞

(n− 1)[1− r1/(n−1)] = lim
y→0

1− ry

y
= lim

y→0

−ry ln r
1

= − ln r ,

and therefore, for a large enough n, (n− 1)[1− r1/(n−1)] ≥ − ln r − ε; which implies

max
x∈[0,1]N

[G(x̄) + L(x̄)] ≤ 1− r − r[− ln r − ε] ≤ 1− r(1− ln r) + ε.

6

Given the above bounds, we get that the inequality of Theorem 3.1 holds for any r > 0 obeying

1− e−β + ε− βr ≥ 1− r(1− ln r) + ε .

Since the last inequality is equivalent to

r − r ln r ≥ e−β + βr ,

it holds for r = e−β ⊆ (0, 1]. Furthermore, for this choice of r,

max
S⊆N

[α · g(S) + β · ℓ(S)] ≥ 1− e−β + ε− βr = 1− (1 + β)e−β + ε ≥ 1− 1 + β

1 + β
+ ε = ε > 0 .

Theorem 1.1, which we repeat here for convenience, now follows by combining Theorem 3.1,
Observation 3.2 and Lemma 3.3 since g is a non-negative monotone submodular function and ℓ is
a non-positive linear function.

Theorem 1.1. For every β ≥ 0 and ε > 0, no polynomial time algorithm can guarantee (1− e−β +
ε, β)-approximation for monotone RegularizedUSM even when the linear function ℓ is guaranteed
to be non-positive.

4 Algorithm for the General Case

In this section we describe and analyze the only non-trivial algorithm known to date (as far as we
know) for general RegularizedUSM. Using this algorithm we prove Theorem 1.2, which we repeat
here for convenience.

Theorem 1.2. For every constant β ∈ (0, 1], let us define α(β) = β(1−β)/(1+β). Then, for every
constant ε ∈ (0, α(β)), there exists a polynomial time (α(β)− ε, β− ε)-approximation algorithm for
RegularizedUSM.

Our algorithm is based on a non-oblivious local search, i.e., a local search guided by an aux-
iliary function rather than the objective function. Non-oblivious local searches have been used
previously in the context of submodular maximization by, for example, Feige et al. [7] and Filmus
and Ward [10]. The auxiliary function used by our algorithm is a function h : 2N → R≥0 defined
as follows. For every set S ⊆ N ,

h(S) = E[g(S(β))] + β(1 + β) · ℓ(S) ,

where S(β) is a random subset of S that includes every element of S with probability β, indepen-
dently.

Ideally, we would like to find a local maximum with respect to h, i.e., a set T ⊆ N such that
the value of h(T) cannot be increased either by adding a single element to T , or by removing a
single element from T . However, there are two issues that make the task of finding such a local
maximum difficult.

• We do not know how to exactly evaluate the expectation in the definition of h in polynomial
time. Therefore, whenever we need to calculate expressions involving h, we have to approx-
imate them using sampling, which introduces estimation errors that have to be taken into
account.

7

• A straightforward local search algorithm changes its current solution whenever adding or
removing a single element improves this solution. However, the time complexity of such a
näıve algorithm can be exponential. Therefore, our algorithm adds or removes an element
only when this is beneficial enough, which means that the algorithm finds an approximate
local maximum rather than a true one. Employing this idea is not trivial given the errors
introduced by the sampling, as mentioned above. However, we manage to prove that, for
the value ∆ defined by our algorithm, with high probability: (i) the algorithm only makes
changes that increase the value of h(T) by ∆/2 or more, and (ii) the algorithm continues to
make changes as long as there exists some possible change that increases the value of h(T)
by at least 3∆/2.

The quality of the approximate local maximum produced by our algorithm is controlled by
the parameter ε of Theorem 1.2. Setting a lower value for ε decreases ∆, which increases the
time complexity of our algorithm, but also makes the approximate local maximum produced
closer to being a true local maximum, and thus, improves the approximation guarantee.

Let Ŝ be a subset of N maximizing (α(β)− ε) ·g(Ŝ)+(β−ε) · ℓ(Ŝ). To implement the solutions
described in the last two bullets, it is useful to assume that the ground set N does not include
elements that have some problematic properties. The following reduction shows that we can assume
that this is indeed the case without loss of generality.

Reduction 1. While proving Theorem 1.2, we may assume that every element u ∈ N obeys

α(β) · g(u) + β · ℓ(u) ≥ 0 and max{g(u) + ℓ(u), g(∅)} ≤ β · [g(Ŝ) + ℓ(Ŝ)] .

Proof. Let us begin by proving the second part of the reduction. If there exists an element u for
which

max{g(u) + ℓ(u), g(∅) + ℓ(∅)} = max{g(u) + ℓ(u), g(∅)} > β · [g(Ŝ) + ℓ(Ŝ)] ,

then one can obtain an algorithm with the guarantee stated in Theorem 1.2 by simply returning
the set T ∈ {∅} ∪ {{u} | u ∈ N} maximizing g(T) + ℓ(T) because

g(T) + ℓ(T) ≥ max{g(u) + ℓ(u), g(∅) + ℓ(∅)} > β · [g(Ŝ) + ℓ(Ŝ)]

=
β

β − ε
· [(β − ε) · g(Ŝ) + (β − ε) · ℓ(Ŝ)] ≥ β

β − ε
· [(α(β)− ε) · g(Ŝ) + (β − ε) · ℓ(Ŝ)]

=
β

β − ε
·max
S⊆N

[(α(β)− ε) · g(S) + (β − ε) · ℓ(S)] ≥ max
S⊆N

[(α(β)− ε) · g(S) + (β − ε) · ℓ(S)] .

The penultimate inequality holds since g is non-negative, the last equality follows from the definition
of Ŝ, and the last inequality holds since the maximum on both sides of this inequality is non-negative
(this can be seen by choosing S = ∅). It is also worth mentioning the above algorithm, namely,
outputting the set T ∈ {∅} ∪ {{u} | u ∈ N} maximizing g(T) + ℓ(T) can be implemented to run
in linear time since it only has to consider |N |+ 1 candidate sets.

It remains to prove the first part of the reduction. Assume that there exists an algorithm ALG
that has the guarantee stated in Theorem 1.2 for instances obeying the first part of the reduction,
and let us explain how to get an algorithm that has the same guarantee for general instances of
RegularizedUSM. Towards this goal, let us define

N ′ = {u ∈ N | α(β) · g(u) + β · ℓ(u) ≥ 0} .

8

In other words, N ′ is the subset of N that includes all the elements obeying the first part of the
reduction. We claim that Ŝ ⊆ N ′. If this is not true, then, by the submodularity and non-negativity
of g, for any element u ∈ Ŝ \ N ′ we have

(α(β)− ε) · [g(Ŝ)− g(Ŝ − u)] + (β − ε) · [ℓ(Ŝ)− ℓ(Ŝ − u)] ≤ (α(β)− ε) · g(u | ∅) + (β − ε) · ℓ(u)

≤ (α(β)− ε) · g(u) + (β − ε) · ℓ(u) ≤ β − ε

β
· [α(β) · g(u) + β · ℓ(u)] < 0 ,

which contradicts the definition of Ŝ (the penultimate inequality holds since α(β) ≤ β and g is
non-negative).

Observe now that by the definition of N ′, we can execute ALG on N ′, which produces a set T
obeying

E[g(T) + ℓ(T)] ≥ max
S⊆N ′

[(α(β)− ε) · g(S) + (β − ε) · ℓ(S)] = max
S⊆N

[(α(β)− ε) · g(S) + (β − ε) · ℓ(S)] ,

where the equality holds since the maximum in the rightmost side is obtained for S = Ŝ, and Ŝ is
a subset of N ′ as we have proved above. Since one can construct N ′ in linear time, executing ALG
on N ′ is the promised algorithm that achieves the guarantee of Theorem 1.2 without assuming the
first part of the reduction.

From this point until the end of the section, we denote by n the size of the ground set N . We
are now ready to describe our algorithm (given as Algorithm 1). This algorithm implicitly assumes
that Reduction 1 was applied, that n is large enough and that max{g(∅),maxu∈N g(u)} > 0.6 The
algorithm maintains a solution T , which it updates in iterations. In each iteration, the algorithm
calculates for every element u an estimate ωu of the contribution of u to the g component of the
auxiliary function h. Then, Line 5 of the algorithm looks for an element u ∈ N \ T which, based
on the estimate ωu, will increase h(T) by ∆ if added to T . If such an element u is found, the
algorithm adds it to T and continues to the next iteration. Otherwise, Line 6 looks for an element
u ∈ T which will increase h(T) by ∆ if removed from T (again, based on the estimate ωu). If such
an element u is found, then the algorithm removes it from T and continues to the next iteration.
However, if both Lines 5 and 6 fail to find an appropriate element, the algorithm assumes that it
has encountered an approximate local maximum, and terminates. Somewhat surprisingly, when
this happens the algorithm outputs a sample T̂ of T (β) rather than the solution T itself (unless
the value of this sample is negative, in which case the algorithm falls back to the solution ∅). We
show below that if T is an approximate local maximum of the auxiliary function h, then T (β) is in
expectation a good solution with respect to the objective function.

It is clear that Algorithm 1 runs in polynomial time, and therefore, we concentrate in the rest
of this section on proving its approximation guarantee. Algorithm 1 makes multiple estimation
during its execution. We say that an estimate ωu is good if |ωu − E[g(u | T (β) − u)]| ≤ ∆/2 (for
the set T at the time in which the estimate was made), otherwise the estimate is bad.

Lemma 4.1. With high probability (a probability approaching 1 when n tends to infinity), all the
estimates made by Algorithm 1 are good.

6Let us explain why the problem becomes easy if either of the last two assumptions is violated. If n is bounded
by a constant, it is possible to use exhaustive search to find the set T ⊆ N maximizing g(T) + h(T), and one can
verify that such a set has the properties guaranteed by Theorem 1.2. Additionally, if max{g(∅),maxu∈N g(u)} = 0,
then the submodularity of g guarantees that g is the zero function, which means that we can get the guarantee of
Theorem 1.2 by outputting the set {u ∈ N | ℓ(u) > 0}.

9

Algorithm 1: Non-oblivious Local Search (β, ε)

1 Let ∆← ε
2n ·max{g(∅),maxu∈N g(u)}.

2 Let T ← {u ∈ N | ℓ(u) > 0}.
3 for i = 1 to ⌈4n2/ε⌉+ 1 do
4 for every u ∈ N do Let ωu be an estimate of β · E[g(u | T (β)− u)] obtained by taking

the average of β · g(u | T (β)− u) for k = ⌈128n4ε−2β2 · ln(10n4/ε)⌉ independent
samples of T (β).

5 if there exists u ∈ N \ T such that ωu + β(1 + β) · ℓ(u) ≥ ∆ then Update T ← T + u.
6 else if there exists u ∈ T such that ωu + β(1 + β) · ℓ(u) ≤ −∆ then Update T ← T − u.
7 else Exit the “for” loop.

8 Let T̂ be a sample of T (β).

9 if g(T̂) + ℓ(T̂) ≥ 0 then return T̂ .
10 else return ∅.

Proof. Consider a particular estimate ωu made by Algorithm 1, and recall that the algorithm makes
this estimate by averaging β · g(u | T (β)−u) for k independent samples of T (β). Let T1, T2, . . . , Tk

denote the samples of T (β) used by the algorithm, and let us define, for every integer 1 ≤ i ≤ k,

Xi =
g(u | Ti − u)− E[g(u | T (β)− u)]

4n2∆/ε
.

Note that we deterministically have |Xi| ≤ 1 because for every set S ⊆ N and element u ∈ N it
holds that

g(u | S − u) ≤ g(u | ∅) = g(u)− g(∅) ≤ g(u) ≤ 2n∆

ε

(the first inequality follows from the submodularity of g, the second from g’s non-negativity, and
the last from the definition of ∆), and

g(u | S − u) = g(S + u)− g(S − u) ≥ −g(S − u)

≥ −max{g(∅), |S − u| ·max
v∈N

g(v)} ≥ n ·max{g(∅),max
v∈N

g(v)} = −2n2∆

ε
,

where the first and last inequalities hold since g is non-negative and the last equality follows from
the definition of ∆. To justify the second inequality, note that, by the submodularity and non-
negativity of g,

g(S−u) ≤ g(∅)+
∑

v∈S−u

g(v | ∅) = (1−|S−u|) ·g(∅)+
∑

v∈S−u

g(v) ≤ max{g(∅), |S−u| ·max
v∈N

g(v)} .

We can now upper bound the probability that ωu is a bad estimate as follows.

Pr[|ωu − β · E[g(u | T (β)− u)]| > ∆/2] = Pr

[
4βn2∆

ε
·
∑k

i=1Xi

k
>

∆

2

]
= Pr

[
k∑

i=1

Xi >
εk

8βn2

]
≤ 2e−(εk/(8βn2))2/(2k) = 2e−ε2k/(128β2n4) ≤ 2− ln(10n4/ε) =

ε

5n4
,

where the first inequality follows from the Chernoff-like Theorem A.1.16 of [1], and the second
inequality holds by the definition of k. To conclude the proof of the lemma, it remains to observe

10

that Algorithm 1 makes at most 5n3/ε estimates since it makes only n estimates per iteration, and
has at most ⌈4n2/ε⌉+ 1 ≤ 5n2/ε iterations (the inequality holds for a large enough n). Therefore,
by the union bound, the probability that any estimate made by this algorithm is bad can be upper
bounded by 1/n.

Using the previous lemma, we can now prove that, with high probability, Algorithm 1 terminates
with T being an approximate local maximum.

Lemma 4.2. With high probability, when Algorithm 1 terminates we have

h(T) ≥ h(T + u)− 3∆/2 ∀ u ∈ N \ T and h(T) ≥ h(T − u)− 3∆/2 ∀ u ∈ T .

Proof. We prove that the lemma holds deterministically when all the estimates made by Algorithm 1
are good, which is a high probability event by Lemma 4.1. Our first step is to show that given this
assumption the value of h(T) increases by at least ∆/2 following every iteration of the algorithm
unless this iteration terminates by Line 7 (and therefore, does not modify T). If Algorithm 1 added
an element u ∈ N \ T to T during the iteration, then the new value of h(T) is

h(T + u) = h(T) + β · E[g(u | T (β)− u)] + β(1 + β) · ℓ(u)
≥ h(T) + (ωu −∆/2) + β(1 + β) · ℓ(u) ≥ h(T) + ∆/2 ,

where the last inequality follows from the condition of Line 5. Similarly, if Algorithm 1 removed
an element u ∈ T from T during the iteration, then, by the condition on Line 6, the new value of
h(T) is

h(T − u) = h(T)− β · E[g(u | T (β)− u)]− β(1 + β) · ℓ(u)
≥ h(T)− (ωu +∆/2)− β(1 + β) · ℓ(u) ≥ h(T) + ∆/2 .

We now argue that Algorithm 1 must reach Line 7 at some point. Assume towards a con-
tradiction that this does not happen, which by the above observation implies that the algorithm
increases the value of h(T) by at least ∆/2 in each one of its ⌈4n2/ε+ 1⌉ iterations. Additionally,
if we denote by T ′ the final value of the set T , then the initialization of T and the non-negativity
of g guarantee together that the original value of h(T) before the first iteration of Algorithm 1 is
at least β(1 + β) · ℓ({u ∈ N | ℓ(u) > 0}) ≥ β(1 + β) · ℓ(T ′). Using these two results, we can lower
bound the value of h(T ′) by

h(T ′) ≥ β(1 + β) · ℓ(T ′) +

⌈
4n2

ε
+ 1

⌉
· ∆
2

> β(1 + β) · ℓ(T ′) +
4n2

ε
· ∆
2

= β(1 + β) · ℓ(T ′) + n ·max{g(∅),max
u∈N

g(u)} ≥ β(1 + β) · ℓ(T ′) + E[g(T ′(β))] = h(T ′) ,

which is a contradiction. The strict inequality holds since ∆ > 0 by our assumption that max{g(∅),
maxu∈N g(u)} > 0, and the second inequality holds since the submodularity and non-negativity of
g guarantee that for every set S ⊆ N

g(S) ≤ g(∅) +
∑
u∈S

g(u | ∅) = (1− |S|) · g(∅) +
∑
u∈S

g(u) ≤ max

{
g(∅),

∑
u∈S

g(u)

}
≤ max{g(∅), |S| ·max

u∈N
g(u)} ≤ n ·max{g(∅),max

u∈N
g(u)} .

11

The last contradiction implies that our assumption was wrong, and Algorithm 1 terminates
after reaching Line 7. When this happens, since the condition of Line 5 evaluated to FALSE, for
every element u ∈ N \ T ,

h(T) ≥ h(T) + ωu + β(1 + β) · ℓ(u)−∆

≥ h(T) + β · E[g(u | T (β)− u)] + β(1 + β) · ℓ(u)− 3∆/2 = h(T + u)− 3∆/2 ,

where the second inequality holds since we assume that all the estimates made by Algorithm 1 are
good. Similarly, since the condition of Line 6 evaluated to FALSE, for every element u ∈ T ,

h(T) ≥ h(T)− ωu − β(1 + β) · ℓ(u)−∆

≥ h(T)− β · E[g(u | T (β)− u)]− β(1 + β) · ℓ(u)− 3∆/2 = h(T − u)− 3∆/2 .

The last lemma shows that with high probability the final set T is an approximate local max-
imum with respect to h. Lemma 4.4 shows that this implies that T (β) is a good solution in
expectation. To prove Lemma 4.4, we need the following known lemma.

Lemma 4.3 (Lemma 2.2 of [7]). Let f : 2X → R≥0 be a submodular function, and given a set
A ⊆ X, let us denote by Ap a random subset of A where each element appears with probability
p ∈ [0, 1] (not necessarily independently). Then,

E[f(Ap)] ≥ (1− p) · f(∅) + p · f(A) .

Recall that Ŝ is a subset of N that maximizes the expression (α(β)− ε) · g(Ŝ) + (β − ε) · ℓ(Ŝ).

Lemma 4.4. If the set T obeys

h(T) ≥ h(T + u)− 3∆/2 ∀ u ∈ N \ T and h(T) ≥ h(T − u)− 3∆/2 ∀ u ∈ T ,

then
E[g(T (β)) + ℓ(T (β))] ≥ (α(β)− 3ε/4) · g(Ŝ) + (β − 3ε/4) · ℓ(Ŝ) .

Proof. By the first part of Lemma 4.2, for every element u ∈ N \ T ,

h(T) ≥ h(T + u)− 3∆/2 ,

or equivalently h(u | T) ≤ 3∆/2. Therefore, by the submodularity of g,

E[g(T (β) ∪ (Ŝ \ T))] + (1 + β) · ℓ(Ŝ \ T) (1)

≤ E[g(T (β))] +
∑

u∈Ŝ\T

{E[g(u | T (β)− u)] + (1 + β) · ℓ(u)}

= E[g(T (β))] + β−1 ·
∑

u∈Ŝ\T

h(u | T) ≤ E[g(T (β))] + 3β−1|Ŝ \ T |∆/2 .

Similarly, since the second part of Lemma 4.2 implies that for every u ∈ T we have h(u | T − u) ≥
−3∆/2, the submodularity of g gives us

E[g(T (β) ∩ Ŝ)]− β(1 + β) · ℓ(T \ Ŝ) (2)

≤ E[g(T (β))]−
∑

u∈T\Ŝ

{β · E[g(u | T (β)− u)]− β(1 + β) · ℓ(u)}

= E[g(T (β))]−
∑

u∈Ŝ\T

h(u | T − u) ≤ E[g(T (β))] + 3|T \ Ŝ|∆/2 .

12

Adding β times Inequality (1) to Inequality (2) now yields

β · E[g(T (β) ∪ (Ŝ \ T))] + E[g(T (β) ∩ Ŝ)] + β(1 + β) · [ℓ(Ŝ \ T)− ℓ(T \ Ŝ)] (3)

≤ (1 + β) · E[g(T (β))] + 3[|Ŝ \ T |+ |T \ Ŝ|]∆/2 ≤ (1 + β) · E[g(T (β))] + 3n∆/2 .

We can now use Lemma 4.3 to lower bound the first two terms on the leftmost side of the last
inequality as follows.

β · E[g(T (β) ∪ (Ŝ \ T))] + E[g(T (β) ∩ Ŝ)]

≥ β(1− β) · g(Ŝ \ T) + β2 · g(Ŝ ∪ T) + β · g(T ∩ Ŝ) + (1− β) · g(∅)

≥ β(1− β) · [g(Ŝ \ T) + g(T ∩ Ŝ)] ≥ β(1− β) · g(Ŝ) ,

where the second inequality follows from the non-negativity of g, and the last inequality holds by
g’s submodularity (and non-negativity). Plugging this inequality into Inequality (3) now gives

β(1− β) · g(Ŝ) + β(1 + β) · [ℓ(Ŝ \ T)− ℓ(T \ Ŝ)] ≤ (1 + β) · E[g(T (β))] + 3n∆/2 ,

and rearranging this inequality yields

E[g(T (β)) + ℓ(T (β))] = E[g(T (β))] + β · ℓ(T)

≥ β(1− β) · g(Ŝ)− 3n∆/2

1 + β
+ β · [ℓ(Ŝ \ T)− ℓ(T \ Ŝ)] + β · ℓ(T)

≥ α(β) · g(Ŝ) + β · ℓ(Ŝ)− 3n∆/2 .

To complete the proof of the lemma, it remains to show that 3n∆/2 ≤ (3ε/4) · [g(Ŝ) + ℓ(Ŝ)].
Towards this goal, observe that

max
u∈N

g(u) ≤ max
u∈N

{
g(u) +

1 + β

2β2
· [α(β) · g(u) + β · ℓ(u)]

}
=

1 + β

2β
·max
u∈N

[g(u) + ℓ(u)] ,

where the inequality follows from the first part of Reduction 1. Using this inequality and the
non-negativity of g, we can get

3n∆

2
=

3ε

4
·max{g(∅),max

u∈N
g(u)} ≤ 3ε(1 + β)

8β
·max{g(∅),max

u∈N
[g(u) + ℓ(u)]}

≤ 3ε(1 + β)

8
· [g(Ŝ) + ℓ(Ŝ)] ≤ 3ε

4
· [g(Ŝ) + ℓ(Ŝ)] ,

where the penultimate inequality follows from the second part of Reduction 1, and the last inequality
uses the observation that the second part of Reduction 1 and the non-negativity of g imply together
that g(Ŝ) + ℓ(Ŝ) is non-negative.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Recall that T̂ is a sample of T (β) for the value of the set T when Algorithm 1
terminates. Lemmata 4.2 and 4.4 prove together that there exists a high probability event E such
that

E[g(T̂) + ℓ(T̂) | E] ≥ (α(β)− 3ε/4) · g(Ŝ) + (β − 3ε/4) · ℓ(Ŝ) .

13

The last two lines of Algorithm 1 guarantee that this algorithm always outputs a set whose value
is at least g(T̂) + h(T̂) because g(∅) + ℓ(∅) = g(∅) ≥ 0. Therefore, if we denote by T̄ the set
outputted by Algorithm 1, then we also have

E[g(T̄) + ℓ(T̄) | E] ≥ (α(β)− 3ε/4) · g(Ŝ) + (β − 3ε/4) · ℓ(Ŝ) .

The last two lines of Algorithm 1 also guarantee that the output set T̄ of Algorithm 1 always
has a non-negative value, and therefore, E[g(T̄) + h(T̄) | Ē] ≥ 0. Combining this inequality with
the previous one using the law of total expectation yields

E[g(T̄) + h(T̄)] ≥ Pr[E] · E[g(T̄) + h(T̄) | E]
≥ (1− o(1)) · [(α(β)− 3ε/4) · g(Ŝ) + (β − 3ε/4) · ℓ(Ŝ)]
≥ (α(β)− ε) · g(Ŝ) + (β − ε) · ℓ(Ŝ) = max

S⊆N
[(α(β)− ε) · g(S) + (β − ε) · ℓ(S)] ,

where the second inequality holds since g(T̄) + h(T̄) is always non-negative, the equality follows
from the definition of Ŝ, and o(1) represents a term that diminishes when n goes to infinity. To
justify the third inequality, note that

o(1) · [(α(β)−3ε/4) ·g(Ŝ)+(β−3ε/4) ·ℓ(Ŝ)] ≤ o(1) ·(β−3ε/4) · [g(Ŝ)+ℓ(Ŝ)] ≤ (ε/4) · [g(Ŝ)+ℓ(Ŝ)] ,

where the last inequality here holds for large enough values of n because the second part of Reduc-
tion 1 and the non-negativity of g imply together that g(Ŝ) + ℓ(Ŝ) is non-negative.

5 Inapproximability for Negative Linear Functions

In this section we prove Theorem 1.3, which we repeat here for convenience.

Theorem 1.3. Given a value β ≥ 0, let us define

α(β) = min
t≥1

r∈(0,1/2]

{
t+ 1 +

√
(t+ 1)2 − 8tr

4t
− r

t+ 1
·

[
1− β − 2 ln

(
t+ 1−

√
(t+ 1)2 − 8tr

2

)]}
.

Then, for every ε > 0, no polynomial time algorithm can guarantee (α(β)+ ε, β)-approximation for
RegularizedUSM even when the linear function ℓ is guaranteed to be non-positive.

The proof of Theorem 1.3 is based on Theorem 3.1, and therefore, we start this proof by
describing an instance I of RegularizedUSM. This instance is very similar to the instance used
by Oveis Gharan and Vondrák [16] to prove their hardness result for maximizing a non-negative
(not necessarily monotone) submodular function subject to a matroid constraint. Specifically, the
instance I has 3 parameters: an integer n ≥ 1, a real value t ≥ 1 and a real value r ∈ (0, 1/2].
The ground set of I is N = {a, b} ∪ {ai, bi | i ∈ [n]}, and its objective functions are ℓ(S) =
−r · |S ∩ {ai, bi | i ∈ [n]}| and

g(S) = t · (|S ∩ {a, b}| mod 2) + 1[a ̸∈ S] · 1[S ∩ {ai | i ∈ [n]} ≠ ∅]

+ 1[b ̸∈ S] · 1[S ∩ {bi | i ∈ [n]} ≠ ∅] .

One can verify that g is indeed a non-negative submodular function. Additionally, the functions g
and ℓ are both symmetric in the sense that the following types of swaps do not affect the values of
these functions.

14

• Any swap of the identities of the elements of {ai | i ∈ [n]}.

• Swapping the identifies of a with b plus swapping the idenities of ai and bi for every i ∈ [n].

Let G be the group of permutations obtaining by combining swaps of these two kinds in any way.
In the next lemma, G and L are the multilinear extensions of g and ℓ, respectively, and x̄ =

Eσ∈G [σ(x)].

Lemma 5.1. Let r and t be the values for which the maximum is obtained in the definition of
α(β). Then, for any constant ε > 0 and a large enough n, maxS⊆N [(α(β) + ε) · g(S) + β · ℓ(S)] is
strictly positive and

max
x∈[0,1]N

[G(x̄) + L(x̄)] ≤ max
S⊆N

[α(β) · g(S) + β · ℓ(S)] .

Proof. Observe that the definition of G guarantees that the vector x̄ obeys x̄a = x̄b and x̄ai = x̄bj

for every i, j ∈ [n]. Therefore, if we define for two values z, w ∈ [0, 1] the vector y(z, w) as follows

yu(z, w) =

{
z if u ∈ {a, b} ,

w if u ∈ {ai, bi | i ∈ [n]} ,

then

max
x∈[0,1]N

[G(x̄) + L(x̄)] = max
z,w∈[0,1]

[G(y(z, w)) + L(y(z, w))]

= max
z,w∈[0,1]

{2(1− z)[tz + 1− (1− w)n]− 2rwn} .

Observe now that

(1− w)n ≥ e−wn(1− w2n) = e−wn − (wn)2 · e−wn

n
= e−wn −O(n−1) ,

where the last equality holds because the maximum value of the function x2e−x for x ≥ 0 is the
constant 4e−2. Plugging this observation into the previous equation now yields

max
x∈[0,1]N

[G(x̄) + L(x̄)] ≤ max
z,w∈[0,1]

{
2(1− z)[tz + 1− e−wn]− 2rwn

}
+O(n−1) .

The derivative of (1 − z)[tz + 1 − e−wn] with respect to z is t + e−wn − 1 − 2tz, which is a
decreasing function of z that takes the value 0 only when z = (t+ e−wn − 1)/(2t)—note that this
is a value in [0, 1/2] ⊆ [0, 1]. Therefore, we get from the previous inequality,

max
x∈[0,1]N

[G(x̄) + L(x̄)] ≤ max
w∈[0,1]

{
(t+ 1− e−wn)2/(2t)− 2rwn

}
+O(n−1) . (4)

The derivative of the argument of the max operation on the right hand side with respect to wn
(i.e., when wn is treated as a single variable) is e−wn(t + 1 − e−wn)/t − 2r, which is a quadratic
expression in e−wn whose roots are

e−wn =
−(t+ 1)±

√
(t+ 1)2 − 8tr

−2
=

(t+ 1)∓
√
(t+ 1)2 − 8tr

2
.

One can verify that, since r ∈ (0, 1/2], the above roots are real values, and moreover, the smaller
among them falls within the range (0, 1], while the larger root is at least 1. This implies that the

15

operand of the max operation in the right hand side of Inequality (4) is maximized for the w value
obeying

e−wn =
(t+ 1)−

√
(t+ 1)2 − 8tr

2
,

and moreover, the w value obeying this inequality belongs to [0, 1] when n is large enough. Thus,

max
x∈[0,1]N

[G(x̄) + L(x̄)] ≤
(t+ 1 +

√
(t+ 1)2 − 8tr)2

8t
+ 2r · ln

(
t+ 1−

√
(t+ 1)2 − 8tr

2

)
+O(n−1)

=
(t+ 1)(t+ 1 +

√
(t+ 1)2 − 8tr)

4t
− r ·

[
1− 2 ln

(
t+ 1−

√
(t+ 1)2 − 8tr

2

)]
+O(n−1) .

Let us now consider the right hand side of the inequality of the lemma. Since we can choose
S = {a, b1},

max
S⊆N

[(α(β) + ε) · g(S) + β · ℓ(S)] ≥ (α(β) + ε)(t+ 1)− βr .

Therefore, the inequality of the lemma holds whenever

(α(β) + ε)(t+ 1)− βr ≥
(t+ 1)(t+ 1 +

√
(t+ 1)2 − 8tr)

4t

− r ·

[
1− 2 ln

(
t+ 1−

√
(t+ 1)2 − 8tr

2

)]
+O(n−1) ,

or equivalently,

α(β) + ε ≥
t+ 1 +

√
(t+ 1)2 − 8tr

4t
− r

t+ 1
·

[
1− β − 2 ln

(
t+ 1−

√
(t+ 1)2 − 8tr

2

)]
+O(n−1) ,

which is true by the definitions of α(β), r and t when n is large enough.
To complete the proof of the lemma, it remains to argue that maxS⊆N [(α(β)+ε)·g(S)+β·ℓ(S)] ≥

(α(β) + ε)(t+ 1)− βr is strictly positive. Since ε(t+ 1) is strictly positive, it suffices to show that
α(β) · (t+ 1)− βr is non-negative. By the definitions of α(β), r and t,

α(β) ·(t+1)−βr =
t+ 1

4t
· [t+1+

√
(t+ 1)2 − 8tr]−r ·

[
1− 2 ln

(
t+ 1−

√
(t+ 1)2 − 8tr

2

)]
. (5)

The derivative of the right hand side of this equality with respect to r is

t+ 1

4t
· −8t
2
√
(t+ 1)2 − 8tr

− 1 + 2 ln

(
t+ 1−

√
(t+ 1)2 − 8tr

2

)
+ 2r ·

8t

4
√

(t+1)2−8tr

t+1−
√

(t+1)2−8tr

2

= − t+ 1√
(t+ 1)2 − 8tr

− 1 + 2 ln

(
t+ 1−

√
(t+ 1)2 − 8tr

2

)

+
8tr√

(t+ 1)2 − 8tr · [t+ 1−
√
(t+ 1)2 − 8tr]

= 2 ln

(
t+ 1−

√
(t+ 1)2 − 8tr

2

)
.

Since this derivative is an increasing function of r, the right hand side of Equation (5) is minimized
when the derivative is 0, i.e., when t+ 1−

√
(t+ 1)2 − 8tr = 2, or equivalently r = [(t+ 1)2 − (t−

1)2]/8t = 1/2. Thus, the right hand side of Equation (5) is always at least

t+ 1

4t
· [t+ 1 + (t− 1)]− 1

2
=

t+ 1

2
− 1

2
=

t

2
≥ 0 .

Theorem 1.3 now follows by combining Theorem 3.1, Observation 3.2 and Lemma 5.1.

16

6 Results for Positive Linear Functions

In this section we study RegularizedUSM in the special case in which the linear function ℓ is non-
negative. As explained in Section 1, following related known results, it is natural to expect a (1/2, 1)-
approximation for this case since 1/2 is the best possible approximation ratio for unconstrained
maximization of a non-negative submodular function. However, we show in Section 6.1 that this
cannot be done (Theorem 1.6).

Let us now define f ≜ g + ℓ. As explained in Section 1, since f is a non-negative submodular
function on its own right, one can optimize it using any algorithm for Unconstrained Submodular

Maximization (USM). The first algorithm to obtain a tight approximation ratio of 1/2 for USM

was an algorithm called “Double Greedy” due to Buchbinder et al. [3]. Buchbinder et al. [3]
described two variants of their algorithm, a deterministic variant that we term DeterministicDG

and guarantees 1/3-approximation, and a randomized variant that we term RandomizedDG and
guarantees 1/2-approximation. It should also be noted that the original analysis of [3] proves
slightly stronger results than the above stated approximation ratios. Specifically, their analysis
shows that DeterministicDG always outputs a set of value at least

f(S) + f(∅) + f(N)

3
≥ 1

3g(S) +
2
3ℓ(S)

for any set S, where the inequality holds since the function ℓ is non-negative; which implies that
DeterministicDG is a (1/3, 2/3)-approximation algorithm. Similarly, the analysis of Buchbinder
et al. [3] shows that RandomizedDG outputs a set whose expected value is at least

2f(S) + f(∅) + f(N)

4
≥ 1

2g(S) +
3
4ℓ(S) ,

which implies that RandomizedDG is a (1/2, 3/4)-approximation algorithm.
Theorems 1.4 and 1.5 show that DeterministicDG and RandomizedDG, respectively, guarantee

(α, β)-approximation for many additional pairs of α and β. The proofs of these theorems can be
found in Sections 6.2 and 6.3, respectively.

6.1 Impossibility of the Naturally Expected Approximation Guarantee

In this section we prove the following theorem. We note that the technique used in the proof of this
theorem can also prove a somewhat stronger result. However, since the improvement represented
by this stronger result is not very significant, we chose to state in the theorem the cleaner and more
conceptually important result rather than the strongest result achievable.

Theorem 1.6. Even when the linear function ℓ is guaranteed to be non-negative, no polynomial
time algorithm can guarantee (1/2, 1)-approximation for RegularizedUSM.

Before getting to the proof of Theorem 1.6, we need to prove the following two technical lem-
mata.

Lemma 6.1. For every constant c ≥ 1/2, the function xc ·
(

4
(5−x)2

− 1
)
is a non-increasing function

of x for x ∈ [0, 1].

17

Proof. The derivative of the function from the lemma with respect to x is

cxc−1 ·
(

4

(5− x)2
− 1

)
+ xc · 8

(5− x)3
=

xc−1

(5− x)3
· [4c(5− x)− c(5− x)3 + 8x]

=
xc−1

(5− x)3
· [cx3 − 15cx2 + (71c+ 8)x− 105c]

≤ cxc−1

(5− x)3
· [−14x2 + 87x− 105] .

The rightmost hand side of the last inequality is always non-positive because the roots of the
quadratic function −14x2 + 87x− 105 are

x1,2 =
−87±

√
872 − 4 · 14 · 105
2 · (−14)

=
87∓

√
1689

28
≥ 87−

√
1689

28
> 1 .

Lemma 6.2. For every constant x ≥ 0, n
√

1− x/n ≥ 1−O(n−2).

Proof. Observe that, for large enough n,

n
√
1− x/n = 1−

∫ 1

1−x/n

d n
√
y

dy
dy = 1−

∫ 1

1−x/n

y
1
n−1

n
dy ≥ 1−

∫ 1

1−x/n

1

ny
dy = 1−

ln y|11−x/n

n

= 1 +
ln(1− x/n)

n
≥ 1− x/n

n(1− x/n)
= 1− x

n(n− x)
= 1−O(n−2) .

The proof of Theorem 1.6 is based on Theorem 3.1, and therefore, we need to describe an
instance I of RegularizedUSM that has an integer parameter n ≥ 2. The ground set of the
instance I is N = {a, b} ∪ {ci | i ∈ [n]}, and its objective functions are given, for every S ⊆ N , by
ℓ(S) = 1/3 and

g(S) = 2 · [(S ∩ {a, b}) mod 2] + 1[{a, b} ∩ S ̸= ∅] · 1[{ci | i ∈ [n]} ̸⊆ S] .

One can verify that g is indeed a non-negative submodular function. Additionally, the functions
g and ℓ are both symmetric in the sense that swapping the identities of a and b does not change
the values of these functions for any set, and the same applies to any swap of the identities of the
elements of {ci | i ∈ [n]}. Let G be the group of permutations obtaining by combining swaps of
these two kinds in any way.

In the next lemma, G and L are the multilinear extensions of g and ℓ, respectively, and x̄ =
Eσ∈G [σ(x)].

Lemma 6.3. For a large enough n,

max
x∈[0,1]N

[G(x̄) + L(x̄)] ≤ max
S⊆N

[
0.4998 · g(S) + n− 1.0003

n− 1
· ℓ(S)

]
,

and the right hand side of the inequality is strictly positive.

Proof. Observe that the definition of G guarantees that the vector x̄ obeys x̄a = x̄b and x̄ci = x̄cj

for every i, j ∈ [n]. Therefore, if we define for two values z, w ∈ [0, 1] the vector y(z, w) as follows

yu(z, w) =

{
z if u ∈ {a, b} ,

w if u ∈ {ci | i ∈ [n]} ,

18

then

max
x∈[0,1]N

[G(x̄) + L(x̄)] = max
z,w∈[0,1]

[G(y(z, w)) + L(y(z, w))]

= max
z,w∈[0,1]

[
4z(1− z) + (2z − z2)(1− wn) +

nw

3

]
.

Using the derivative with respect to z of the argument of the max operation in the rightmost
side of the last equation, one can show that the maximum is obtained when z = 1−2/(5−wn)—note
that this value of z is indeed a number in the range [1/2, 3/5] ⊆ [0, 1]. Thus,

max
x∈[0,1]N

[G(x̄) + L(x̄)] ≤ max
w∈[0,1]

[
8(3− wn)

(5− wn)2
+

(3− wn)(7− wn)(1− wn)

(5− wn)2
+

nw

3

]
(6)

= max
w∈[0,1]

[
(3− wn)2

5− wn
+

nw

3

]
= max

w∈[0,1]

[
1− wn +

4

5− wn
+

nw

3

]
.

Consider now the argument of the max operation in the rightmost side of the last inequality.
The derivative of this argument with respect to w is

nwn−1 ·
(

4

(5− wn)2
− 1

)
+

n

3
.

Let us denote the above expression by D(w). Since w ∈ [0, 1] and 4
(5−wn)2

− 1 ≤ 4
16 − 1 = −3

4 , for

a large enough n,

n(wn)0.999 ·
(

4

(5− wn)2
− 1

)
+

n

3
≤ D(w) ≤ nwn ·

(
4

(5− wn)2
− 1

)
+

n

3
.

Lemma 6.1 shows that both bounds on D(w) are non-increasing functions of wn. Furthermore, one
can verify that the lower bound on D(w) is positive for wn = 0.411 and the upper bound on D(w)
is negative for wn = 0.412. Thus, D(w) is positive for wn ≤ 0.411 and negative for wn ≥ 0.412,
which implies that the argument of the max operation in the rightmost side of Inequality (6) is
maximized for some value w such that wn ∈ [0.411, 0.412]. Hence,

max
x∈[0,1]N

[G(x̄) + L(x̄)] ≤ max
w∈[n

√
0.411, n

√
0.412]

[
1− wn +

4

5− wn
+

nw

3

]
(7)

≤ 1− 0.411 +
4

5− 0.412
+

n n
√
0.412

3
≤ 1.461 +

n n
√
0.412

3

≤ 1.461 +
n

n
√
e−0.886

3
≤ 1.461 +

n n
√
(1− 0.886/n)n/(1− 0.8862/n)

3

= 1.461 +
n− 0.886

3 n
√
1− 0.8862/n

≤ 1.1657 +
n

3(1−O(n−2))
,

where the last inequality holds by Lemma 6.2.
Since, for every value x ∈ [0, 2/3],

n

3(1− x)
− n

3
=

n[1− (1− x)]

3(1− x)
=

nx

3(1− x)
≤ nx ,

for large enough n, Inequality (7) implies

max
x∈[0,1]N

[G(x̄) + L(x̄)] ≤ 1.1657 +
n

3
+ n ·O(n−2) = 1.1657 +

n

3
+O(n−1) .

19

It is now time to consider the right hand side of the inequality that we need to prove. Specifically,
since we can choose S = {a} ∪ {ci | i ∈ [n− 1]},

max
S⊆N

[
0.4998 · g(S) + n− 1.0003

n− 1
· ℓ(S)

]
≥ 3 · 0.4998 + n− 1.0003

3
= 1.4993 +

n− 1

3
> 0 .

Furthermore, by combining this inequality with the previous one, we get that the inequality of the
lemma holds whenever

1.4993 +
n− 1

3
≥ 1.1657 +

n

3
+O(n−1) ,

or equivalently
0.3336 ≥ 1/3 +O(n−1) ,

which is true for large enough n values.

By combining Theorem 3.1 and Lemma 6.3, we get that, even when the linear function ℓ is
non-negative, no polynomial time algorithm for RegularizedUSM can guarantee (0.4998(1 + ε) +
(n − 1.0003)(1 + ε)/(n − 1))-approximation for any ε > 0 and large enough n. Theorem 1.6 now
follows by choosing ε = 0.0003/n.

6.2 Reanalysis of Deterministic Double Greedy

In this section we prove Theorem 1.4, which we repeat here for convenience. The algorithm
DeterministicDG referred to by this theorem is given as Algorithm 2 (recall that f ≜ g + ℓ).

Theorem 1.4. When ℓ is non-negative, DeterministicDG is an (α, 1−α)-approximation algorithm
for RegularizedUSM for all α ∈ [0, 1/3] at the same time (the algorithm is oblivious to the value of
α).

Algorithm 2: DeterministicDG

1 Denote the elements of N by u1, u2, . . . , un in an arbitrary order.
2 Let X0 ← ∅ and Y0 ← ∅.
3 for i = 1 to n do
4 Let ai ← f(ui | Xi−1) and bi ← −f(ui | Yi−1 − ui).
5 if ai ≥ bi then Let Xi ← Xi−1 + ui and Yi ← Yi−1.
6 else Let Xi ← Xi−1 and Yi ← Yi−1 − ui.
7 return Xn(= Yn).

The heart of the proof of Theorem 1.4 is the following lemma. To state this lemma, we need to
define, for every integer 0 ≤ i ≤ n and set S ⊆ N , S(i) = (S ∪Xi) ∩ Yi.

Lemma 6.4. For every integer 1 ≤ i ≤ n, value α ∈ [0, 1/3] and set S ⊆ N , α · [f(Xi)−f(Xi−1)]+
(1− 2α) · [f(Yi)− f(Yi−1)] ≥ α · [f(S(i−1))− f(S(i))].

Before we get to the proof of Lemma 6.4, let us show why it implies Theorem 1.4.

20

Proof of Theorem 1.4. Fix some α ∈ [0, 1/3] and set S ⊆ N . Summing up Lemma 6.4 over all
integer 1 ≤ i ≤ n, we get

α ·
n∑

i=1

[f(Xi)− f(Xi−1)] + (1− 2α) ·
n∑

i=1

[f(Yi)− f(Yi−1)] ≥ α ·
n∑

i=1

[f(S(i−1))− f(S(i))] .

The sums in the last inequality are telescopic sums, and collapsing them yields

α · [f(Xn)− f(X0)] + (1− 2α) · [f(Yn)− f(Y0)] ≥ α · [f(S(0))− f(S(n))] .

One can observe that Xn = Yn = S(n), f(X0) = g(∅) ≥ 0, f(Y0) = g(N) + ℓ(N) ≥ ℓ(S) and
S(0) = S. Plugging all these observations into the previous inequality yields

α · f(Xn) + (1− 2α) · [f(Xn)− ℓ(S)] ≥ α · [f(S)− f(Xn)] .

It remains to rearrange the last inequality, and plug in f(S) = g(S) + ℓ(S), which implies

f(Xn) ≥ α · g(S) + (1− α) · ℓ(S) .

The theorem now follows since: (i) Xn is the output set of Algorithm 2, and (ii) the last inequality
holds for every α ∈ [0, 1/3] and set S ⊆ N .

Let us now prove Lemma 6.4.

Proof of Lemma 6.4. Buchbinder et al. [3] showed that Algorithm 2 guarantees7

[f(Xi)− f(Xi−1)] + [f(Yi)− f(Yi−1)] ≥ f(S(i−1))− f(S(i)) . (8)

Furthermore, we prove below that we also have the inequality

f(Yi)− f(Yi−1) ≥ 0 . (9)

These two inequalities imply the lemma together since the inequality guaranteed by the lemma
is equal to α · (8) + (1 − 3α) · (9)—note that the coefficients α and 1 − 3α in this expression are
non-negative for the range of possible values for α.

It remains to prove Inequality (9). If Yi = Yi−1, then Inequality (9) trivially holds as an equality.
Consider now the case of Yi ̸= Yi−1. By Lines 5 and 6 of Algorithm 2, this case happens only when
bi > ai, and Yi is set to Yi−1 − ui when this happens. Therefore, we get in this case

f(Yi)− f(Yi−1) = f(Yi−1 − ui)− f(Yi−1) = bi >
ai + bi

2
≥ 0 ,

where the last inequality holds since Buchbinder et al. [3] also showed that ai + bi ≥ 0.

6.3 Reanalysis of Randomized Double Greedy

In this section we prove Theorem 1.5, which we repeat here for convenience. The algorithm
RandomizedDG referred to by this theorem is given as Algorithm 3 (recall that f ≜ g + ℓ).

Theorem 1.5. When ℓ is non-negative, RandomizedDG is an (α, 1−α/2)-approximation algorithm
for RegularizedUSM for all α ∈ [0, 1/2] at the same time (the algorithm is oblivious to the value of
α).

21

Algorithm 3: RandomizedDG

1 Denote the elements of N by u1, u2, . . . , un in an arbitrary order.
2 Let X0 ← ∅ and Y0 ← ∅.
3 for i = 1 to n do
4 Let ai ← f(ui | Xi−1) and bi ← −f(ui | Yi−1 − ui).
5 if bi ≤ 0 then Let Xi ← Xi−1 + ui and Yi ← Yi−1.
6 else if ai ≤ 0 then Let Xi ← Xi−1 and Yi ← Yi−1 − ui.
7 else
8 with probability ai

ai+bi
do Let Xi ← Xi−1 + ui and Yi ← Yi−1.

9 otherwise Let Xi ← Xi−1 and Yi ← Yi−1 − ui. // Occurs with prob. bi
ai+bi

.

10 return Xn(= Yn).

The heart of the proof of Theorem 1.5 is the following lemma. To state this lemma, we need to
define, like in Section 6.2, S(i) = (S ∪Xi) ∩ Yi for every integer 0 ≤ i ≤ n and set S ⊆ N .

Lemma 6.5. For every integer 1 ≤ i ≤ n, value α ∈ [0, 1/2] and set S ⊆ N , (α/2) · E[f(Xi) −
f(Xi−1)] + (1− 3α/2) · E[f(Yi)− f(Yi−1)] ≥ α · E[f(S(i−1))− f(S(i))].

Before we get the to the proof of Lemma 6.5, let us show why it implies Theorem 1.5.

Proof of Theorem 1.5. Fix some α ∈ [0, 1/2] and set S ⊆ N . Summing up Lemma 6.5 over all
integer 1 ≤ i ≤ n, we get

α
2

n∑
i=1

E[f(Xi)− f(Xi−1)] + (1− 3α/2) ·
n∑

i=1

E[f(Yi)− f(Yi−1)] ≥ α ·
n∑

i=1

E[f(S(i−1))− f(S(i))] .

Due to the linearity of the expectation, the sums in the last inequality are telescopic sums. Col-
lapsing these sums yields

α
2E[f(Xn)− f(X0)] + (1− 3α/2) · E[f(Yn)− f(Y0)] ≥ α · E[f(S(0))− f(S(n))] .

Observe now that, like in the proof of Theorem 1.4, we have Xn = Yn = S(n), f(X0) = g(∅) ≥ 0,
f(Y0) = g(N) + ℓ(N) ≥ ℓ(S) and S(0) = S. Plugging all these observations into the previous
inequality yields

α
2E[f(Xn)] + (1− 3α/2) · E[f(Xn)− ℓ(S)] ≥ α · E[f(S)− f(Xn)] .

It remains to rearrange the last inequality, and plug in f(S) = g(S) + ℓ(S), which implies

E[f(Xn)] ≥ α · g(S) + (1− α/2) · ℓ(S) .

The theorem now follows since: (i) Xn is the output set of Algorithm 2, and (ii) the last inequality
holds for every α ∈ [0, 1/2] and set S ⊆ N .

Let us now prove Lemma 6.5.

7Technically, Buchbinder et al. [3] proved Inequality (8) only for the special case in which S is a set maximizing
f . However, their analysis does not use this property.

22

Proof of Lemma 6.5. Buchbinder et al. [3] showed that Algorithm 3 guarantees8

E[f(Xi)− f(Xi−1)] + E[f(Yi)− f(Yi−1)] ≥ 2E[f(S(i−1))− f(S(i))] . (10)

Given this inequality, to prove the lemma it suffices to show that

(1− 2α) · E[f(Yi)− f(Yi−1)] ≥ 0

(because adding this inequality to α/2 times Inequality (10) yields the inequality that we want to
prove). Below we prove the stronger claim that the inequality f(Yi) ≥ f(Yi−1) holds determinis-
tically. One observe that this stronger claim indeed implies (1 − 2α) · E[f(Yi) − f(Yi−1)] because
1− 2α is non-negative in the range of allowed values for α.

If Yi = Yi−1, then the inequality f(Yi) ≥ f(Yi−1) trivially holds as an equality. Therefore, we
assume from now on Yi ̸= Yi−1, which implies Yi = Yi−1 − ui. Due to the condition in Line 5 of
Algorithm 3, Yi can be set to Yi−1 − ui only when bi > 0, and thus,

f(Yi) = f(Yi−1 − ui) = f(Yi−1) + bi > f(Yi−1) .

A Extended Result for Non-Positive Linear Functions

In this section, using ideas from Feldman [8], we extend Lu, Yang and Gao’s result [13], which we
repeat here for convenience.

Theorem A.1. [Theorem 1.5 of [13]] There exists a randomized algorithm that given a non-
monotone submodular function g : 2N → R≥0 and a randomized modular function ℓ : 2N → R≤0,
returns a set S ⊆ N obeying

E[g(S) + ℓ(S)] ≥ e−1 · g(OPT) + ℓ(OPT),

where OPT ∈ argmax{g(A) + ℓ(A) : A ⊆ N}. Furthermore, the algorithm performs O(n) value
oracle queries.

This (e−1, 1)-approximation result can be extended to (βe−β, β)-approximation for the same
special case for any β ∈ [0, 1]. First we find a fractional solution for a known continuous relaxation,
subject to a solvable polytope P ⊆ [0, 1]N , whose value approximates the value of the optimal inte-
gral solution. Then the fractional solution can be rounded by various known methods (that we will
not repeat here). The following theorem finds a fractional solution with the desired approximation
ratio.

Theorem A.2. There exists a polynomial time algorithm for the above problem that given a value
ε ∈ (0, 1) outputs a vector x ∈ P such that with high probability G(x) + ℓ(x) ≥ (βe−β) · g(OPT) +
β · ℓ(OPT)−O(ε) ·m, where m = maxu∈N {g(u | ∅)}.

Like in the work of Feldman [8], we give a non-formal proof that uses some non-formal simplifi-
cations which are known by having techniques for getting rid of them (see, e.g., [8]). The algorithm
we use for the non-formal proof is given as Algorithm 4. The algorithm gets a non-negative sub-
modular function g, a non-positive linear function ℓ, constant β, solvable polytope P ⊆ [0, 1]N and
finds a point x ∈ P that approximately maximizes G(x)+ℓ(x), where G is the multilinear extension
of G and the vector operation ∨ represents coordinate-wise maximum.

8Again, the proof of [3] was technically stated only for the case in which S is a set maximizing f , but it extends
without modification to any set S ⊆ N .

23

For the rest of this section, we identify the linear function ℓ with a vector ℓ ∈ RN and denote
the value of the function for a vector x ∈ [0, 1]N and for a set S ⊆ N as ℓ(x) = ℓ · x and as
ℓ(S) = ℓ(1S) =

∑
u∈S ℓu respectively.

Like the original measured continuous greedy algorithm, this algorithm initialize the solution
to be 1∅ and calculates a weight vector w(t) at every time point based on the derivatives of
the multilinear extension G. The algorithm differs from the original measured continuous greedy
algorithm in the direction it grows the solution y(t) over time. First, it finds a vector z(t) ∈ P
that maximizing a weighted combination of w(t) and the linear function ℓ. Then, this vector z(t)
determines the direction in which the solution y(t) is grown at every time t ∈ [0, β).

Algorithm 4: Distorted Measured Continuous Greedy(g, ℓ, β, P)

1 Let y(0)← 1∅.
2 foreach time t ∈ [0, β) do
3 foreach u ∈ N , Let wu(t)← G(y(t) ∨ 1{u})−G(y(t)).

4 Let z(t) be the vector in P maximizing z(t) · (et−β · w(t) + ℓ).

5 Increase y(t) at a rate of dy(t)
dt = (1− y(t)) · z(t).

6 return y(β).

Lemma 1.18 of [2] ensures that y(t) always remains within [0, 1]N . We repeat the lemma here
for convenience as we are going to use it again later.

Lemma A.3. [Lemma 1.18 of [2]] For every time t ∈ [0, β] and element u ∈ N , yu ≤ 1− e−t ≤ 1.

The rest of the approximation ratio analysis of Algorithm 4 is similar to the analysis of the
Distorted Continuous Greedy algorithm in [8]. However, our analysis is based on the function
Φ = et−β · G(y(t)) + ℓ(y(t)), which is a generalization of the function used in [8]. The following
lemma calculate the derivative of Φ.

Lemma A.4. dΦ(t)
dt = et−β ·G(y(t)) + z(t) · (et−β · w(t) + ℓ).

Proof.

dΦ(t)

dt
= et−β ·G(y(t)) + et−β · dG(y(t))

dt
+

dℓ(y(t))

dt

= et−β ·G(y(t)) + et−β ·
∑
u∈N

dyu(t)

dt
· ∂G(x)

∂xu

∣∣∣∣
x=y(t)

+
∑
u∈N

dyu(t)

dt
· ∂ℓ(x)

∂xu

∣∣∣∣
x=y(t)

= et−β ·G(y(t)) + et−β ·
∑
u∈N

(1− yu(t)) · zu(t) ·
∂G(x)

∂xu

∣∣∣∣
x=y(t)

+
∑
u∈N

dyu(t)

dt
· ∂ℓ(x)

∂xu

∣∣∣∣
x=y(t)

.

As G is multilinear, its partial derivative with respect to a single coordinate is the difference
between the value of the function for two different values of this coordinate over the difference
between the values. Plugging this observation into the previous inequality yields

24

dΦ(t)

dt
= et−β ·G(y(t)) + et−β ·

∑
u∈N

(1− yu(t)) · zu(t) ·
∂G(x)

∂xu

∣∣∣∣
x=y(t)

+
∑
u∈N

dyu(t)

dt
· ∂ℓ(x)

∂xu

∣∣∣∣
x=y(t)

= et−β ·G(y(t)) + et−β ·
∑
u∈N

(1− yu(t)) · zu(t) ·
G(y(t) ∨ 1{u})−G(y(t))

1− yu(t)
+
∑
u∈N

dyu(t)

dt
· ∂ℓ(x)

∂xu

∣∣∣∣
x=y(t)

= et−β ·G(y(t)) + et−β ·
∑
u∈N

zu(t) · wu(t) +
∑
u∈N

zu(t) · ℓu

= et−β ·G(y(t)) + z(t) · (et−β · w(t) + ℓ).

In our next lemma, that lower bounds the last expression, we use Corollary 1.15 of [2] for the
inequality between the Lovász and the multilinear extensions. We repeat it here for convenience.

Corollary A.5. [Corollary 1.15 of [2]] Let f : 2N → R be a submodular function, and let f̂ and F
be its Lovász and multilinear extensions, respectively. Then, for every x ∈ [0, 1]N , F (x) ≥ f̂(x).

Lemma A.6. For every t ∈ [0, β),

et−β ·G(y(t)) + z(t) · (et−β · w(t) + ℓ) ≥ e−β · g(OPT) + ℓ(OPT).

Proof. One possible candidate to be z(t) is 1OPT since P contains the characteristic vectors of all
the feasible sets. Hence,

z(t) · (et−β · w(t) + ℓ) ≥ 1OPT · (et−β · w(t) + ℓ) = et−β ·
∑

u∈OPT

w(t) + ℓ(OPT)

= et−β ·
∑

u∈OPT

[G(y(t) ∨ 1{u})−G(y(t))] + ℓ(OPT)

≥ et−β · [G(y(t) ∨ 1OPT)−G(y(t))] + ℓ(OPT)

≥ et−β · [ĝ(y(t) ∨ 1OPT)−G(y(t))] + ℓ(OPT),

where the penultimate inequality holds by the submodularity of G, and the last inequality holds
by Corollary A.5.

Recall that Lemma A.3 ensures that every coordinate of y(t) is upper bounded by 1 − e−t.
Hence,

ĝ(y(t) ∨ 1OPT) =

∫ 1

λ=0
g(Tλ(y(t) ∨ 1OPT))dλ ≥

∫ 1

λ=1−e−t

g(Tλ(y(t) ∨ 1OPT))dλ = e−t · g(OPT).

Plugging the last inequality into the previous one gives

z(t) · (et−β · w(t) + ℓ) ≥ e−β · g(OPT)− et−β ·G(y(t)) + ℓ(OPT),

and the lemma now follows by adding et−β ·G(y(t)) to both sides of this inequality.

We are now ready to prove the approximation guarantee of Theorem A.2.

Proof of Theorem A.2. Lemmata A.4 and A.6 prove together that

dΦ(t)

dt
= et−β ·G(y(t)) + z(t) · (et−β · w(t) + ℓ) ≥ e−β · g(OPT) + ℓ(OPT).

25

Integrating both sides of this inequality from t = 0 to t = β, we get

Φ(β)− Φ(0) ≥ βe−β · g(OPT) + β · ℓ(OPT).

Recall that g is non-negative and ℓ(y(0)) = ℓ(1∅) = 0, hence

Φ(0) = e−βG(y(0)) + ℓ(y(0)) ≥ 0.

Since Φ(β) = G(y(β)) + ℓ(y(β)), we finally get

G(y(β)) + ℓ(y(β)) ≥ βe−β · g(OPT) + β · ℓ(OPT).

The formal proof of Theorem A.2 is analogous to the corresponding part in the proof of Theorem
1 in [8], and is, thus, omitted.

B Proof of Theorem 3.1

In this section we prove Theorem 3.1, which we repeat here for convenience.

Theorem 3.1. Consider an instance (g, ℓ) of RegularizedUSM consisting of a non-negative sub-
modular function g : 2N → R≥0 and a linear function ℓ : 2N → R≥0, and assume that there exists a
group G of permutations over N such that the equalities g(S) = g(σ(S)) and ℓ(S) = ℓ(σ(S)) hold
for all sets S ⊆ N and permutations σ ∈ G. Let G and L be the multilinear extensions of g and
ℓ respectively, and for every vector x ∈ [0, 1]N , let us denote x̄ = Eσ∈G [x], i.e., x̄ is the expected
vector σ(x) when σ is picked uniformly at random out of G. For any two constants α, β ≥ 0, if
maxS⊆N [α · g(S) + β · ℓ(S)] is strictly positive and

max
x∈[0,1]N

[G(x̄) + L(x̄)] ≤ max
S⊆N

[α · g(S) + β · ℓ(S)] ,

then no polynomial time algorithm for RegularizedUSM can guarantee ((1 + ε)α, (1 + ε)β)-appro-
ximation for any positive constant ε. Furthermore, this inapproximability guarantee holds also
when we restrict attention to instances (g′, ℓ′) of RegularizedUSM having the following additional
properties.

• If ℓ is non-negative or non-positive, then we can assume that ℓ′ also has the same property.

• If g is monotone, then we can assume that g′ is monotone as well.

The proof of Theorem 3.1 is based on the symmetry gap framework of Vondrák [19]. In this proof
we assume ε < 1/2. Note that this assumption is without loss of generality since, if Theorem 3.1
applies to some constant ε > 0, then it trivially holds for every larger ε value. Let us now restate
two central lemmata of [19].9

Lemma B.1 (Lemma 3.1 of [19]). Let n be a positive integer, and let F : [0, 1]N → R and X = [n].
If we define f : 2N×X → R≥0 as f(S) = F (x(S)), where the vector x(S) is defined by xu(S) =
1
n |S ∩ ({u} ×X)| for every u ∈ N . Then,

1. if ∂F
∂xu
≥ 0 everywhere for each element u ∈ N , then f is monotone,

2. and if the first partial derivatives of F are absolutely continuous and ∂2F
∂xu∂xv

≤ 0 almost
everywhere for all elements u, v ∈ N , then f is submodular.

9Some of the notation was modified in this restatement (compared to the original statement in [19]) to make it
easier to use these lemmata for our purposes.

26

Lemma B.2 (Lemma 3.2 of [19]). Consider a function g : 2N → R≥0 invariant under a group
of permutations G on the ground set N . Let G(x) be the multilinear extension of G, define x̄ =
Eσ∈G [1σ(x)] and fix any ε′ > 0. Then, there is δ > 0 and functions Ĝ, Ĥ : [0, 1]N → R≥0 (which are
also symmetric with respect to G), satisfying the following:

1. For all x ∈ [0, 1]N , Ĥ(x) = Ĝ(x̄).
2. For all x ∈ [0, 1]N , |Ĝ(x)−G(x)| ≤ ε′.
3. Whenever ∥x− x̄∥2 ≤ δ, Ĝ(x) = Ĥ(x) and the value depends only on x̄.
4. The first partial derivatives of Ĝ and Ĥ are absolutely continuous.

5. If f is monotone, then, for every element u ∈ N , ∂Ĝ
∂xu
≥ 0 and ∂Ĥ

∂xu
≥ 0 everywhere.

6. If f is submodular then, for every two elements u, v ∈ N , ∂2Ĝ
∂xu∂xv

≤ 0 and ∂2Ĥ
∂xu∂xv

≤ 0 almost
everywhere.

In our use of Lemma B.2 we have to carefully choose a value for the ε′ parameter of the lemma.
Specifically, we choose ε′ = (ε/3) · maxS⊆N [α · g(S) + β · ℓ(S)]. Notice that the conditions of
Theorem 3.1 guarantee that this value is (strictly) positive.

Applying Lemma B.2 with the above chosen parameter value to the function g and the group
G whose existence is guaranteed by the statement of Theorem 3.1, we get two functions Ĝ and Ĥ
with the properties stated by Lemma B.2. Now, for every permutation σ ∈ G and integer n ≥ 1,
we can define functions gσ,n1 and gσ,n2 as follows. For every set S ⊆ N × [n], let yσ(S) be the vector
defined as yσu(S) =

1
n |{i ∈ [n] | (σ(u), i) ∈ S}| for every u ∈ N . Then,

gσ,n1 (S) = Ĝ(yσ(S)) and gσ,n2 (S) = Ĥ(yσ(S)) .

Observe that, by Lemma B.1, the functions gσ,n1 and gσ,n2 are always non-negative and submodular.
We now need to invoke Lemma 3.3 of [19]. Unfortunately, the statement of this lemma is

quite involved as it is designed to handle also constrained settings. Therefore, we give here only a
simplified version of this lemma that suffices for our purposes.

Lemma B.3 (Special case of Lemma 3.3 of [19]). Consider any deterministic sub-exponential time
algorithm ALG that gets access to a function g′ : 2N×[n] → R≥0, and let σ be a uniformly random
permutation from G. Then, with probability 1− e−Ω(n), ALG outputs a set of the same value when
it gets either gσ,n1 or gσ,n2 as input.

Let us now construct a family of instances of RegularizedUSM. For every permutation σ ∈ G, we
denote by I(σ, n) an instance of of RegularizedUSM over the ground set N × [n] whose submodular
and linear objective functions are gσ,n1 and L(yσ(S)), respectively. We would like to prove that,
when σ is chosen uniformly at random out of G, the random instance I(σ, n) is hard in expectation
for every deterministic algorithm, and therefore, by Yao’s principle, it is hard also for randomized
algorithms. However, before doing this, let us observe that the objective functions of I(σ, n) have
all the necessary properties.

Observation B.4. The function gσ,n1 is monotone whenever g is, and the function L(yσ(S)) is
non-negative or non-positive whenever ℓ is non-negative or non-positive, respectively.

Proof. The first part of the observation follows from Lemmata B.1 and B.2, and the second part
of the observation holds since L is the multilinear extension of ℓ (which implies that it only takes
values that are equal to some convex combination of values taken by ℓ).

We now prove, as promised, that I(σ, n) is a hard in expectation instance when the permutation
σ is chosen uniformly at random out of G.

27

Lemma B.5. Consider any deterministic sub-exponential time algorithm ALG that gets the in-
stance I(σ, n) for a uniformly random σ ∈ G. Then, for a large enough n (independent of ALG),
the output set T of ALG obeys

E[gσ,n1 (T) + L(yσ(T))] ≤ max
x∈[0,1]N

[G(x̄) + L(x̄)] + (ε/2) ·max
S⊆N

[α · g(S) + β · ℓ(S)]

≤ (1 + ε/2) ·max
S⊆N

[α · g(S) + β · ℓ(S)] .

Proof. The second inequality of the lemma is an immediate consequence of the inequality assumed
by Theorem 3.1. Therefore, we concentrate on proving the first inequality.

Since ℓ is a linear function, for every set S ⊆ N × [n],

L(yσ(S)) =
∑
u∈N

ℓ(u) · yσu(S) = 1
n

∑
u∈N

ℓ(u) · |{i ∈ [n] | (σ(u), i) ∈ S}|

= 1
n

∑
u∈N

ℓ(σ(u)) · |{i ∈ [n] | (σ(u), i) ∈ S}| = 1
n

∑
u∈N

ℓ(u) · |{i ∈ [n] | (u, i) ∈ S}| ,

where the penultimate equality holds since ℓ is invariant under σ, and the last equality holds since σ
is a permutation. This implies that the linear objective function of I(σ, n) is independent of σ, and
can be efficiently evaluated given ℓ and n alone. Therefore, when ALG is applied to I(σ, n), we can
treat the linear objective function L(yσ(S)) as part of ALG, which makes ALG an algorithm over
the submodular objective function of I(σ, n). Hence, by Lemma B.3, with probability 1 − e−Ω(n)

the output set T of ALG obeys gσ,n1 (T) = gσ,n2 (T).
When the equality gσ,n1 (T) = gσ,n2 (T) holds, we can upper bound gσ,n1 (T) as follows.

gσ,n1 (T) = gσ,n2 (T) = Ĥ(yσ(T)) = Ĝ(yσ(T)) ≤ G(yσ(T)) + ε
3 ·max

S⊆N
[α · g(S) + β · ℓ(S)]

≤ max
x∈[0,1]N

[G(x̄) + L(x̄)]− L(yσ(T)) + ε
3 ·max

S⊆N
[α · g(S) + β · ℓ(S)] ,

where the third equality and the first inequality both follow from Lemma B.2 and the value we
chose for the ε′ parameter of this lemma. When the equality gσ,n1 (T) = gσ,n2 (T) does not hold, we
can still observe that, since maxS⊆N [α · g(S) + β · ℓ(S)] is strictly positive by the assumptions of
Theorem 3.1, there must exist a value d independent of n such that

gσ,n1 (T) = Ĝ(yσ(T)) ≤ G(yσ(T)) + ε
3 ·max

S⊆N
[α · g(S) + β · ℓ(S)]

≤ max
S⊆N

g(S) + ε
3 ·max

S⊆N
[α · g(S) + β · ℓ(S)] ≤ d ·max

S⊆N
[α · g(S) + β · ℓ(S)] ,

where the second inequality holds since G, as the multilinear extension of g, cannot produces values
larger than the maximum value of g.

At this point we would like to use the law of total expectation to combine the two upper bounds
on gσ,n1 (S) proved above. This leads to

E[gσ,n1 (T)] = Pr[gσ,n1 (T) = gσ,n2 (T)] · E[gσ,n1 (T) | gσ,n1 (T) = gσ,n2 (T)]

+ Pr[gσ,n1 (T) ̸= gσ,n2 (T)] · E[gσ,n1 (T) | gσ,n1 (T) ̸= gσ,n2 (T)]

≤ Pr[gσ,n1 (T) = gσ,n2 (T)] ·
{

max
x∈[0,1]N

[G(x̄) + L(x̄)]− E[L(yσ(T)) | gσ,n1 (T) = gσ,n2 (T)]

}
+ ε

3 ·max
S⊆N

[α · g(S) + β · ℓ(S)] + (1− e−Ω(n)) · d ·max
S⊆N

[α · g(S) + β · ℓ(S)] .

28

To simplify the last inequality, we make two observations. First, that for a large enough n it is
guaranteed that d(1− e−Ω(n)) ≤ ε/6 because both d and ε are independent of n, and second, that
the non-negativity of g implies that

E[L(yσ(T)) | gσ,n1 (T) ̸= gσ,n2 (T)] ≤ max
x∈[0,1]N

L(x̄) ≤ max
x∈[0,1]N

[G(x̄) + L(x̄)] .

Using these two observations and the law of total expectation (again), the previous inequality yields

E[gσ,n1 (T)] ≤ max
x∈[0,1]N

[G(x̄) + L(x̄)]− E[L(yσ(T))] + ε
2 ·max

S⊆N
[α · g(S) + β · ℓ(S)] .

The last inequality is identical to the one that we need to prove, except that the term E[L(yσ(T))]
in the last inequality should be replaced with E[L(yσ(T))]. However, these two terms are identical,
and therefore, the lemma follows. To see that these two terms are indeed identical, observe that,
since ℓ is linear and invariant under the permutations of the group G,

L(yσ(S)) = L
(
Eσ′∈G [σ

′(yσ(S))]
)
= Eσ′∈G [L(σ

′(yσ(S)))] = Eσ′∈G [L(y
σ(S))] = L(yσ(S)) .

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. Consider any (possibly randomized) sub-exponential time algorithm ALG.
By Lemma B.5 and Yao’s theorem, there must exist an instance I(σ, n) such that ALG produces
a set of expected value at most (1 + ε/2) ·maxS⊆N [α · g(S) + β · ℓ(S)] given this instance.

Let us now lower bound the value of the optimal solution for I(σ, n). Let T be the set maximizing
maxS⊆N [α · g(S) + β · ℓ(S)]. Then, the set T ′ = {(σ−1(u), i) | u ∈ T, i ∈ [n]} is a valid solution for
I(σ, n) such that

α · gσ,n1 (T ′) + β · L(yσ(T ′)) = α · Ĝ(yσ(T ′)) + β · L(yσ(T ′)) = α · Ĝ(1T) + β · L(1T)
≥ α ·G(1T) + β · L(1T)− ε

3 ·max
S⊆N

[α · g(S) + β · ℓ(S)]

= α · g(T) + β · ℓ(T)− ε
3 ·max

S⊆N
[α · g(S) + β · ℓ(S)]

=
(
1− ε

3

)
·max
S⊆N

[α · g(S) + β · ℓ(S)] ,

where the second equality holds by the definition of yσ, the inequality follows from Lemma B.2
and the last equality holds by the definition of T .

Assume now towards a contradiction that ALG is a ((1+ε)α, (1+ε)β)-approximation algorithm.
Given this assumption, the above results imply together(

1 +
ε

2

)
·max
S⊆N

[α · g(S) + β · ℓ(S)] ≥ max
S⊆N

[(1 + ε)α · gσ,n1 (S) + (1 + ε)β · L(yσ(S))]

= (1 + ε)[α · gσ,n1 (T ′) + β · L(yσ(T ′))]

≥ (1 + ε) ·
(
1− ε

3

)
·max
S⊆N

[α · g(S) + β · ℓ(S)] .

Since one of the conditions of Theorem 3.1 is that maxS⊆N [α · g(S) + β · ℓ(S)] is strictly positive,
the above inequality is equivalent to

1 +
ε

2
≥ (1 + ε) ·

(
1− ε

3

)
= 1 +

2ε

3
− ε2

3
.

However, this inequality does not hold for any ε ∈ (0, 1/2), and thus, our assumption that ALG is
a ((1 + ε)α, (1 + ε)β)-approximation algorithm leads to a contradiction.

29

References

[1] Noga Alon and Joel H. Spencer. The Probabilistic Method, Second Edition. John Wiley, 2000.

[2] Niv Buchbinder and Moran Feldman. Submodular Functions Maximization Problems. Chap-
man and Hall/CRC, 2 edition, 2018.

[3] Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. A tight linear time (1/2)-
approximation for unconstrained submodular maximization. SIAM J. Comput., 44(5):1384–
1402, 2015.

[4] Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766,
2011.

[5] Michele Conforti and Gérard Cornuéjols. Submodular set functions, matroids and the greedy
algorithm: Tight worst-case bounds and some generalizations of the rado-edmonds theorem.
Discret. Appl. Math., 7(3):251–274, 1984.

[6] Shahar Dobzinski and Jan Vondrák. From query complexity to computational complexity. In
Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th Symposium on Theory
of Computing Conference (STOC), pages 1107–1116. ACM, 2012.

[7] Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing non-monotone submodular
functions. SIAM J. Comput., 40(4):1133–1153, 2011.

[8] Moran Feldman. Guess free maximization of submodular and linear sums. Algorithmica,
83(3):853–878, 2021.

[9] Moran Feldman, Joseph Naor, and Roy Schwartz. A unified continuous greedy algorithm for
submodular maximization. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 570–579. IEEE Computer Society, 2011.

[10] Yuval Filmus and Justin Ward. Monotone submodular maximization over a matroid via non-
oblivious local search. SIAM J. Comput., 43(2):514–542, 2014.

[11] Chris Harshaw, Moran Feldman, Justin Ward, and Amin Karbasi. Submodular maximization
beyond non-negativity: Guarantees, fast algorithms, and applications. In Kamalika Chaud-
huri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference on
Machine Learning (ICML), volume 97 of Proceedings of Machine Learning Research, pages
2634–2643. PMLR, 2019.

[12] Ehsan Kazemi, Shervin Minaee, Moran Feldman, and Amin Karbasi. Regularized submodular
maximization at scale. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th
International Conference on Machine Learning (ICML), volume 139 of Proceedings of Machine
Learning Research, pages 5356–5366. PMLR, 2021.

[13] Cheng Lu, Wenguo Yang, and Suixiang Gao. Regularized non-monotone submodular maxi-
mization. CoRR, abs/2103.10008, 2021.

[14] G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the maximum of a
submodular set function. Mathematics of Operations Research, 3(3):177–188, 1978.

30

[15] Sofia Maria Nikolakaki, Alina Ene, and Evimaria Terzi. An efficient framework for balancing
submodularity and cost. In Feida Zhu, Beng Chin Ooi, and Chunyan Miao, editors, The 27th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD), pages 1256–
1266. ACM, 2021.

[16] Shayan Oveis Gharan and Jan Vondrák. Submodular maximization by simulated annealing. In
Dana Randall, editor, ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1098–
1116. SIAM, 2011.

[17] Xin Sun, Dachuan Xu, Yang Zhou, and ChenchenWu. Maximizing modular plus non-monotone
submodular functions. CoRR, abs/2203.07711, 2022.

[18] Maxim Sviridenko, Jan Vondrák, and Justin Ward. Optimal approximation for submodular
and supermodular optimization with bounded curvature. Math. Oper. Res., 42(4):1197–1218,
2017.

[19] Jan Vondrák. Symmetry and approximability of submodular maximization problems. SIAM
J. Comput., 42(1):265–304, 2013.

31

 תוכן עניינים

 1 הקדמה .1

I. 4 מבנה התיזה

 4 סקירת ידע נדרש .2

I. 4 וסימונים ת קבוצותופונקצי

II. 5 לינאריתהרחבה רב

III. 5 אוב ערך

 5 עבור פונקציות מונוטוניות קושי קירוב .3

 7 אלגוריתם למקרה הכללי .4

 14 קירוב עבור פונקציות לינאריות שליליות קושי .5

 17 תוצאות עבור פונקציות לינאריות חיוביות .6

I. 17 היתכנות עבור הקירוב הטבעי הצפוי-הוכחת אי

II. 20 ניתוח מחודש עבור האלגוריתם החמדן הכפול הדטרמיניסטי

III. 21 ניתוח מחודש עבור האלגוריתם החמדן הכפול האקראי

 23 נספח .7

I. 23 תוצאה מורחבת עבור פונקציות לינאריות שליליות

II. 26 3.1הוכחה של משפט

1

 תקציר

להבדיל ,ישנו צורך להשתמש באילוצים "רכים" אשרלעיתים קרובות , מעשייםבאופטימיזציה קומבינטורית, במיוחד ביישומיים

, ניתן לייצג בעיות במקרים רביםאך תעלה ב"קנס". ,מאילוצים "קשים" בהם אסור כלל להפר את האילוץ, הפרה שלהם מותרת

 מודולריתפונקציה ו)מייצגת את פונקציית המטרה(מודולרית-אילוצים של סכום של פונקציה תתעם אילוצים כאלו כמירוב נטול

 .)מייצגת את הקנס(

-לבחור תתהיא לדוגמה, בעולם למידת המכונה ישנה פעולה חשובה ומרכזית בתחום הקרויה "סיכום מידע". מטרת הפעולה

את מידת יכמתקבוצה של דגימות נותנים ערך שי-לכל תת ,ת. לשם כךקבוצה של דגימות המייצגת)במובן כלשהו(את כל הדגימו

כאשר מוסיפים דגימה כלשהיא, –מודולריות -להשמת ערכים אלו מקיימת את תכונת התתהנבחרת הייצוג שלה. לרוב, הפונקציה

 כאשר קבוצת הדגימות גדלה. התוספת במידת הייצוג קטנה יותר

תר בין המודל לדגימות הנתונות היא להעניק לכל דגימה "מחיר", כאשר מחיר קבוצה של אחת השיטות בתחום למניעת התאמת י

קבוצה אופטימלית של דגימות הופכת להיות מירוב ערך כולל אשר -סכום מחירי הדגימות. לכן, משימת בחירת תת ודגימות הינ

 ". ווסתרי בהקשר זה ידוע בתור "מודולרית. החלק המודולפונקציה מודולרית ו-ניתן להצגה כסכום של פונקציה תת

)כאשר הפונקציה נתונה באמצעות אוב נדרש מספר מעריכי של [6] מודולרית הינו בעיה קשה-בניגוד למזעור, מירוב פונקציה תת

ות פונקציה(. קשה-NPגישות לאוב כדי לפתור את הבעיה, ואפילו כאשר הפונקציה נתונה בצורה מפורשת הבעיה עדיין נשארת

)שבצורה הקירובאי לכך ,שלילית(-)אי מודולרית-מודולרית ותת – של שתי פונקציות חיבורכ נתונותבעבודה זו אנו עוסקיםבהן

 . כל פונקציה את איכות הקירוב עבור שייצגו שני מקדמים רשם באמצעותי סטנדרטית מיוצג ע"י מקדם אחד(

מובטח כי עבור המקרה בו לשם כך, עלינו להבדיל בין מספר מקרים שונים. .ציג עתה את התוצאות שהשגנו בעבודה זונ

עבור הוא הראשון החסם .שניתן להשיגקירוב ה ם מלמעלה על יחסחיובית, אנחנו מציגים שני חסמי-אי ת היאמודולריההפונקציה

. החסם השני הינו [12] ה לאחרונהלתוצאת קירוב שהוצגחסם זה תואם המקרה בו הפונקציה התת מודולרית הינה מונוטונית.

חסם זה משפר את תוצאת החסם הראשון עבור .תמונוטוניהיא תמודולרי-התתפונקציה ההמקרה הכללי בו לא מובטח כי עבור

 לתוצאת הקירוב שניתן להשיג. בהשוואה ובכך מצמצם את הפער ,1-הקרובים יותר ל תהמודולרי פונקציהמקדמים של ה

-הינה אי במקרה בו אנו עוסקים מודולרית-וממילא הפונקציה התת שלילית,-אי היא הפונקציה המודולרית מובטח כימקרה בו ב

בתנאים ,לכןשלילית. -מודולרית כללית)לאו דווקא מונוטונית(אי-כפונקציה תתניתן להתייחס לסכום הפונקציות שלילית, אזי

ולקבל האקראי" "החמדן הכפולם האלגוריתואת "החמדן הכפול" הדטרמינסטי ם את האלגורית ליישם בצורה ישירהנוכל הללו,

(עבור הפונקציה המודולרית בהתאמה 1/2-ו 1/3[. כלומר, מקדם קירוב זהה)2הסכום]בהתאמה עבור 1/2-ו 1/3מקדם קירוב

הפעלתם בצורתם ומראים כי ,להנ" מיםאנו מנתחים מחדש את תוצאת האלגוריתבעבודה זו, מודולרית. -ועבור הפונקציה התת

בניגוד ,מוכיחים כיאנו גם ,עם זאתיחד .תהמודולרי פונקציהעבור מקדמי ה יותר אף תוצאות טובות למעשה המשיגהנוכחית

 .תמודולרי-התתהן לפונקציה ו תהמודולרי הפונקצילהן למקרה המונוטוני, לא ניתן להשיג תוצאות אופטימליות בו זמנית

, אנו מציגים את האלגוריתם חיובית-שלילית או אי-פונקציה המודולרית היא איבו לא מובטח כי ה המקרה הכללילבסוף, עבור

 . האלגוריתם מבוסס עלמודולרית(-לים עבור שתי הפונקציות)המודולרית והתתלא טריוויאקבועים קירוב מקדמיעם הראשון

 . מקדמי הקירוב המבוקשיםבהתאם ל פונקציית עזר שהוגדרה כאשר פונקציית המטרה בחיפוש המקומי היא ,חיפוש מקומי

 האוניברסיטה הפתוחה

 המחלקה למתמטיקה ולמדעי המחשב

מודולרית לא מונוטונית ושל פונקצייה -מירוב סכום של פונקצייה תת

 נטול האילוציםמקרה ההבנת לינארית:

 ידי-עלמוגש

 קובי בודק

 כחלק מהדרישות לקבלת תואר מוגשתעבודה תזה זו

 במדעי המחשב .M.Sc"מוסמך למדעים"

 באוניברסיטה הפתוחה

 המחלקה למתמטיקה ומדעי המחשב

 ופרופסור זאב נוטוב בהנחיית פרופסור מורן פלדמן

 2022 דצמבר

	Introduction
	Preliminaries
	Inapproximability for Monotone Functions
	Algorithm for the General Case
	Inapproximability for Negative Linear Functions
	Results for Positive Linear Functions
	Impossibility of the Naturally Expected Approximation Guarantee
	Reanalysis of Deterministic Double Greedy
	Reanalysis of Randomized Double Greedy

	Extended Result for Non-Positive Linear Functions
	Proof of Theorem 3.1

