
The Open University of Israel
Department of Mathematics and and Computer Science

Maximum Matching sans Maximal Matching: A New Approach for

Finding Maximum Matchings in the Data Stream Model

Thesis submitted as partial fulfillment of the requirements
towards an M.Sc. degree in Computer Science

The Open University of Israel
Department of Mathematics and Computer Science

By

Ariel Szarf

Prepared under the supervision of
Prof. Moran Feldman and Prof. Zeev Nutov

October 2021

Table of Contents

1 Introduction 3
1.1 Related Work . 5

2 Preliminaries 6

3 Two-Pass Non-MMF Algorithm 7

4 Three-Pass Algorithm for Triangle-Free Graphs 13

5 Three-Pass Algorithm for General Graphs 18

6 Conclusion and Future Work 22

A Three-Pass Non-MMF Algorithm 24

B Two-Pass Algorithm for Triangle-Free Graphs 29

List of Tables and Figures

Table 1 Known and new approximation ratios using two or three passes 4
Figure 1 Types of components and M∗ edges that can incident them 11

List of Algorithms

1 Maximum Matching via Greedy Triangles - Two Passes 8
2 TriangleFreeAlg – First Pass . 13
3 TriangleFreeAlg – Second Pass . 14
4 TriangleFreeAlg – Third Pass . 15
5 Maximum Matching via Augmenting Paths – General Graphs 19
6 Construction of W ′2 . 20
7 Construction of P ′ . 21
8 Maximum Matching via Greedy Triangles - 3 passes 25
9 TriangleFreeAlg – First and Second Passes 30

1

Abstract

The problem of finding a maximum size matching in a graph (known as the maximum match-
ing problem) is one of the most classical problems in computer science. Despite a significant
body of work dedicated to the study of this problem in the data stream model, the state-of-the-
art single-pass semi-streaming algorithm for it is still a simple greedy algorithm that computes
a maximal matching, and this way obtains 1/2-approximation. Some previous works described
two/three-pass algorithms that improve over this approximation ratio by using their second and
third passes to improve the above mentioned maximal matching. One contribution of this thesis
continuous this line of work by presenting new three-pass semi-streaming algorithms that work
along these lines and obtain improved approximation ratios of 0.6111 and 0.5694 for triangle-free
and general graphs, respectively.

Unfortunately, a recent work [20] shows that the strategy of constructing a maximal match-
ing in the first pass and then improving it in further passes has limitations. Additionally, this
technique is unlikely to get us closer to single-pass semi-streaming algorithms obtaining a bet-
ter than 1/2-approximation. Therefore, it is interesting to come up with algorithms that do
something else with their first pass (we term such algorithms non-maximal-matching-first al-
gorithms). No such algorithms are currently known (to the best of our knowledge), and the
main contribution of this thesis is describing such algorithms that obtain approximation ratios
of 0.5384 and 0.5555 in two and three passes, respectively, for general graphs (the result for
three passes improves over the previous state-of-the-art, but is worse than the result of this
thesis mentioned in the previous paragraph for general graphs). The improvements obtained by
these results are, unfortunately, numerically not very impressive, but the main importance (in
our opinion) of these results is in demonstrating the potential of non-maximal-matching-first
algorithms.

Keywords: Maximum matching, semi-streaming algorithms, multi-pass algorithms

2

1 Introduction

The problem of finding a maximum size matching in a graph (known as the maximum matching
problem) is one of the most classical problems in computer science, and many polynomial time
algorithms have been designed for it over the years (see, e.g., [4, 8, 14]). Due to its central role, the
maximum matching problem is often one of the first problems considered when new computational
models are suggested. One such model is the data stream model, which is motivated by Big-Data
applications, and has been the subject of an enormous amount of research over the last couple of
decades.

In the data stream model, the algorithm receives the input in the form of a stream which it
can read sequentially, but due to memory restrictions, the algorithm can store only a small part
of this stream. This means that the algorithm has to process (in some sense) the input stream
while reading it, and never gets an opportunity to see all the parts of the input at the same time.
Traditional algorithms for this model, known as streaming algorithms, are allowed only memory that
is poly-logarithmic in the natural parameters of the problem. Obtaining a streaming algorithm for
a problem is very desirable, but is often not possible. In particular, many graph problems provably
do not admit streaming algorithms, and the maximum matching problem is among these problems
if one would like an algorithm for the problem to output an (approximately) maximum matching
because such a matching might be of linear size in the number of vertices. Nevertheless, non-
trivial streaming algorithms have been designed for the maximum matching problem when only
the (approximate) size of a maximum matching is desired (see Section 1.1 for details).

The resistance of many graph problems to streaming algorithms has motivated Feigenbaum et
al. [11] to suggest semi-streaming algorithms, which are algorithms for the data stream model that
are allowed a space complexity of O(n logc n) for some constant c ≥ 0, where n is the number of
vertices in the graph. Such algorithms turn out to be a sweet-spot that on the one hand allows many
results of interest, and on the other hand, does not lead to triviality because O(n logc n) is less than
the space necessary for storing the input graph (unless this graph is very sparse). In particular,
Feigenbaum et al. [11] observed that one can obtain 1/2-approximation for the maximum matching
problem using a simple semi-streaming algorithm that greedily constructs a maximal matching.1

The above 1/2-approximation semi-streaming algorithm for the maximum matching problem also
has the desirable property that it reads the input stream only once (i.e., it makes a single pass over
it). Surprisingly, no single-pass semi-streaming algorithm improving over the approximation ratio of
this simple algorithm was suggested in the decade and a half that has already passed since the work
of [11] (in contrast, Kapralov [17] showed that no such algorithm can have an approximation ratio
better than 1/(1 + ln 2) ≈ 0.59, improving over previous inapproximability results due to [13, 16]).
Given this lack of progress, interest arose in obtaining improved approximation ratios for relaxed
versions of the above problem. Perhaps, the simplest such relaxation is to allow the algorithm
to make multiple (sequential) passes over the input stream. Some works tried to understand the
approximation ratio that can be obtained as the number of passes grows (but remains constant)—
see Section 1.1 for more detail. Another line of work is interested in studying semi-streaming
algorithms with very few passes (usually two or three).

The state-of-the-art results for the last line of work are summarized in Table 1. We note that
beside the state-of-the-art results for general input graphs, Table 1 also gives improved results
for bipartite and triangle-free graphs. All the known results in this line of work (to the best of
our knowledge) start by greedily constructing a maximal matching during the first pass over the
input stream, and then augmenting this matching in the subsequent passes. Recently, Konrad

1A maximal matching is a matching that is inclusion-wise maximal, and it is well-known that the size of any
maximal matching is a 1/2-approximation for the size of a maximum matching.

3

Table 1: The state-of-the-art approximation ratios for semi-streaming algorithms using two or three
passes, and our improvements over these ratios (the number to the right of each improvement is
the number of the theorem formally stating it).

Number Type of
State-of-the-Art This Thesis

of Passes Graphs

Two-Pass
Bipartite 2−

√
2 ≈ 1

2 + 1
11.66 ≈ 0.5857 [19] -

Triangle-Free 1
2 + 1

16 = 0.5625 [15] -

General 1
2 + 1

32 = 0.53125 [15] 1
2 + 1

26 ≈ 0.5385 (1.1)

Three-Pass
Bipartite 0.6067 ≈ 1

2 + 1
9.37 [19] 1

2 + 1
9 ≈ 0.6111 (1.3)

Triangle-Free 1
2 + 1

10 = 0.6 [15] 1
2 + 1

9 ≈ 0.6111 (1.3)

General 1
2 + 81

1600 ≈
1
2 + 1

19.753 ≈ 0.5506 [15] 1
2 + 1

14.4 ≈ 0.5694 (1.4)

and Naidu [20] showed that this technique has limitations (specifically, even for bipartite graphs,
a two-pass semi-streaming algorithm based on this technique cannot obtain a better than 2/3-
approximation). Additionally, and arguably more importantly, multi-pass algorithms that use
their first pass for constructing a maximal matching are unlikely to be a step towards a single-pass
semi-streaming algorithm with a better than 1/2-approximation guarantee.

Given the above observations, it is natural to believe that the future of the study of semi-
streaming algorithms for the maximum matching problem lies in algorithms that use their first
pass in a more sophisticated way than simply constructing the traditional maximal matching. We
term such algorithms non-maximal-matching-first algorithms (or non-MMF algorithms for short). In
this thesis, we present the first non-MMF algorithms, which leads to improvements over the state-
of-the-art both for two and three passes. Admittedly, the improvements we obtain are numerically
not very impressive, but their main importance (in our opinion) is in demonstrating the potential
of non-MMF algorithms.

To intuitively understand our non-MMF algorithms, one should note that greedily constructing
a maximal matching is equivalent to greedily constructing a graph whose connected components
are of size at most 2 (where the size of a connected component is defined as the number of vertices
in it). Therefore, a natural generalization is to greedily construct in the first pass a graph whose
connected components are of size at most 3. There are two intuitive advantages for doing that
compared to constructing a maximal matching.

� If many connected components end up to be of size 2 rather than 3, then it is not possible for
many of the edges of a maximum matching to intersect only a single connected component
of the constructed graph; and therefore, the constructed graph must have many connected
components compared to the size of a maximum matching.

� A connected component of size 3 can contribute two edges to the output matching if it is
“augmented” during in the next passes with a single additional edge. In contrast, doing the
same with a connected component of size 2 requires “augmenting” it with two additional
edges. It is important to note that there is a significant conceptual difference between an
augmentation of a connected component with one or two edges. Augmenting a connected
component with two edges requires finding pairs of edges that augment the same connected
component, while augmenting with a single edge does not require such a synchronization.

4

Using the above ideas, we prove in Section 3 and Appendix A the following two theorems, respec-
tively.

Theorem 1.1. There exists a non-MMF 2-pass (7/13 = 1/2 + 1/26)-approximation semi-streaming
algorithm for finding a maximum size matching in a general graph.

Theorem 1.2. There exists a non-MMF 3-pass (5/9 = 1/2 + 1/18)-approximation semi-streaming
algorithm for finding a maximum size matching in a general graph.

As mentioned above, both Theorems 1.1 and 1.2 represent an improvement over the state-
of-the-art. However, it turns out that we can further improve over Theorem 1.2 using new MMF

algorithms (i.e., algorithms that construct a maximal matching in their first pass). This leads to
the following theorems whose proofs appear in Sections 4 and 5, respectively.

Theorem 1.3. There exists a 3-pass (11/18 = 1/2 + 1/9)-approximation semi-streaming algorithm
for finding a maximum size matching in a triangle-free graph.2

Theorem 1.4. There exists a 3-pass (1/2 + 1/14.4)-approximation semi-streaming algorithm for
finding a maximum size matching in a general graph.

The algorithms used to prove Theorems 1.3 and 1.4 are strongly based on the algorithms
suggested by Kale and Tirodkar [15]. For example, the first two passes of the algorithm suggested
by Theorem 1.3 are identical to a two-pass algorithm presented by [15], and the third pass of this
algorithm is very similar to the third pass of the three-pass algorithm of [15]. Our novelty, however,
is in our ability to analyze the algorithm obtained by putting these two components together.

In Section B, we analyze the approximation ratio produced by the first and second passes of our
algorithm for triangle-free graph (without the third pass). This does not lead to an improvement
over the state-of-the-art approximation ratio for two passes, however, our analysis is stronger than
the analysis of Kale and Tirodkar in [15] for the same passes. Specifically, Kale and Tirodkar
showed that these passes guarantee (1/2 + 1/20)-approximation in triangle-free graphs, and we show
that the same algorithm in fact guarantees (1/2 + 1/18)-approximation for triangle-free graphs and
(1/2 + 1/14)-approximation for bipartite graphs.

1.1 Related Work

As mentioned in Section 1, streaming algorithms are not appropriate for the maximum matching
problem when the algorithm is required to output an (approximately) maximum matching. How-
ever, some non-trivial streaming algorithms are known for this problem when the algorithm is only
required to estimate the size of the maximum matching. Kapralov et al. [18] designed a poly-log
approximation streaming algorithm for this problem under the assumption that the edges in the
input stream are ordered in a uniformly random order. A different line of work [6, 10, 22] consid-
ered graphs of bounded arboricity α, comulating with the work of McGregor and Vorotnikova [23],
who designed (α + 2)(1 + ε)-approximation streaming algorithm for this problem requiring only
O(ε−2 log n) space.

Recall that, to date, the best single-pass semi-streaming algorithm for the maximum matching
problem is still the natural greedy algorithm, which guarantees 1/2-approximation. Chitnis et
al. [5] presented an exact single-pass algorithm for this problem. However, this algorithm requires

2We recall that every bipartite graph is triangle-free, and therefore, the same result is obtained also for bipartite
graphs.

5

Õ(k2) memory, where k is an upper bound on the size of the maximum matching (which the
algorithm needs to know upfront), and thus, this algorithm is a semi-streaming algorithm only when
k = Õ(

√
n). Given the difficultly to improve over the guarantee of the greedy algorithm using single-

pass semi-streaming algorithms, people started to considered relaxed versions of the maximum
matching problem. One standard relaxation is to allow the algorithm to make multiple passes over
the input stream. Section 1 surveys algorithms of this kind that use two or three passes. Another
line of work considers algorithms that assume a constant (but possibly large) number of passes.
The first result of this kind was presented by Feigenbaum et al. [11] (in the same paper that also
introduced the notion of semi-streaming algorithms), and guaranteed (2/3−ε)-approximation using
O(ε−1 log ε−1) passes for bipartite graphs. Later [21] showed how to obtain (1− ε)-approximation
for general graphs using (ε−1)O(ε−1) passes, and the number of passes necessary to obtain this
guarantee was improved by many further works (see, e.g., [1, 3, 12]). Another standard relaxation
for the maximum matching problem is to assume that the edges of the input stream appear in
a uniformly random order. The state-of-the-art for this relaxation is a (2/3 + ε0)-approximation
single-pass semi-streaming algorithm, where ε0 > 0 is some absolute constant [2] (see also the
references therein for previous works on this relaxation).

The related maximum weight matching problem was also studied heavily in the context of the
data stream model. Here, it is not immediately clear that one can obtain a constant approximation
ratio using a single-pass semi-streaming algorithm. However, Feigenbaum et al. [11] presented
the first such algorithm guaranteeing 1/6-approximation, and this ratio was improved in series of
works [7, 9, 21, 25]. The current state-of-the-art for the problem is (1/2− ε)-approximation due to
Paz and Schwartzman [24]. Since this approximation ratio is essentially identical to the state-of-
the-art for the (unweighted) maximum matching problem, any further progress on the maximum
weight matching problem will imply an improvement over the guarantee of the greedy algorithm
for the (unweighted) maximum matching problem.

2 Preliminaries

In this section we present the problem that we study more formally, and also introduce the notation
used throughout the rest of the thesis. We are interested in semi-streaming algorithms for the
problem of finding a maximum size matching in a graph G = (V,E) of n vertices. A semi-
streaming algorithm for this problem is an algorithm with a space complexity of O(n logc n) (for
some constant c ≥ 0) that initially has no knowledge about the edges of E. Instead, the edges of
E appear sequentially in an “input stream”, and the algorithm may make one or more passes over
this input stream. In each pass the algorithm sees the edges one by one, and may do arbitrary
calculations after viewing each edge. It is important to note that the space complexity allowed for
the algorithm does not suffice for storing all the edges of the graph (unless the graph is very sparse),
and this is the reason that the algorithm might benefit from doing multiple passes over the input
stream. It is standard to assume that the vertices of V are known upfront, and that each vertex of
V can be stored using O(log n) bits (which implies that every edge of E can also be stored using
this asymptotic number of bits).

Throughout the thesis, we consider only unweighted graphs and matchings. We also denote by
M∗ an arbitrary maximum matching of G (i.e., an arbitrary optimal solution for our problem).
Notation-wise, we treat M∗ (and any other matching considered in the thesis) as a set of the edges
included in it. Similarly, when considering a connected component C of a graph, we treat it as a
set of the vertices in it, which in particular, implies that |C| is the number of such vertices.

Given a set of edges S or a path P in a graph, we denote by V (S) and V (P) the set of vertices

6

intersecting any edge of S or P , respectively. Similarly, the set of edges included in the path P is
denoted by E(P). Often we need to consider collections of paths (or triangles) in a given graph.
For clarity, such collections are always denoted using calligraphic letters, and we extend the above
notation to such collections. In other words, if P is a collection of paths, then V (P) and E(P) is
the set of vertices and edges, respectively, that are included in these paths. Finally, given a set S of
edges and a vertex v, we use degS(v) to denote the degree of the vertex v in the subgraph (V, S).

3 Two-Pass Non-MMF Algorithm

In this section we prove Theorem 1.1, which we repeat below for convenience.

Theorem 1.1. There exists a non-MMF 2-pass (7/13 = 1/2 + 1/26)-approximation semi-streaming
algorithm for finding a maximum size matching in a general graph.

The algorithm whose existence is guaranteed by Theorem 1.1 appears as Algorithm 1. In its first
pass, this algorithm greedily grows a set P of edges that form either triangles or partial triangles
(i.e., isolated edges or paths of length 2). For simplicity, we refer below to the connected components
of (V, P) that are not isolated vertices as partial triangles although, technically, they can also be
full triangles. In the second pass of Algorithm 1, the algorithm tries to convert the partial triangles
of P into more involved structures in one of two ways. To understand these ways, we need to
define some terms. First, we designate some of the vertices of every partial triangle as “connection
vertices”. Specifically, all the vertices of a triangle are considered connection vertices; in a path of
length 2 only the two end points are considered to be connection vertices; and finally, in an isolated
edge there are no connection vertices. We refer to a partial triangle that was not converted yet into
a more involved structure as a “näıve” partial triangle. The first way in which Algorithm 1 tries
to convert the partial triangles of P into more involved structures is by greedily adding edges that
connect a connection vertex of a näıve partial triangle with an isolated vertex. The set A1 in the
algorithm includes the edges that were added in this way. In parallel, the algorithm also tries a
second way to convert the partial triangles of P into more involved structures, which is to greedily
add edges that connect a connection vertex of a näıve partial triangle either to a connection vertex
of another näıve partial triangle or to an isolated vertex. The set A2 in the algorithm includes the
edges that were added in this way. Upon termination, Algorithm 1 outputs a maximum matching
in the set of all the edges that it kept. We recall that given a connected component C of a graph,
the notation |C| represents the number of vertices in C.

We begin the analysis of Algorithm 1 by showing that it is indeed a semi-streaming algorithm.

Observation 3.1. Algorithm 1 is a semi-streaming algorithm.

Proof. Since every connected component of the graph (V, P) is of size at most 3, the set P contains
at most n edges. Furthermore, each connected component of (V, P) intersects at most a single edge
of the set A1 and at most a single edge of the set A2, and therefore, each one of these sets can
include at most n/2 edges. Hence, in total, Algorithm 1 keeps only O(n) edges.

In the rest of this section we analyze the approximation ratio of Algorithm 1. Recall that
we use M∗ to denote some maximum matching of G. Our first objective in the analysis of the
approximation ratio of Algorithm 1 is to lower bound the number of edges ofM∗ that can potentially
be added either to A1 or to A2. Towards this goal, we define a charging scheme π. Under the
charging scheme π, every edge (u, v) ∈M∗ charges the connected components of u and v in (V, P).
Each one of these connected components is charged one unit by (u, v), unless it is an isolated edge

7

Algorithm 1: Maximum Matching via Greedy Triangles - Two Passes

// First Pass

1 Let P ← ∅.
2 for every edge e that arrives do
3 if every connected component of the graph (V, P ∪ {e}) is either a path of length at

most 2 or a triangle (cycle of size 3) then
4 Add e to P .

// Second Pass

5 Let A1 ← ∅ and A2 ← ∅.
6 for every edge (u, v) 6∈ P that arrives do
7 Let Cu and Cv be the connected components of u and v, respectively, in (V, P). We

assume without loss of generality that |Cu| > 1, otherwise we swap the roles of u
and v. // Note that we cannot have |Cu| = |Cv| = 1 because the edge (u, v)
was not added to P in the first pass.

8 if no edge of A1 intersects Cu and Cv, |Cv| = 1 and u is a connection vertex of Cu then
9 Add the edge (u, v) to A1.

10 if no edge of A2 intersects Cu and Cv, |Cv| = 1 and u is a connection vertex of Cu then
11 Add the edge (u, v) to A2.

12 else if no edge of A2 intersects Cu and Cv, and u and v are connection vertices of Cu
and Cv, respectively then

13 Add the edge (u, v) to A2.

14 return a maximum matching in the graph (V, P ∪A1 ∪A2).

or an isolated vertex, in which case it is charged only half a unit or nothing by (u, v), respectively.
We note that when u and v belong to the same connected component of (V, P), then this connected
component is charged twice by (u, v).3

The following observation provides an upper bound on the total charged by all the edges of M∗

together. Let (#single) be the number of isolated edges in P , (#double) be the number of connected
components in (V, P) that are paths of length 2 and (#triangle) be the number of triangles in P .

Observation 3.2. The total charge according to π is at most (#single)+3(#double)+3(#triangle).

Proof. Every positive amount charged by π is charged to some connected component of (V, P)
which is not an isolated vertex. Therefore, to prove the observation we only need to show that
every isolated edge of (V, P) is charged at most one unit, and every connected component of (V, P)
that is either a path of length 2 or a triangle is charged at most 3 units. Below we are argue that
this is indeed the case.

Each connected component C of (V, P) can be charged at most once for every one of its vertices
since the fact that M∗ is a matching implies that every vertex of C can appear in at most a single
edge of M∗. For isolated edges of (V, P), this implies that they can be charged at most twice, and

3Intuitively, the charge assigned to the connected components of u and v is proportional to the “blame” that can
be assigned to them if (u, v) ends up to be outside P . For example, an isolated edge could not alone prevent (u, v)
from being added to P , but two such edges (one intersecting u and the other intersecting v) could, together, prevent
(u, v) from being added to P . Therefore, we assign a charge of 1/2 to isolated edges. Observation 3.3 is based on this
intuition.

8

therefore, they are charged at most one unit because they are charged half a unit in each charge.
Similarly, connected components of (V, P) that are either paths of length 2 or triangles contain 3
vertices, and therefore, can be charged at most three times. Since every one of these charges is of
a single unit, the total charge to each connected component of these kinds is at most 3.

To complement the last observation, let us now describe a simple lower bound on the total
charging done by all the edges of M∗ according to π. Let (#component-free) be the number of edges
of M∗ that connect a connection vertex of a connected component of (V, P) to an isolated vertex of
(V, P), (#component-component) be the number of edges of M∗ that connect connection vertices of
two different connected components of (V, P), (#single-single) be the number of edges of M∗ whose
two end points belong to (not necessary distinct) isolated edges of (V, P), (#single-component) be
the number of edges of M∗ that connect a vertex of an isolated edge of (V, P) with a connection
vertex of some (other) connected component of (V, P) and (#middle) be the number of edges that
either intersect the middle vertex of a length 2 path connected component of (V, P) or are included
within a triangle connected component of (V, P).

Observation 3.3. The total charge of all the edges of M∗ according to the charging scheme π is at
least (#component-free)+2(#component-component)+(#single-single)+1.5(#single-component)+
(#middle).

Proof. Since the edges of M∗ counted by (#component-free) intersect a connection vertex, they
must intersect a connected component of (V, P) which is not an isolated vertex or an isolated
edge, and therefore, they charge this connected component one unit. Hence, the total charge by
all the edges counted by (#component-free) is at least (#component-free). Similar logic shows
that the total charge by all the edges counted by (#component-component), (#single-single),
(#single-component) and (#middle) are at least 2(#component-component), (#single-single) ,
1.5(#single-component) and (#middle), respectively. The observation now follows since the edges
of M∗ counted by (#component-free), (#component-component), (#single-single), (#middle) and
(#single-component) are distinct.

Combining Observations 3.2 and 3.3, we get the following inequality.

(#component-free) + 2(#component-component) + (#single-single) (1)

+ 1.5(#single-component) + (#middle) ≤ (#single) + 3(#double) + 3(#triangle) .

In its current form, Inequality (1) is not very useful. We later derive from it a more convenient
inequality, but before doing this we need to prove a few other inequalities. Let (#non-M∗-triangles)
denote the number of triangle connected components of (V, P) that do not include any edge of M∗

within them.

Lemma 3.4. The following inequalities hold

(#component-free) + (#component-component) + (#single-single)

+(#middle) + (#single-component) ≥ |M∗| ,
(2)

(#double) + (#triangle)− (#non-M∗-triangles) ≥ (#middle) , (3)

(#single-component) ≤ 2(#single-single) + (#single-component) ≤ 2(#single) , (4)

and they imply together

(#component-free) + (#component-component) + 2(#single)

+ (#double) + (#triangle)− (#non-M∗-triangles) ≥ |M∗| .

9

Proof. Since every edge that is included in a connected component of (V, P) which is a path of
length 2 must include the middle vertex of this path, every edge e ∈ M∗ that is not counted
by either (#component-free), (#component-component), (#single-single), (#single-component) or
(#middle) must either connect a vertex of an isolated edge of (V, P) to an isolated vertex or connect
two isolated vertices of (V, P). However, such edges cannot exists. Specifically, assume towards
a contradiction that (u, v) is an edge of M∗ such that u is an isolated vertex of (V, P) and v is
either another isolated vertex of (V, P) or belongs to an isolated edge of this graph. Then, the edge
(u, v) should have been added by Algorithm 1 to P upon arrival, which contradicts the fact that
its end point u ended up as an isolated vertex of (V, P). Hence, every edge e ∈ M∗ is counted
by either (#component-free), (#component-component), (#single-single), (#single-component) or
(#middle), which implies Inequality (2).

Recall that every edge counted by (#middle) must either be included in a triangle connected
component of (V, P) or intersect the middle vertex of a path of length 2 connected component of
(V, P). Since M∗ is a matching, only one edge of M∗ can intersect the middle vertex of a given
length 2 path or be included in a given triangle, and therefore, every edge counted by (#middle) can
be associated with a distinct path of length 2 or triangle component of (V, P) that is not counted
by (#non-M∗-triangles), which implies Inequality (3).

Every edge counted by (#single-single) touches two end-points of isolated edges of (V, P).
Similarly, every edge counted by (#single-component) intersects an end-point of an isolated edge
of (V, P). Since every end-point of an isolated edge of (V, P) can be touched by at most a single
edge of M∗ because M∗ is a matching, this implies that the number of end points of the isolated
edges of (V, P) is at least 2(#single-single) + (#single-component). However, this number is also
equal to 2(#single), which implies Inequality (4).

The last inequality in the previous lemma provides a lower bound on (#component-free) +
(#component-component), and one can view (#component-free) + (#component-component) as
a count of edges of M∗ that have potential to be added to A2 in Algorithm 1. The next lemma
is the promised derivative of Inequality (1), and it provides a lower bound on (#component-free).
Observe that (#component-free) is a count of edges of M∗ that have the potential to be added to
A1.

Lemma 3.5. 2|M∗| ≤ (#component-free) − (#non-M∗-triangles) + 2(#single) + 4(#double) +
4(#triangle).

Proof. Adding twice Inequality (2) to Inequality (1), we get

2|M∗| − (#component-free)− (#single-single)− 0.5(#single-component)− (#middle)

≤ (#single) + 3(#double) + 3(#triangle) .

The lemma now follows by adding Inequality (3) and half of Inequality (4) to the last inequality.

So far we have shown lower bounds on the size of the sets of edges that have a potential to be
added to A1 or A2 by Algorithm 1. Our next step is to lower bound the size of the sets A1 and A2

that Algorithm 1 ends up constructing using this potential.

Lemma 3.6. 3|A1| ≥ (#component-free)− (#non-M∗-triangles).

Proof. We say that an edge e of M∗ counted by (#component-free) is excluded by an edge f ∈ A1

if e and f intersect the same connected component of (V, P). One can observe that every edge e
counted by (#component-free) is excluded by some edge of A1 (possibly itself) when Algorithm 1

10

M
∗

M
∗

(a) Path of length 2

M
∗

M∗

(b) M∗-triangle

M
∗

M
∗

M
∗

(c) Non-M∗-triangle

Figure 1: A graphical study of the maximum number of M∗ edges counted by (#component-free)
that can intersect connection vertices of various types of partial triangles. Sub-figures (a) and (b)
show that at most two such edges can intersect the connection vertices of a path of length 2 and an
M∗-triangle (i.e., a triangle that includes an edge of M∗). Sub-figure (c) shows that the connection
vertices of a non-M∗-triangle can intersect up to 3 edges of M∗.

terminates because otherwise Algorithm 1 would have added e to A1, which would have resulted
in e excluding itself. Therefore, we can upper bound (#component-free) by counting the number
of edges excluded by the edges of A1.

Let (u, v) be an edge of A1, and assume without loss of generality that v is the end point of
this edge which is an isolated vertex of (V, P). This implies that u is a connection vertex of a
connected component Cu of (V, P) which is either a path of length 2 or a triangle. If Cu is a
path of length 2, then the edge (u, v) can exclude only edges counted by (#component-free) that
intersect either v or a connection vertex of Cu, and there can be only 3 such edges because M∗ is
a matching (see Figure 1a). Next, consider the case in which Cu is a triangle which is not counted
by (#non-M∗-triangles). In this case there can be at most 2 edges of OPT intersecting Cu (see
Figure 1b), and therefore, even though (u, v) can exclude any edge of M∗ intersecting Cu or v,
there can be only 3 such edges. It remains to consider the case in which Cu is a triangle counted
by (#non-M∗-triangles). In this case, (u, v) can again exclude every edge of M∗ that intersects Cu
or v, and this time there can be at most 4 such edges (see Figure 1c). Combining all the above, we
get that the number of edges excluded by all the edges of A1 is at most

3|A1|+ |{e ∈ A1 | e intersects a triangle counted by (#non-M∗-triangles)}| .

As explained above, this expression is an upper bound on (#component-free). Furthermore, since
A1 includes at most a single edge intersecting every connected component of (V, P), the second
term in this expression is upper bounded by (#non-M∗-triangles). Therefore, we get

(#component-free) ≤ 3|A1|+ (#non-M∗-triangles) .

The lemma now follows by rearranging this inequality.

11

The next corollary now follows by combining Lemmata 3.5 and 3.6.

Corollary 3.7. 2|M∗| ≤ 3|A1|+ 2(#single) + 4(#double) + 4(#triangle).

Lemma 3.8. 4|A2| ≥ (#component-component) + (#component-free)− (#non-M∗-triangles).

Proof. The proof of Lemma 3.8 is very similar to the proof of Lemma 3.6, and therefore, we
only sketch it. We first define that an edge e ∈ A2 excludes an edge f of M∗ counted by either
(#component-component) or (#component-free) if they both intersect the same connected compo-
nent of (V, P). Like in the proof of Lemma 3.6, it can be argued that (#component-component) +
(#component-free) is upper bounded by the total number of edges of M∗ excluded by the edges
of A2, and on the other hand, every edge e of A2 excludes up to 4 + T (e) edges, where T (e) is the
number of triangles counted by (#non-M∗-triangles) that intersect e. Therefore,

(#component-component) + (#component-free) ≤
∑
e∈A2

[4 + T (e)] ≤ 4|A2|+ (#non-M∗-triangles) ,

where the second inequality holds since every connected component of (V, P) intersects only a single
edge of A2. The lemma now follows by rearranging the last inequality.

The next corollary follows by combining Lemma 3.8 and the final inequality in Lemma 3.4.

Corollary 3.9. |M∗| ≤ 4|A2|+ 2(#single) + (#double) + (#triangle).

Let us now denote L = (#single) + (#double) + (#triangle) + max{|A1|, |A2|}. We argue below
that L is a lower bound on the size of the solution produced by Algorithm 1. However, before
proving this, let us show first that L is large.

Lemma 3.10. L ≥ 7/13|M∗|.

Proof. Plugging the definition of L into Corollaries 3.7 and 3.9 yields the inequalities

2|M∗| ≤ 3L− (#single) + (#double) + (#triangle)

and
|M∗| ≤ 4L− 2(#single)− 3(#double)− 3(#triangle) .

Adding the first of these inequalities three times to the second one gives

7|M∗| ≤ 13L− 5(#single) ≤ 13L ,

where the second inequality holds since (#single) is non-negative by definition. The lemma now
follows by rearranging the above inequality.

As promised, we now argue that the size of the matching produced by Algorithm 1 is at least
L.

Lemma 3.11. Algorithm 1 outputs a matching of size at least L.

Proof. Since Algorithm 1 outputs a maximum matching in (V, P ∪ A1 ∪ A2), to prove the lemma
it suffices to show that the graph (V, P ∪A1) includes a matching of size (#single) + (#double) +
(#triangle) + |A1| and the graph (V, P ∪A2) includes a matching of size (#single) + (#double) +
(#triangle) + |A2|. We prove below only the claim regarding (V, P ∪ A2). The claim regarding
(V, P ∪A1) can be proved analogously.

Let H be the number of edges in A2 that connect two non-isolated vertices of (V, P). Then, we
classify the connected components of (V, P ∪A2) as follows, and show how to build a large matching
M based on this classification.

12

� (V, P ∪ A2) includes (#single) + (#double) + (#triangle)− |A2| −H connected components
that are (i) not an isolated node, and (ii) appear also in (V, P). Each one of these connected
components contains at least one edge, and therefore, can contribute some edge to M .

� (V, P ∪A2) includes |A2| −H connected components that consist of a connected component
C of (V, P) that has connection vertices and an edge e connecting a connection vertex of C
to an isolated vertex of (V, P). One can observe that the combination of C and e must be
either a path of length 3 or a triangle and an edge attached to one of its vertices, and in
both cases this combined connected component contains two vertex disjoint edges which it
can contribute to the matching M .

� (V, P ∪ A2) includes H connected components that consist of two connected components
C1, C2 of (V, P) that have connection vertices and an edge e connecting a connecting vertex
of C1 with a connecting vertex of C2. There are three shapes that the connected component
obtained in this way can take: a path of length 5, a triangle with a path of length 3 attached
to one of its vertices or two triangles and an edge connecting them. However, one can
observe that all these shapes include three vertex disjoint edges that can be contributed to
the matching M .

By collecting from every connected component of (V, P ∪ A2) the edges that it can contribute to
M according to the above analysis, we get a matching in (V, P ∪A2) of size at least

[(#single) + (#double) + (#triangle)− |A2| −H] + 2[|A2| −H] + 3H

= (#single) + (#double) + (#triangle) + |A2| .

Lemmata 3.10 and 3.11 imply together the following corollary. Together with Observation 3.1,
this corollary implies Theorem 1.1.

Corollary 3.12. Algorithm 1 is a 7/13-approximation algorithm.

4 Three-Pass Algorithm for Triangle-Free Graphs

In this section we prove Theorem 1.3, which we repeat here for convenience.

Theorem 1.3. There exists a 3-pass (11/18 = 1/2 + 1/9)-approximation semi-streaming algorithm
for finding a maximum size matching in a triangle-free graph.

We refer to the algorithm whose existence is guaranteed by Theorem 1.3 as TriangleFreeAlg.
In its first pass, TriangleFreeAlg constructs a maximal matching M0 of G. Formally, the
pseudocode for this pass appears as Algorithm 2.

Algorithm 2: TriangleFreeAlg – First Pass

1 Let M0 ← ∅.
2 for every edge e that arrives do
3 Add e to M0 if it does not intersect any edge that already belongs to M0.

We say that an edge e ∈ E is a wing if e includes exactly one vertex of V (M0). Intuitively, the
reason we are interested in wings is that one can obtain an augmenting path4 for M0 by combining

4A path P is an augmenting path for a matching M if M ⊕ E(P) is a valid matching of size |M |+ 1.

13

an edge (u, v) ∈M0 with two wings: one wing that intersects u and one wing that intersects v. The
second pass of TriangleFreeAlg grows a set W of wings. Since we hope to construct multiple
augmenting paths using these wings, the algorithm makes sure to limit the number of wings in
W that intersect any given vertex u (specifically, the algorithm allows only a single wing in W
to intersect u if u ∈ V (M0), and otherwise it allows up to two wings of W to intersect u). The
pseudocode of this second pass appears as Algorithm 3.

Algorithm 3 also includes a post-processing step in which a set P1 of augmenting paths (with
respect to M0) is constructed using W . This is done by constructing an auxiliary multi-graph GA
over the vertices of V \ V (M0) in which there is an edge between two nodes u, v ∈ V \ V (M0) for
every path Pu,v of length 3 in W ∪M0 between them. One can note that every such path Pu,v must
be an augmenting path consisting of an edge e ∈ M0 and two wings from W : one intersecting u
and an end-point of e, and the other intersecting v and the other end-point of e. Algorithm 3 finds
a maximum size matching MA in GA, and then sets P1 to be the collection of (augmenting) paths
corresponding to the edges of MA.

Algorithm 3: TriangleFreeAlg – Second Pass

1 Let W ← ∅.
2 for every edge e that arrives do
3 if e intersects exactly one vertex u ∈ V (M0) then
4 Let v denote the other end-point of e (i.e., the end-point that is not u).
5 if degW (u) < 1 and degW (v) < 2 then
6 Add e to W .

// Post-processing

7 Let GA be a multi-graph over the vertices V \ V (M0). For every path Pu,v of length 3 in
W ∪M0 between two vertices u, v ∈ V \ V (M0), we add an edge (u, v) to the graph GA.
// This is a multi-graph because there might be multiple such paths

between a pair of vertices of V \ V (M0).
8 Find a maximum size matching MA in GA.
9 Let P1 ← {Pu,v | (u, v) ∈MA}.

Consider now an edge e ∈M0 that does not appear in any path of P1 and is connected by some
wing w ∈W to some vertex u 6∈ V (M0)∪V (P1). The pair e, w can be extended into an augmenting
path if one can find another wing w′ connecting the other end of e (the end that does not intersect
w) to a vertex v 6∈ V (M0) ∪ V (P1) that is not u. The third pass of TriangleFreeAlg greedily
constructs a collection P2 of augmenting paths in this way. A pseudocode of this pass appears as
Algorithm 4. After completing the pass, Algorithm 4 returns the matching obtained by augmenting
M0 with the augmenting paths of P1 and P2.

We begin the analysis of TriangleFreeAlg with the following lemma, which shows that this
algorithm returns a matching, and also gives a basic lower bound on the size of this matching.

Lemma 4.1. The paths in P1 and P2 are vertex disjoint, and therefore, the output of Triangle-
FreeAlg is a matching of size |M0|+ |P1|+ |P2|.

Proof. Given the above discussion, it is clear that all the paths in P1 ∪P2 are augmentation paths
with respect to M0, which implies that the first part of the lemma indeed implies the second part.
Furthermore, one can observe that the condition in Line 3 of Algorithm 4 guarantees that the paths

14

Algorithm 4: TriangleFreeAlg – Third Pass

1 Let P2 ← ∅.
2 for every edge w′ that arrives do
3 if there exist 4 vertices u, a, b, v ∈ V \ (V (P1) ∪ V (P2)) such that: (i) u 6∈ V (M0), (ii)

w′ = (u, a), (iii) (a, b) ∈M0 and (iv) (b, v) ∈W then
4 Add the path u, a, b, v to P2. // Note that u 6= v because otherwise u, a, b, v

would have been a triangle.

5 return M0 ⊕
(⋃

P∈P1∪P2
E(P)

)
.

in P2 are vertex disjoint from each other and from the paths of P1. Thus, to complete the proof of
the lemma, it remains to argue that the paths in P1 are also vertex disjoint.

Recall that the end-points of every path in P1 belong to V \ V (M0) and the internal points
of these paths belong to V (M0). Therefore, to show that the paths in P1 are vertex disjoint, it
suffices to argue this separately for their end-points and their internal nodes. Every path Pu,v ∈ P1
corresponds to an edge (u, v) in the matching MA. Since the end-points of the path Pu,v are also
the end-points of this edge, we get that the paths in P1 must have disjoint end-points because MA

is a matching. Consider now some path Pu,v ∈ P1, and let us denote the internal nodes of this
path by a and b. Since a and b appear only in the edge (a, b) of M0 (because M0 is a matching),
we get that if one of them belongs to a path of P1, then the other belongs to this path as well.
Furthermore, by Line 8 of Algorithm 3, degW (a) = degW (b) = 1, which implies that any path of
P1 that includes the nodes a and b as internal nodes must in fact be identical to Pu,v itself. Hence,
no two paths in P1 share internal nodes.

Using the last lemma we can also bound the space complexity of Algorithm 4.

Corollary 4.2. TriangleFreeAlg is a semi-streaming algorithm.

Proof. Aside from a constant number of other vertices and edges, TriangleFreeAlg has to store
only the edges of M0∪W and the paths of P1∪P2. As these paths are of constant length (specifically,
a length of 3), to prove the corollary we only need to argue that M0, W , P1 and P2 are all of size
O(n). Below we argue that this is indeed the case.

� M0 is a matching in the graph G, and therefore, its size is at most n/2.
� Every edge of W is a wing, and thus, has one end point in M0. Since Line 8 of Algorithm 3

guarantees that degW (u) ≤ 1 for every vertex u ∈M0, this implies |W | ≤ 2|M0| ≤ n.
� Since the paths in P1∪P2 are vertex disjoint by Lemma 4.1, and each path contains 4 vertices,

the number of paths in both sets together cannot exceed n/4.

It remains to analyze the approximation ratio of TriangleFreeAlg. Our analysis roughly
follows the flow of the algorithm, and thus, we begin by observing that the matching M0 constructed
in the first pass of this algorithm is of size at least |M∗|/2 (recall that M∗ is a maximum size
matching of G) because M0 is a maximal matching of G by construction.

In its second pass, TriangleFreeAlg constructs the set W of wings. Our next objective is
to lower bound the size of W . Towards this goal, we need to define WM to be the set of all edges
of M∗ that are wings (we recall that an edge e is a wing if exactly one of its end points appear in
V (M0)).

Observation 4.3. |WM | ≥ 2(|M∗| − |M0|).

15

Proof. Since M0 is a maximal matching, every edge of M∗ intersects at least one edge of M0.
Hence, every edge of WM includes a single end-point of an edge of M0, and every edge of M∗ \WM

includes two end-points of edges of M0 (the two end-points might belong to different edges or to
the same edge), which implies |M0| ≥ (|WM |+ 2|M∗ \WM |)/2 = |M∗| − |WM |/2. Rearranging this
inequality completes the proof of the observation.

Lemma 4.4. |W | ≥ 2
3 |WM | ≥ 4

3(|M∗| − |M0|).

Proof. Let I = V (M0) ∩ V (WM), and let IF be the set of vertices in I that do not appear in any
edge of W . Every vertex a ∈ IF ⊆ I must belong to some wing w(a) ∈ WM by the definition
I. However, this wing was not added to W (because a ∈ IF), which implies that the condition in
Line 8 of Algorithm 3 evaluated to FALSE when w(a) arrived. Since a is not covered by any edge of
W (i.e., degW (v) = 0), the fact that this condition evaluated to FALSE implies that the end point
of w(a) that does not belong to V (M0) must have a degree of 2 under W . Formally, if we denote
by u(a) the end point of w(a) that does not belong to V (M0), then we must have degW (u(a)) = 2.

We now observe that (i) every wing in WM contains a disjoint vertex of V \ V (M0) because
WM is a subset of the optimal matching M∗, and (ii) every wing in W contains only one vertex of
V \ V (M) because it is a wing. These two observations imply together

|W | ≥
∑
a∈IF

degW (u(a)) = 2|IF | . (5)

In contrast, since (i) every wing in W contains a single vertex of V (M0), and (ii) all the vertices of
I \ IF ⊆ V (M0) appear in some wing of W ,

|W | ≥ |I| − |IF | = |WM | − |IF | , (6)

where the equality holds since every edge of WM is a wing, and therefore, intersects a single vertex
of V (M0). The lemma now follows by adding two copies of Inequality (6) to Inequality (5).

We now get to the analysis of the third pass of TriangleFreeAlg, and our first goal in this
analysis is to identify a set of paths that have a potential (in some sense) to end up in P2. Let
P ′ be the set of paths of length 3 in G that consist of a wing of WM followed by an edge of M0

and then a wing of W . We think of the paths in P ′ as directed from their WM to their W edge,
and consider two paths that differ only in their direction to be different paths. This is important
because if there is an edge e ∈M0 incident to two edges w1, w2 ∈W ∩WM , then the path w1, e, w2

fulfills the requirements to belong to P ′ both when w1 is considered the first edge in it and when
w2 is considered the first edge of the path. Thus, the fact that we treat the direction of the path
as part of the path’s definition allows both the paths w1, e, w2 and w2, e, w1 to appear in P ′.

Observation 4.5. |P ′| ≥ 10
3 |M

∗| − 16
3 |M0|.

Proof. Since degW (a) ≤ 1 for every vertex a ∈ V (M0), there are |W | end-points of M0 that intersect
an edge of W . Let us denote these end-points by VW , and for every end-point a ∈ VW , we denote
by b(a) the other end-point of the same edge of M0. Formally, VW = V (M0) ∩ V (W), and b(a) is
the single element of the set {b | (a, b) ∈ M0}. One can now observe that P ′ includes a (distinct)
path for every wing of WM that intersect b(a) for some vertex a ∈ VW . Therefore,

|P ′| = |{b(a) | a ∈ VW } ∩ V (WM)}|
≥ |{b(a) | a ∈ VW }|+ |V (WM) ∩ V (M0)}| − |V (M0)| = |W |+ |WM | − |V (M0)|
≥ 4

3(|M∗| − |M0|) + 2(|M∗| − |M0|)− |V (M0)| = 10
3 |M

∗| − 16
3 |M0| ,

16

where the first equality holds since {b(a) | a ∈ VW } is a subset of V (M0), and the last inequality
follows from Observation 4.3 and Lemma 4.4.

A path in P ′ has a potential to be added to P2 only if none of its vertices appears in P1. Let
P ′′ be the set of such paths (formally, P ′′ = {P ∈ P ′ | V (P) ∩ V (P1) = ∅}). The following lemma
lower bounds the size of P ′′.

Lemma 4.6. |P ′′| ≥ |P ′| − 6|P1| ≥ 10
3 |M

∗| − 16
3 |M0| − 6|P1|.

Proof. The second inequality of the lemma follows from Observation 4.5, and therefore, we con-
centrate on proving the first inequality. Towards this goal, assume that P ′ ∈ P ′ is a path that
intersects with a path P1 ∈ P1 on an internal vertex. Since the middle edge of both paths is an
edge of M0, this implies that the two paths intersect on both their internal vertices. Furthermore,
since both end-edges of P1 and one end-edge of P ′ belong to W , there must be an internal vertex
a ∈ V (M0) of both paths that intersects an edge of W in both paths. However, since degW (a) ≤ 1,
the edges of W intersecting a in both paths must be identical, which implies that the paths P ′ and
P1 intersect also on some end-point. Since P ′ and P1 where chosen as general paths of P ′ and P1,
respectively, that intersect on an internal node, this implies that the difference |P ′| − |P ′′| is equal
to the number of paths in P ′ that intersect a path of P1 in an end-point. The rest of the proof is
devoted to proving that the last number is at most 6|P1|.

Since each path of P1 has only two end points, to prove that the paths of P1 intersect at most
6|P1| paths of P ′ at an end-point, it suffices to show that every vertex of V \ V (M0) can appear in
at most 3 paths of P ′. To see why that is the case, consider an arbitrary vertex u ∈ V \ V (M0). If
u belongs to some path P ′ ∈ P ′, then it must be in one of two roles as follows.

� If u is the last vertex of the path, then the last edge of the path is an edge e ∈ W that
includes u, and the other edges of the path P ′ are the single edge of M0 intersecting e and
the single edge of WM intersecting e. Note that this means that the identity of the entire
path is determined by the edge e, and therefore, the number of paths of P ′ in which u is the
last vertex can be upper bounded by degW (u) ≤ 2.

� If u is the first vertex of the path, then the first edge of the path is the single edge e ∈ WM

that includes u, and the other edges of the path are the single edge e′ ∈ M0 that intersect e
and the single edge e′′ ∈ W that intersects e′. Hence, the entire path is determined by the
fact that u is its first vertex, and therefore, there can be only a single path in P ′ in which u
is the first vertex.

Originally, all the paths of P ′′ can be picked in the third pass of TriangleFreeAlg (Algo-
rithm 4) since they are vertex disjoint from the paths of P1. However, as Algorithm 4 starts to add
paths to P2, it stops being possible to add some paths of P ′′ to P2. Still, we can lower bound the
size of P2 in terms of the size of P ′′.

Lemma 4.7. |P2| ≥ 1
6 |P

′′| ≥ 5
9 |M

∗| − 8
9 |M0| − |P1|.

Proof. We begin the proof by observing that no edge e ∈ M0 is connect by two distinct wings
w1, w2 ∈ W to vertices of V \ (V (M0) ∪ V (P1)). Assume towards a contradiction that this is not
true, then there is an edge e in GA corresponds to the path P defined as w1, e, w2. Since MA is
a maximum matching in GA, it must include at least one edge that contains some end-point of P
(otherwise, the edge corresponding to P could be added to MA, which violates its maximality);
which contradicts the definition of either w1 or w2.

17

For every path P ′′ ∈ P ′′, let us charge a cost of 1 to some path of P2 that intersects it. To
see why such a path must exist, let us denote by eM the edge of P ′′ that belongs to WM (the first
edge of P ′′). When eM arrives, the path P ′′ was one candidate to be added to P2 by Algorithm 4.
If this candidate was still feasible at this time (in the sense that it was vertex disjoint from P2),
then Algorithm 4 must have added either P ′′ to P2 or another path that includes eM . In either
case, following the arrival of eM , some path intersecting P ′′ (which is possibly P ′′ itself) appears
in P2—and can be charged.

Our next goal is to show that the total cost charged to any single path of P2 is at most 6, which
implies the lemma because the total cost charged to all the paths of P2 is exactly |P ′′|. We do that
by making two observations.

� Since P ′′ ⊆ P ′, we get by the proof of Lemma 4.6 that at most 3 paths of P ′′ can include any
given vertex u ∈ V \ V (M0).

� Our second observation is that, if a path P ′′ ∈ P ′′ intersects a path P2 ∈ P2, then they must
intersect on an end-point of P2. Assume towards a contradictions that they only intersect
on an internal node a. Since the middle edges of both paths are edges of M0 that include a,
both internal edges must be the same. Let us denote this internal edge by e. Furthermore, as
explained above, there can be only a single edge w ∈W that intersects e and does not include
a vertex of V (P1). This edge must belong also to both paths, and therefore, the end-point of
w that does not belong to V (M0) is an end-point of both P ′′ and P2.

Combining the above two observations, we get that, for every path P2 ∈ P2, only paths of P ′′
intersecting an end-point of P2 can charge a cost to P2, and there can be at most 3 paths of P ′′
intersecting each such end-point. Since P2 has only two end-points, this implies that at most 6
paths of P ′′ can charge P2.

Corollary 4.8. The size of the output of TriangleFreeAlg is |M0| + |P1| + |P2| ≥ 11
18 |M

∗| =
(12 + 1

9)|M∗|.

Proof. The size of the output of TriangleFreeAlg is |M0|+ |P1|+ |P2| by Lemma 4.1, thus, we
only need to lower bound this sum. To do this, note that

|M0|+ |P1|+ |P2| ≥ |M0|+ |P1|+ {59 |M
∗| − 8

9 |M0| − |P1|}
= 5

9 |M
∗|+ 1

9 |M0| ≥ 5
9 |M

∗|+ 1
18 |M

∗| = 11
18 |M

∗| ,

where the first inequality follows from Lemma 4.7, and the second inequality follows from the
observation made at the beginning of this section (namely, that |M0| is a 1/2-approximation for
|M∗| because M0 is a maximal matching).

Theorem 1.3 now follows from Corollaries 4.2 and 4.8.

5 Three-Pass Algorithm for General Graphs

In this section we prove Theorem 1.4, which we repeat here for convenience.

Theorem 1.4. There exists a 3-pass (1/2 + 1/14.4)-approximation semi-streaming algorithm for
finding a maximum size matching in a general graph.

18

The algorithm that we use to prove Theorem 1.4 is given as Algorithm 5. Since this algorithm
is very similar to the algorithm TriangleFreeAlg presented in Section 4, we use below the
terminology and notation defined in the last section.

Intuitively, the reason why TriangleFreeAlg does not apply to general graphs is that given
an edge (a, b) ∈M0, a wing (u, a) ∈ WM and a wing (b, v) ∈ W , we are not guaranteed that these
three edges form an augmenting path for the matching M0 because they might represent a triangle.
To overcome this hurdle, Algorithm 5 constructs two sets of edges in its second pass: a set W1

constructed exactly like the set W in TriangleFreeAlg, and a set W2 constructed in the same
way, but while excluding the edges of W1. Since W1 and W2 are disjoint, given an edge (a, b) ∈M0

and a wing (u, a) ∈ WM , at most one of the sets W1 or W2 can contain a wing that forms a
triangle together with these two edges, which intuitively allows us to bound the deterioration in
the approximation guarantee resulting from the existence of such triangles.

Algorithm 5: Maximum Matching via Augmenting Paths – General Graphs

// First Pass

1 Let M0 ← ∅.
2 for every edge e that arrives do
3 Add e to M0 if it does not intersect any edge that already belongs to M0.

// Second Pass

4 Let W1 ← ∅, W2 ← ∅.
5 for every edge e that arrives do
6 if e intersects exactly one vertex u ∈ V (M0) then
7 Let v denote the other end-point of e (i.e., the end-point that is not u).
8 if degW1

(u) < 1 and degW1
(v) < 2 then

9 Add e to W1.

10 else if degW2
(u) < 1 and degW2

(v) < 2 then
11 Add e to W2.

// Post-processing

12 Let GA be a multi-graph over the vertices V \ V (M0). For every path Pu,v of length 3 in
W1 ∪W2 ∪M0 between two distinct vertices u, v ∈ V \ V (M0), we add an edge (u, v) to
the graph GA. // This is a multi-graph because there might be multiple

such paths between a pair of vertices of V \ V (M0).
13 Find a maximum size matching MA in GA.
14 Let P1 ← {Pu,v | (u, v) ∈MA}.

// Third Pass

15 Let P2 ← ∅.
16 for every edge w′ that arrives do
17 if there exist 4 vertices u, a, b, v ∈ V \ (V (P1) ∪ V (P2)) such that: (i) u 6∈ V (M0), (ii)

w′ = (u, a), (iii) (a, b) ∈M0, (iv) (b, v) ∈W1 ∪W2 and (v) u 6= v then
18 Add the path u, a, b, v to P2.

19 return M0 ⊕
(⋃

P∈P1∪P2
E(P)

)
.

We note that the analysis of TriangleFreeAlg up to Lemma 4.4 applies to Algorithm 5 with
two differences.

19

� The proof of Corollary 4.2 upper bounds by n the size of the set W (recall that this set is
identical to the set W1 in Algorithm 5). To make this proof apply to Algorithm 5 as well,
we need to observe that the size of the set W2 is at most n due to the same argument. In
particular, this implies that Algorithm 5 is a semi-streaming algorithm.

� Lemma 4.4 provides a lower bound on the size of the set W , which translates into an identical
lower bound on the size of the corresponding set W1 in Algorithm 5.

In the rest of this section, it will be convenient to work with the set W ′2 constructed by Algo-
rithm 6 (note that Algorithm 6 is used for analysis purposes only). Intuitively, W ′2 is constructed
in the same general way in which W1 and W2 are constructed; however, while all the edges of the
input stream are considered in the construction of W1, and only the edges of E \W1 are considered
in the construction of W2, the construction of W ′2 takes into account the edges of (E \W1) ∪WM .

Algorithm 6: Construction of W ′2

1 Let W ′2 ←W2.
2 for every edge (u, v) ∈W1 ∩WM do
3 Assume without loss of generality that u is the end point of (u, v) that belongs to

V (M0).
4 if degW ′2(u) < 1 and degW ′2(v) < 2 then

5 Add (u, v) to W ′2.

Since W ′2 is a subset of W1 ∪W2 by construction, the set W1 ∪W2 that is often referred to by
Algorithm 5 is identical to the set W1 ∪W ′2. Furthermore, one can observe that the lower bound
proved by Lemma 4.4 for W1 applies also to W ′2 because all the edges of WM are considered for
addition to W ′2 at some point (either during the construction of W2 or in Algorithm 6). This implies
the following observation.

Observation 5.1. |W1|+ |W ′2| ≥ 4
3 |WM |.

We now define a multi-set P ′ similar to the set of the same name used in the analysis of
TriangleFreeAlg. Specifically, P ′ includes every triangle or path obtained by combining an
edge (u, a) ∈ WM , an edge (a, b) ∈ M0 and an edge (b, v) of either W1 or W ′2. Moreover, if there
are multiple options to obtain a path or triangle in this way, then the multiplicity of the path or
triangle in P ′ will be equal to the number of these options. To make this point clearer, we provide
a pseudocode for constructing P ′ as Algorithm 7 (again, Algorithm 7 is used for analysis purposes
only).

Observation 5.2. |P ′| ≥ 20
3 |M

∗| − 32
3 |M0|.

Proof. Repeating the proof of Observation 4.5, we get that at least |W1|+ |WM | − |V (M0)| paths
are added to P ′ in Line 5 of Algorithm 7, and at least |W ′2|+ |WM | − |V (M0)| paths are added to
P ′ in Line 7 of Algorithm 7. Therefore,

|P ′| ≥ |W1|+ |W ′2|+ 2|WM | − 2|V (M0)| ≥ (43 + 2)|WM | − 2|V (M0)|
≥ 2(43 + 2)(|M∗| − |M0|)− 2|V (M0)| = 20

3 |M
∗| − 32

3 |M0| ,

where the second inequality follows from Observation 5.1, and the last inequality follows from
Observation 4.3.

20

Algorithm 7: Construction of P ′

1 Let P ′ ← ∅.
2 for every edge (u, a) ∈WM do
3 for every edge (a, b) ∈M0 do
4 for every edge (b, v) ∈W1 do
5 Add the path/triangle (u, a), (a, b), (b, v) to P ′.
6 for every edge (b, v) ∈W ′2 do
7 Add the path/triangle (u, a), (a, b), (b, v) to P ′.

An element (path or triangle) of P ′ has a potential to be added to P2 by Algorithm 5 only if
it is a path (i.e., not a triangle) and none of its vertices appears in P1. Let P ′′ be the multi-set of
such paths. The following lemma lower bounds the size of P ′′.

Lemma 5.3. |P ′′| ≥ |P ′| − 12|P1| − |M0| ≥ 20
3 |M

∗| − 35
3 |M0| − 12|P1|.

Proof. The second inequality of the lemma follows from Observation 5.2, and therefore, we con-
centrate on proving the first inequality. Let P̃ ′ be the multi-set of paths/triangles from P ′ that
do not intersect any vertex of P1. Repeating the proof of Lemma 4.6, we get that P̃ ′ contains all
the paths/triangles added to P ′ by Line 5 of Algorithm 7 except for up to 6|P1| paths/triangles,
and the same is true for the paths/triangles added to P ′ by Line 7 of Algorithm 7. Since every
path/triangle in P ′ was added to this mutli-set by either Line 5 or Line 7 of Algorithm 7, we get

|P̃ ′| ≥ |P ′| − 12|P1| .

Since P ′′ includes every path of P̃ ′, to complete the proof of the lemma it remains to show that
P̃ ′ contains at most |M0| triangles. To see that this is indeed the case, we recall that every triangle
(or path) in P̃ ′ must include a single edge of M0, and we claim that no two triangles in P̃ ′ can share
this edge (and therefore, the number of triangles is upper bounded by the number of edges in M0).
Assume towards a contradiction that this claim does not hold, i.e., that there exist two triangles
T1, T2 ∈ P̃ ′ sharing an edge e ∈M0. Each one of these triangles must include one edge of WM . Let
e1 and e2 denote the edges of WM in T1 and T2, respectively, and let e′1 the single edge of T1 which
is not e or e1 and e′2 be the single edge of T2 which is not either e or e2. We now need to consider
two cases. The first case is when e1 = e2. In this case e′1 and e′2 must be also identical, and cannot
belong to WM because e1 = e2 belongs to WM and WM is a subset of the matching M∗. However,
this leads to a contradiction because one of the edges e′1 or e′2 must belong to W1, and the other of
these edges must belong to W ′2, and the sets W1 and W ′2 can intersect only on edges of WM .

It remains to consider the case in which e1 6= e2. Let u1, u2 be the end-points of these edges,
respectively, that do not belong to the edge e of M0. Since e1 6= e2 are edges of the WM , which
is a subset of the matching M∗, u1 and u2 must be distinct. Consider now the path e′1, e, e

′
2.

One can observe that this is indeed a path because (i) u1 6= u2 and (ii) the fact that e1 and e2
are vertex disjoint implies that e′1 and e′2 intersect different end-points of e. Furthermore, since
T1, T2 ∈ P̃ ′, this path does not intersect any vertex of P1, and thus, its existence contradicts the
maximality of the matching MA constructed by Algorithm 5 because both e′1 and e′2 belong to
W1 ∪W ′2 = W1 ∪W2.

We are now ready to lower bound the number of augmenting paths found by Algorithm 5 during
its third pass.

21

Lemma 5.4. |P2| ≥ |P ′′|/12 ≥ 5
9 |M

∗| − 35
36 |M0| − |P1|.

Proof. The proof of the lemma is very similar to the proof of Lemma 4.7, except that now every
path of P2 might get a charge of up to 12 because the paths of P ′′ originally added to P ′ by Line 5 of
Algorithm 7 can contribute up to 6 to this charge, and the same goes for the paths of P ′′ originally
added to P ′ by Line 7 of this algorithm.

Theorem 1.4 now follows from Corollary 4.2 and the next corollary.

Corollary 5.5. The size of the matching produced by Algorithm 5 is at least (12 + 1
14.4)|M∗|.

Proof. By Lemma 4.1, the size of the matching produced by Algorithm 5 is at least

|M0|+ |P1|+ |P2| ≥ 5
9 |M

∗|+ 1
36 |M0| ≥ 5

9 |M
∗|+ 1

72 |M
∗| = (12 + 1

14.4)|M∗| ,

where the first inequality holds by Lemma 5.4, and the second inequality holds since M0 (as a
maximal matching) is of size at least 1

2 |M
∗|.

6 Conclusion and Future Work

We presented in this thesis a new approach to semi-streaming algorithms for the maximum matching
problem, and showed that this approach can be used to improve the state-of-the-art in two and
three passes for general graphs. In this approach, we do more sophisticated logic in the first
pass rather than simply building a maximal matching in a greed fashion, as is done by previous
algorithms. Specifically, we greedily build in this pass connected components of size 3 (note that
greedily building a maximal matching is equivalent to greedily building connected components of
size 2). In addition to the above, we have used the traditional technique to improve over the
state-of-the-art for triangle-free graphs and general graphs in 3 passes (for general graphs we get
a more significant improvement in this way compared to the improvement obtained using our new
approach).

The main open problems related to this work are to improve (hopefully significantly) the ap-
proximation ratio for two-pass and three-pass algorithms (or to prove that this is not possible),
and more importantly, to break the state-of-the-art for single-pass (which is still the natural greedy
algorithm). We believe that our new approach can be an important step in both of these directions.

References

[1] Kook Jin Ahn and Sudipto Guha. Access to data and number of iterations: Dual primal
algorithms for maximum matching under resource constraints. ACM Trans. Parallel Comput.,
4(4):17:1–17:40, 2018.

[2] Sepehr Assadi and Soheil Behnezhad. Beating two-thirds for random-order streaming match-
ing. In 48th International Colloquium on Automata, Languages, and Programming (ICALP),
pages 19:1–19:13, 2021.

[3] Sepehr Assadi, S. Cliff Liu, and Robert E. Tarjan. An auction algorithm for bipartite matching
in streaming and massively parallel computation models. In 4th Symposium on Simplicity in
Algorithms (SOSA), pages 165–171, 2021.

[4] Michel L. Balinski and Jaime Gonzalez. Maximum matchings in bipartite graphs via strong
spanning trees. Networks, 21(2):165–179, 1991.

22

[5] Rajesh Chitnis, Graham Cormode, Hossein Esfandiari, MohammadTaghi Hajiaghayi, Andrew
McGregor, Morteza Monemizadeh, and Sofya Vorotnikova. Kernelization via sampling with
applications to finding matchings and related problems in dynamic graph streams. In Robert
Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1326–1344. SIAM, 2016.

[6] Graham Cormode, Hossein Jowhari, Morteza Monemizadeh, and S. Muthukrishnan. The
sparse awakens: Streaming algorithms for matching size estimation in sparse graphs. In 25th
Annual European Symposium on Algorithms (ESA), pages 29:1–29:15, 2017.

[7] Michael S. Crouch and Daniel M. Stubbs. Improved streaming algorithms for weighted
matching, via unweighted matching. In Klaus Jansen, José D. P. Rolim, Nikhil R. Devanur,
and Cristopher Moore, editors, Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques (APPROX/RANDOM), volume 28 of LIPIcs, pages 96–104.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2014.

[8] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices. Journal of research
of the National Bureau of Standards B, 69(125-130):55–56, 1965.

[9] Leah Epstein, Asaf Levin, Julián Mestre, and Danny Segev. Improved approximation guaran-
tees for weighted matching in the semi-streaming model. SIAM J. Discret. Math., 25(3):1251–
1265, 2011.

[10] Hossein Esfandiari, MohammadTaghi Hajiaghayi, Vahid Liaghat, Morteza Monemizadeh, and
Krzysztof Onak. Streaming algorithms for estimating the matching size in planar graphs and
beyond. ACM Trans. Algorithms, 14(4):48:1–48:23, 2018.

[11] Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On
graph problems in a semi-streaming model. In Josep Dı́az, Juhani Karhumäki, Arto Lepistö,
and Donald Sannella, editors, Automata, Languages and Programming: 31st International
Colloquium, (ICALP), volume 3142 of Lecture Notes in Computer Science, pages 531–543.
Springer, 2004.

[12] Manuela Fischer, Slobodan Mitrovic, and Jara Uitto. Deterministic (1+ε)-approximate max-
imum matching with poly(1/ε) passes in the semi-streaming model. CoRR, abs/2106.04179,
2021.

[13] Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and stream-
ing complexity of maximum bipartite matching. In Yuval Rabani, editor, Proceedings of the
Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 468–
485. SIAM, 2012.

[14] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM J. Comput., 2(4):225–231, 1973.

[15] Sagar Kale and Sumedh Tirodkar. Maximum matching in two, three, and a few more passes
over graph streams. In Klaus Jansen, José D. P. Rolim, David Williamson, and Santosh S.
Vempala, editors, Approximation, Randomization, and Combinatorial Optimization. Algo-
rithms and Techniques (APPROX/RANDOM), volume 81 of LIPIcs, pages 15:1–15:21. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017.

23

[16] Michael Kapralov. Better bounds for matchings in the streaming model. In Sanjeev Khanna,
editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 1679–1697. SIAM, 2013.

[17] Michael Kapralov. Space lower bounds for approximating maximum matching in the edge
arrival model. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
(SODA), pages 1874–1893, 2021.

[18] Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from
random streams. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 734–751, 2014.

[19] Christian Konrad. A simple augmentation method for matchings with applications to stream-
ing algorithms. In Igor Potapov, Paul G. Spirakis, and James Worrell, editors, 43rd Interna-
tional Symposium on Mathematical Foundations of Computer Science (MFCS), volume 117 of
LIPIcs, pages 74:1–74:16. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[20] Christian Konrad and Kheeran K. Naidu. On two-pass streaming algorithms for maximum
bipartite matching. CoRR, abs/2107.07841, 2021.

[21] Andrew McGregor. Finding graph matchings in data streams. In Approximation, Random-
ization and Combinatorial Optimization, Algorithms and Techniques, 8th International Work-
shop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX) and
9th International Workshop on Randomization and Computation (RANDOM), pages 170–181,
2005.

[22] Andrew McGregor and Sofya Vorotnikova. Planar matching in streams revisited. In Ap-
proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM), pages 17:1–17:12, 2016.

[23] Andrew McGregor and Sofya Vorotnikova. A simple, space-efficient, streaming algorithm for
matchings in low arboricity graphs. In Raimund Seidel, editor, 1st Symposium on Simplicity
in Algorithms (SOSA), volume 61 of OASICS, pages 14:1–14:4. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2018.

[24] Ami Paz and Gregory Schwartzman. A (2+ε)-approximation for maximum weight matching in
the semi-streaming model. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2153–2161. SIAM, 2017.

[25] Mariano Zelke. Weighted matching in the semi-streaming model. Algorithmica, 62(1-2):1–20,
2012.

A Three-Pass Non-MMF Algorithm

In this section we prove Theorem 1.2, which we repeat below for convenience.

Theorem 1.2. There exists a non-MMF 3-pass (5/9 = 1/2 + 1/18)-approximation semi-streaming
algorithm for finding a maximum size matching in a general graph.

The algorithm used for proving Theorem 1.2 is a modified version of Algorithm 1 that appears
as Algorithm 8 and manages to obtain an improved approximation ratio at the cost of making an

24

additional pass (i.e., it makes 3 passes). The first pass of Algorithm 8 is identical to the first pass
of Algorithm 1, however, the second and third passes of Algorithm 8 each consider only one of the
two kinds of edges considered together in the second pass of Algorithm 1. To describe this in more
details we use the terminology defined in Section 3 for describing Algorithm 1. In the second pass
of Algorithm 8, we construct a set A1 in the same way in which this is done by Algorithm 1, i.e.,
by greedily adding to A1 edges that connect a connection vertex of a näıve partial triangle with an
isolated vertex. Then, in the third pass of Algorithm 8, we greedily collect into another set, termed
A2, edges that connect connection vertices of two distinct näıve partial triangles. We stress that
the construction of A2 by Algorithm 8 is slightly different compared to the construction of the set
carrying the same name in Algorithm 1. Upon termination of its third pass, Algorithm 8 outputs
a maximum matching in the set of all the edges that it kept.

Algorithm 8: Maximum Matching via Greedy Triangles - 3 passes

// First Pass

1 Let P ← ∅.
2 for every edge e that arrives do
3 if every connected component of the graph (V, P ∪ {e}) is either a path of length at

most 2 or a triangle (cycle of size 3) then
4 Add e to P .

// Second Pass

5 Let A1 ← ∅.
6 for every edge (u, v) 6∈ P that arrives do
7 Let Cu and Cv be the connected components of u and v, respectively, in (V, P). We

assume without loss of generality that |Cu| > 1, otherwise we swap the roles of u
and v. // Note that we cannot have |Cu| = |Cv| = 1 because the edge (u, v)
was not added to P in the first pass.

8 if no edge of A1 intersects Cu and Cv, |Cv| = 1 and u is a connection vertex of Cu then
9 Add the edge (u, v) to A1.

// Third Pass

10 Let A2 ← ∅.
11 for every edge (u, v) 6∈ P ∪A1 that arrives do
12 Let Cu and Cv be the connected components of u and v, respectively, in (V, P). We

assume without loss of generality that |Cu| > 1, otherwise we swap the roles of u
and v. // Again, we cannot have |Cu| = |Cv| = 1.

13 if no edge of A1 ∪A2 intersects Cu and Cv, and u and v are connection vertices of Cu
and Cv, respectively then

14 Add the edge (u, v) to A2.

15 return a maximum matching in the graph (V, P ∪A1 ∪A2).

The proof of Observation 3.1 applies to Algorithm 8 as well, and therefore, Algorithm 8 is a
semi-streaming algorithm. Below we concentrate on analyzing the approximation guarantee of this
algorithm. It is important to note that the analysis of the approximation ratio of Algorithm 1 up
to Lemma 3.5 only depends on the behavior of the algorithm during its first pass, and therefore,
applies also to Algorithm 8 since the two algorithms have identical first passes.

25

In principle, the proof of Lemma 3.6 applies also to Algorithm 8 since this proof is based on the
method used by Algorithm 1 to construct the set A1, and this set is constructed in the same way
by the two algorithms. However, it turns out that we need in this section a slightly stronger version
of Lemma 3.6. Specifically, Lemma 3.6 includes the value (#non-M∗-triangles) in one of its terms.
This value counts the number of connected components in (V, P) that are triangles and do not
include within them any edge of M∗. Each such connected component is intersected by at most a
single edge of A1 or A2, and in this section we need to count separately the connected components of
this kind that intersect edges from each one of these sets. Formally, we let (#non-M∗-triangles-A1)
be the number of connected components of (V, P) that (1) are triangles, (2) do not include any
edge of M∗, and (3) intersect an edge of A1. Similarly, (#non-M∗-triangles-A2) is the number
of connected components of (V, P) that (1) are triangles, (2) do not include any edge of M∗,
and (3) intersect an edge of A2. Since every partial triangle in (V, P) intersects at most a single
edge of A1 ∪ A2, and the sets A1 and A2 are disjoint, we immediately get from these definitions
(#non-M∗-triangles-A1)+(#non-M∗-triangles-A2) ≤ (#non-M∗-triangles). Furthermore, it is not
difficult to verify that the proof of Lemma 3.6 in fact implies the following stronger version of the
lemma.

Lemma A.1 (Stronger version of Lemma 3.6).

3|A1| ≥ (#component-free)− (#non-M∗-triangles-A1) .

Lemma A.1 lower bounds the size of the set A1. Our next objective is to find a lower bound
also for the size of A2. As a first step towards this goal, we upper bound the number of edges
that have a potential to be added to A2 immediately after the first pass of Algorithm 8, but are
removed from this potential during the second pass of the algorithm. To formalize this notion, let
us recall that (#component-component) is the set of edges of M∗ that connect connection vertices
of two distinct partial triangles of (V, P). Intuitively, (#component-component) counts edges that
have a potential to be added to A2; however, for such an edge to really end up in A2, it is required
that the two partial triangles it intersect remain näıve after the second pass. Therefore, the size
of the “lost potential” is the number of edges that are counted by (#component-component), but
intersect at least one partial triangle of (V, P) that is also intersected by an edge of A1. In the
following, we denote this number by (#lost-component-component).

Lemma A.2.

(#lost-component-component) ≤ 3|A1| − (#component-free) + (#non-M∗-triangles-A1) .

Proof. The proof of this lemma is similar to the proof of Lemma 3.6, however, we write it fully for
completeness.

We say that an edge e of M∗ counted by (#component-free) or (#component-component)
is excluded by an edge f ∈ A1 if e and f intersect the same connected component of (V, P).
One can observe that every edge e counted by (#component-free) is excluded by some edge
of A1 (possibly itself) when Algorithm 8 terminates because otherwise Algorithm 8 would have
added e to A1, which would have resulted in e excluding itself. Therefore, the number of edges
counted by (#component-component) that are excluded by some edge of A1, which is exactly
(#lost-component-component), can be upper bound by the difference |J | − (#component-free),
where J is the set of edges counted by either (#component-free) or (#component-component) that
are excluded by the edges of A1. In other words,

(#lost-component-component) ≤ |J | − (#component-free) . (7)

26

Let (u, v) be an edge of A1, and assume without loss of generality that v is the end point of
this edge which is an isolated vertex of (V, P). This implies that u is a connection vertex of a
connected component Cu of (V, P) which is either a path of length 2 or a triangle. If Cu is a path
of length 2, then the edge (u, v) can exclude only edges counted by either (#component-free) or
(#component-component) that intersect either v or a connection vertex of Cu, and there can be
only 3 such edges because M∗ is a matching. Next, consider the case in which Cu is a triangle
which is not counted by (#non-M∗-triangles). In this case there can be at most 2 edges of M∗

intersecting Cu, and therefore, even though (u, v) can exclude any edge of (#component-free) or
(#component-component) intersecting Cu or v, there can be only 3 such edges. It remains to
consider the case in which Cu is a triangle counted by (#non-M∗-triangles). In this case, (u, v)
can again exclude every edge of (#component-free) or (#component-component) that intersects
Cu or v, and this time there can be at most 4 such edges. Combining all the above, we get that
the number |J | of edges excluded by all the edges of A1 is at most

3|A1|+ |{e ∈ A1 | e intersects a triangle counted by (#non-M∗-triangles)}|
= 3|A1|+ (#non-M∗-triangles-A1) ,

where the equality holds because a triangle counted by (#non-M∗-triangles) is counted also by
(#non-M∗-triangles-A1) if and only if some edge of A1 intersects it. Plugging the last upper bound
on |J | into Inequality (7) completes the proof of the lemma.

We can now prove the promised lower bound on the size of A2.

Lemma A.3.

4|A2| ≥ (#component-component)− (#lost-component-component)− (#non-M∗-triangles-A2) .

Proof. Recall that (#lost-component-component) counts a subset of the edges that are counted by
(#component-component). LetD be the set of edges (ofM∗) counted by (#component-component)
but not by (#lost-component-component). We say that an edge e ∈ D is excluded by an edge
f ∈ A2 if e and f intersect the same connected component of (V, P). One can observe that every
edge e ∈ D is excluded by some edge of A2 (possibly itself) when Algorithm 8 terminates because
otherwise Algorithm 8 would have added e to A2, which would have resulted in e excluding itself.
Therefore, we can upper bound the size of D by counting the number of edges excluded by the
edges of A2.

Let (u, v) be an edge of A2, and let Cu and Cv be the connected components of (V, P) that
include u and v respectively. Notice that since (u, v) ∈ A2, both Cu and Cv must be either paths
of length 2 or triangles. The edge (u, v) excludes every edge of D that intersects either Cu or Cv.
The number of D ⊆ M∗ edges that intersect Cu can be at most 2, unless Cu is a triangle counted
by (#non-M∗-triangles), in which case there might be 3 edges of D intersecting Cu. Since a similar
claim applies to Cv, we get that the number of edges excluded by all the edges of A2 is at most

4|A2|+
∑
e∈A2

T (e) = 4|A2|+ (#non-M∗-triangles-A2) ,

where T (e) is the number of triangles counted by (#non-M∗-triangles) that intersect e, and the
equality holds since a triangle is counted by (#non-M∗-triangles-A2) if and only if it is both counted
by (#non-M∗-triangles) and intersects an edge of A2. As explained above, the last expression is
an upper bound on the size of D. Therefore, we get

(#component-component)− (#lost-component-component) = |D|
≤ 4|A2|+ (#non-M∗-triangles-A2) .

27

The lemma now follows by rearranging this inequality.

Corollary A.4.

12|A1|+ 12|A2| ≥ 4(#component-free) + 3(#component-component)

− 4(#non-M∗-triangles-A1)− 3(#non-M∗-triangles-A2) .

Proof. Plugging Lemma A.2 into Lemma A.3, we get

4|A2| ≥ (#component-component)− (#lost-component-component)− (#non-M∗-triangles-A2)

≥ (#component-component)− (3|A1| − (#component-free) + (#non-M∗-triangles-A1))

− (#non-M∗-triangles-A2) .

Rearranging the last inequality, and multiplying it by 3, yields

9|A1|+ 12|A2| ≥ 3(#component-component) + 3(#component-free)

− 3(#non-M∗-triangles-A1)− 3(#non-M∗-triangles-A2) .

The corollary now follows by adding Lemma A.1 to the last inequality.

Let us now define L2 = (#single) + (#double) + (#triangle) + |A1|+ |A2|. The following lemma
shows that one can obtain an approximation guarantee for Algorithm 8 by lower bounding L2.
Since the proof of this lemma is very similar to the proof of Lemma 3.11, we omit it.

Lemma A.5. Algorithm 8 outputs a matching of size at least L2.

It remains now to lower bound L2, which we do in the next lemma. Together with Lemma A.5
and the above observation that Algorithm 8 is a semi-streaming algorithm, this lemma completes
the proof of Theorem 1.2.

Lemma A.6. L2 ≥ 5/9|M∗|.

Proof. Observe that

12L2 = 12(#single) + 12(#double) + 12(#triangle) + 12|A1|+ 12|A2|
≥ 12(#single) + 12(#double) + 12(#triangle) + 4(#component-free)

+ 3(#component-component)− 4(#non-M∗-triangles-A1)

− 3(#non-M∗-triangles-A2)

≥ 12(#single) + 12(#double) + 12(#triangle) + 4(#component-free)

+ 3(#component-component)− 4(#non-M∗-triangles) ,

where the first inequality follows from Corollary A.4; and the second inequality holds since we
already observed that (#non-M∗-triangles) ≥ (#non-M∗-triangles-A1) + (#non-M∗-triangles-A2),
and the value (#non-M∗-triangles-A2) is non-negative by definition.

28

To further develop the last inequality, we recall that the analysis from Section 3 up until, and
including, Lemma 3.4 applies to Algorithm 8 as well. Therefore,

12L2 ≥ 12(#single) + 12(#double) + 12(#triangle) + 4(#component-free)

+ 3(#component-component)− 4(#non-M∗-triangles)

≥ 28
3 (#single) + 4(#double) + 4(#triangle) + 20

3 (#component-free)

+ 25
3 (#component-component) + 8

3(#single-single) + 4(#single-component)

+ 8
3(#middle)− 4(#non-M∗-triangles)

≥ 28
3 (#single) + 20

3 (#component-free) + 25
3 (#component-component)

+ 8
3(#single-single) + 4(#single-component) + 20

3 (#middle)

≥ 20
3 (#component-free) + 25

3 (#component-component) + 12(#single-single)

+ 26
3 (#single-component) + 20

3 (#middle)

≥ 20
3 |M

∗|+ 5
3(#component-component) + 16

3 (#single-single) + 2(#single-component) ,

where the second Inequality holds by Inequality (1), the third inequality follows from Inequality (3)
(of Lemma 3.4), the fourth inequality follows from Inequality (4) (of Lemma 3.4), and the last
inequality holds by Inequality (2) (of Lemma 3.4).

The lemma now follows by rearranging the last inequality and observing that (#single-single),
(#component-component) and (#single-component) are all non-negative values by definition.

B Two-Pass Algorithm for Triangle-Free Graphs

In this section we analyze the approximation ratio produced by the first and second passes of
TriangleFreeAlg. Formally, we prove the following theorem.

Theorem B.1. There exists a 2-pass (1/2+ 1/18)-approximation semi-streaming algorithm for find-
ing a maximum size matching in a triangle-free graph, and a 2-pass (1/2 + 1/14)-approximation
semi-streaming algorithm for finding a maximum size matching in a bipratite graph.

For the convenience, we state as Algorithm 9 the algorithm obtained by using only the first
and second passes of TriangleFreeAlg. We also note that Kale and Tirodkar analyzed in [15]
the same algorithm, and showed a weaker guarantee of 1/2 + 1/20 on its approximation ratio for
triangle-free graphs. Our analysis improves over their analysis; however, the approximation-ratios
we achieve are still worse than the state-of-the-art for triangle-free graphs and bipartite graphs.

Before beginning our analysis of Algorithm 9, we notice that the analysis given in Section 4 up
to Lemma 4.4 applies also for the algorithm we consider here. Next, we show that there is a large
fractional matching in the multi-graph GA.

Lemma B.2. Let VA and EA be the sets of vertices and edges of GA, respectively, and let FA be
the fractional matching polytope of GA defined by∑

e∈δ(u) xe ≤ 1 u ∈ VA
xe ≥ 0 e ∈ EA .

Then, there exists a point x′ in this polytope for which ‖x′‖1 ≥ 1
6(4|M∗| − 7|M0|).

Proof. Let M ′ be the set of edges of M0 that intersect two wings of W . Since every wing of W
intersects a single edge of M0,

|M ′| ≥ |W | − |M0| ≥ 4
3(|M∗| − |M0|)− |M0| = 1

3(4|M∗| − 7|M0|) ,

29

Algorithm 9: TriangleFreeAlg – First and Second Passes

// First Pass

1 Let M0 ← ∅.
2 for every edge e that arrives do
3 Add e to M0 if it does not intersect any edge that already belongs to M0.

// Second Pass

4 Let W ← ∅.
5 for every edge e that arrives do
6 if e intersects exactly one vertex u ∈ V (M0) then
7 Let v denote the other end-point of e (i.e., the end-point that is not u).
8 if degW (u) < 1 and degW (v) < 2 then
9 Add e to W .

// Post-processing

10 Let GA be a multi-graph over the vertices V \ V (M0). For every path Pu,v of length 3 in
W ∪M0 between two vertices u, v ∈ V \ V (M0), we add an edge (u, v) to the graph GA.
// This is a multi-graph because there might be multiple such paths

between a pair of vertices of V \ V (M0).
11 Find a maximum size matching MA in GA.
12 Let P1 ← {Pu,v | (u, v) ∈MA}.
13 return M0 ⊕

(⋃
P∈P1

E(P)
)
.

where the second inequality follows from Lemma 4.4.
Together with the wings of W intersecting it, every edge e ∈ M ′ forms a path of length 3 in

W ∪ M0 between two vertices of VA = V \ V (M0). Let us denote this path by P (e). We can
also observe that GA includes an edge corresponding to the path P (e), and we denote this edge
below by A(e). Since the paths in {P (e) | e ∈ M ′} are disjoint in the V (M0) vertices that they
include (because M ′ ⊆ M0 is a matching), they must be disjoint also in the W edges that they
include. Therefore, the number of edges in {A(e) | e ∈ M ′} intersecting every vertex u ∈ VA is
upper bounded by degW (u) ≤ 2, which implies that the vector

x′e =

{
1/2 if e ∈ {A(e) | e ∈M ′} ,
0 if e ∈ EA \ {A(e) | e ∈M ′}

belongs to the polytope FA. Furthermore, ‖x′‖1 = 1
2 |M

′| ≥ 1
6(4|M∗| − 7|M0|).

Corollary B.3. It always holds that |P1| = |MA| ≥ 1
9(4|M∗| − 7|M0|). Furthermore, when G is

bipartite we have a stronger guarantee of |P1| = |MA| ≥ 1
6(4|M∗| − 7|M0|).

Proof. Consider the linear program
max ‖x‖1
s.t. x ∈ FA ,

(8)

and let cA be its integrability gap. Since the size of MA is the maximum value of an integral solution
for LP (8), while x′ is a feasible solution for it, we get |MA| ≥ cA · ‖x′‖ ≥ cA · 16(4|M∗| − 7|M0|).
We now need to consider two cases.

30

� If G is bipartite, then GA is also bipartite with the same partition of the vertices into two
sides. To see why this is the case, note that every edge (u, v) of GA corresponds to a path
Pu,v in G of length 3, and therefore, the vertices u and v appear on different sides of G. As
a consequence of the bipartitness of GA, we get that LP (8) is integral (i.e., cA = 1).

� For general graphs, the integrability gap of LP (8) is known to be 2/3.

Finally, to complete the proof of Theorem B.1, we consider the matching M0 ⊕
(⋃

P∈P1
E(P)

)
.

Proof of Theorem B.1. For bipartite graphs, the size of the matching M0⊕
(⋃

P∈P1
E(P)

)
returned

by Algorithm 9 is

|M0|+ |P1| ≥ |M0|+ max{16(4|M∗| − 7|M0|), 0} = max{16(4|M∗| − |M0|), |M0|}

≥ (4|M∗| − |M0|) + |M0|
7

= 4
7 |M

∗| = (12 + 1
14) · |M∗| ,

where the first inequality follows from Corollary B.3. Similarly, for triangle-free graphs the size of
the matching returned by Algorithm 9 is

|M0|+ |P1| ≥ |M0|+ 1
9(4|M∗| − 7|M0|) = 1

9(4|M∗|+ 2|M0|)
≥ 1

9(4|M∗|+ |M∗|) = 5
9 |M

∗| = (12 + 1
18) · |M∗| ,

where the first inequality follows again from Corollary B.3, and the second inequality follows from
the fact that M0 is a maximal matching.

31

ii

 תקציר

 ו אשניים עם מקסימום בגרפים לא ממושקלים במודל זרם המידעהת זיווג יבעבודה זו אנו עוסקים בבעי

בעיית יסוד במחקר האלגוריתמי במדעי המחשב. למרות היא וםזיווג מקסימ .שלושה מעברים על זרם הקלט

התוצאה הטובה ביותר הידועה זכתה לתשומת לב מחקרית רבה בכלל, ובמודל זרם המידע בפרט, זושבעיה

האלגוריתם החמדן הטבעי, שמספק יחס מתקבלת באמצעות במעבר יחיד עבורה במודל זרם המידעכיום

 קירוב של ½ בלבד.

לעבור מיםלאלגוריתלאפשר הבעיה, מקובל עבור מעניינות להעמיד תוצאות ניתן יהיה מנת שבכל זאת -על

במספר לבעיה זו עבודות שהשיגו תוצאות טובות יותרבספרות על זרם הקלט יותר מפעם אחת, ואכן ישנן

בונות מסוג זה כל התוצאות הקיימות למיטב ידיעתנו, מעברים. או שלושה בשניים כן רב של מעברים, ו

הבאים. במעברים אותו משפרות ואז חמדן, באופן מקסימלי זיווג הראשון של במעבר התרומות אחת

זוג אלגוריתמים המבוססים על הנוכחית עבודה ה זו הינה עבור הקייםמשפרים את יחס הקירוב ושיטה

אלה, צדדיים(בשלושה מעברים. תוצאות-דו גם גרפיםובמשתמע) גרפים כלליים וגרפים חסרי משולשים

 מטה. המופיעה מפורטות בטבלה לצד תוצאות העבר ותוצאות נוספות המוצגות בפסקה הבאה,

הקירוב על יחס "אלגוריתמי זיווג מקסימלי תחילה", יש מגבלות מעתה , אותה נכנההמתוארת לעיללשיטה

זו באופן אינטואיטיבי, בנוסף, 1. שהיא מאפשרת את המחקר לעבר פתרון הבעיה יכולה לקדם לא שיטה

לכן, מעניין לחקור שיטות חלופיות המבוססות שיפור יחס הקירוב הקיים במעבר אחד. דהיינו, –המרכזית

במעבר יותר חכמה לוגיקה מבצעים אלא תחילה, מקסימלי זיווג אלגוריתמי שאינם אלגוריתמים על

 ניםהראשו םשלמיטב ידיעתנו ה מיםאלגוריתזוג היא הצגת עבודה זו התוצאה המרכזית של . שלהם הראשון

משפרים את יחס הקירוב הקיים עבור גרפים כלליים בשניים ושלושה מעברים. אלגוריתמים אלה . מסוג זה

שלנו האלגוריתמים כי מאמינים אנו אבל לצערנו, רב, אינו הקירוב ביחס המושג כי השיפור מדגימים

 פוטנציאל מחקרי רב. אלגוריתמים שאינם אלגוריתמי זיווג מקסימלי תחילה הם בעלי

מספר

 מעבריםה

 יחס הקירוב הטוב ביותר סוג הגרף

 הידוע כיום

יחס הקירוב

 המוצג בעבודה זו

בה התקבל שיטה

 השיפור

 שני מעברים

 - -  ½ + 1/11.66  0.5857 [19] 2√ - 2 צדדי -דו

 - - 0.5625 = 1/16 + ½ [15] משולשים -חסר

  0.5385 1/26 + ½ [15] 0.53125 = 1/32 + ½ כללי
ללא זיווג מקסימלי

 תחילה

שלושה

 מעברים

  ½ + 1/9.37 [19] ½ + 1/9  0.6111 0.6067 צדדי -דו
זיווג מקסימלי עם

 תחילה

  0.6111 1/9 + ½ 0.6 = 1/10 + ½ [15] משולשים -חסר
זיווג מקסימלי עם

 תחילה

 כללי
½ + 81/1600  ½ + 1/19.753 

0.5506 [15]

½ + 1/14.4 

0.5694

זיווג מקסימלי עם

 תחילה

½ + 1/18  0.5555
ללא זיווג מקסימלי

 תחילה

גרפים לאלגוריתמים שניתן להשיג באמצעות פורמלי על יחס הקירוב פרסמו לאחרונה חסם Konrad and Naidu [(20)]למשל, 1

 . המבוססים על שיטה זודו צדדיים בשני מעברים

i

 תוכן עניינים

 מבוא .1

 נוספות עבודות קשורות .1.1

3

5

 6 ידע קודם נדרש .2

 7 אלגוריתם ללא זיווג מקסימלי תחילה בשני מעברים .3

 13 משולשים בשלושה מעברים -אלגוריתם לגרפים חסרי .4

 18 אלגוריתם לגרפים כלליים בשלושה מעברים .5

 22 סיכום ועבודה עתידית .6

A. 24 תחילה בשלושה מעברים אלגוריתם ללא זיווג מקסימלי

B. 29 משולשים בשני מעברים -אלגוריתם לגרפים חסרי

 האוניברסיטה הפתוחה

 המחלקה למתמטיקה ולמדעי המחשב

גישה חדשה ווג מקסימלי:זיווג מקסימום ללא זי

 למציאת זיווג מקסימום במודל זרם המידע

 זו הוגשה כחלק מהדרישות לקבלת תואר עבודת תזה

 במדעי המחשב .M.Sc"מוסמך למדעים"

 באוניברסיטה הפתוחה

 המחלקה למתמטיקה ולמדעי המחשב

 ידי -על

 אריאל שארף

 של םהעבודה הוכנה בהדרכת

 ופרופ' זאב נוטוב מורן פלדמן פרופ'

 2021אוקטובר

	Introduction
	Related Work

	Preliminaries
	Two-Pass Non-MMF Algorithm
	Three-Pass Algorithm for Triangle-Free Graphs
	Three-Pass Algorithm for General Graphs
	Conclusion and Future Work
	Three-Pass Non-MMF Algorithm
	Two-Pass Algorithm for Triangle-Free Graphs

