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Abstract

In this thesis, we explore mechanism design without money for boolean con-
straint satisfaction problems. We present three main results. First, we show
that for every boolean constraint satisfaction problem there is an optimal de-
terministic strategy proof mechanism. Second, we prove that there does not
exist a deterministic group-strategy proof mechanism with a non-zero con-
stant approximation ratio for Max-SAT, Max-Cut and Max-DiCut. Third,
we describe a randomized group-strategy proof mechanism providing an ap-
proximation ratio of 1 − ε (for every constant ε > 0) for boolean constraint
satisfaction problems without tautologies and contradictions. We also present
some additional results not listed here, and describe and analyze mechanisms
for Max-SAT, Max-Cut and Max-DiCut.





Chapter 1

Introduction

In multi-agent1 settings of optimization problems, multiple self-interested
players try to reach a common decision. This decision making process
can be carried out by functions aggregating the preferences of the players.
Algorithmic mechanism design is an emerging field designing such functions,
which are called mechanisms in this context. The goal of a mechanism is to
maximize an objective function. These objective functions usually depend
on private information known only to the players themselves. However, as
the players are not forced to reveal their true preferences, the mechanism
has to incentivize the players in some way to do so. Most previous works
achieved this through monetary payments. Unfortunately, payments are
not possible in all settings, for example, when matching organ donors with
patients, payments are considered unethical. Without payments achieving
truthfulness is more difficult. Procaccia and Tennenholtz suggested in their
seminal paper [1] to use approximations to achieve truthfulness. They
show, in the context of facility location problems, that it is possible to
overcome some impossibility results by designing mechanisms that are only
approximately optimal. Prior to their paper, most works in mechanism
design aimed for exact results. Since the publication of their paper, approx-
imation mechanisms without money have been designed for a multitude of
other problems.2 However, most problems considered were computationally
tractable, and approximation was only used to overcome impossibilities
regarding truthfulness. We consider both polynomial and exponential
time mechanisms in this document. In this thesis, we explore mechanism
design without money for boolean constraint satisfaction problems, which

1Agents are referred to as players in the remainder of this thesis.
2See [2] for a survey.
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are computationally intractable.3 We consider general boolean constraint
satisfaction problems and a few special classes, in particular Max-SAT,
Max-DiCut, and Max-Cut.

Section 1.1 provides an introduction to boolean constraint satisfaction prob-
lems, Section 1.2 introduces the reader to mechanism design, and Section 1.3
summarizes our main results.

1.1 Boolean constraint satisfaction problems

A (weighted) constraint satisfaction problem (CSP) is defined by a
quadruplet 〈X,C,D,W 〉 with X = {x1, . . . , xn} being a set of variables,
C = {c1, . . . , cm} being a set of clauses (or contraints), D = {d1, . . . , dn}
being a set of domains for the variables (that is, each variable xi takes its
value from the non-empty set di), and W = {w1, . . . , wm} (with every wi

being a positive rational number) being a set of weights assigned to the
clauses. The unweighted version is a special case of CSPs where every clause
has weight 1. An assignment A = (v1, . . . , vn) with vi ∈ di (1 ≤ i ≤ n)
assigns a value to each variable x ∈ X from its respective domain. A clause
is a function c : d1 × · · · × dn → {0, 1}, in other words, a mapping from an
assignment to a logical value4. A clause c is satisfied by an assignment a if
the clause evaluates to 1 given the assignment a, i.e., c(a) = 1. The objective
of a constraint satisfaction problem is to find an assignment maximizing the
number of satisfied clauses.

wa(C) and w(a, C) are used as a shorthand for the weight of an assignment,
i.e.,

wa(C) = w(a, C) =
∑

i∈{1,...,n}
ci(a)=true

wi.

W (ci) refers to the weight of clause ci, i.e., W (ci) = wi. In this thesis,
we constrain ourselves to boolean constraint satisfaction problems (bCSP).
These are CSP instances with boolean variables, that is, the domain of every
variable x ∈ X is {0, 1}.

3However, this is not the first work to explore approximate mechanism design with-
out money for computationally intractable problems. For example, Dughmi and Ghosh
considered variants of the generalized assignment problem [3].

40/1 and false/true is used interchangeably in this text.
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The next subsections describe a few interesting classes of bCSPs for which we
present results in later chapters. The difference between general bCSP and
the classes defined in the next subsections is that each class is characterized
by a limited set of allowed clauses (e.g., in Max-SAT only disjunctive
clauses are allowed), whereas in the general case every boolean function of
n variables is allowed.

All of the problems we consider in this thesis (except for Max-1-SAT) are
NP-hard. The decision version of boolean constraint satisfiability was shown
to be NP-complete by Cook [4].

1.1.1 Max-SAT

A literal is an expression consisting of a single boolean variable and a sign.
A positive (resp. negative) literal is satisfied if and only if its variable is
set to true (resp. false). Clauses in Max-Sat are defined to be disjunctions
of literals. Such clauses are satisfied if and only if at least one of its
literals is satisfied. A CNF φ is a logical formula that is a conjunction of
clauses c1, . . . , ck, i.e., φ =

∧
ci. Given a CNF formula φ, the objective of

maximum-satisfiability (or Max-SAT) is to find an assignment a maximizing
the number of clauses satisfied in φ. Max-k-SAT is a subclass of Max-SAT
where every clause contains at most k literals. Horn-SAT is another subclass
of Max-SAT where the clauses contain at most one positive literal5.

The decision version of Max-2-SAT is known to be NP-complete [5], hence
variants of Max-SAT with clauses of size 2 or larger allowed are NP-hard.
Max-1-SAT can be solved in polynomial time using a simple greedy algo-
rithm.

Max-SAT can be approximated to a constant factor in polynomial time.
A simple randomized algorithm setting each variable uniformly to 0 or 1
achieves an approximation ratio of 1/2, Yannakakis improved this to 3/4
using network flow techniques [6]. The best known algorithm achieves an
approximation ratio of 0.7968 [7]. On the other hand, it is impossible to
approximate Max-SAT in polynomial time to a factor of 7/8 + ε (for any
constant ε > 0) unless P=NP [8].

5Such clauses are also called Horn-clauses.
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1.1.2 Max-Cut

Given an undirected (weighted) graph G = (V,E) and edge weights we ∈ R+

(for every e ∈ E), a cut C of graph G is defined as a bipartition (V0, V1) of
the graphs vertices. An edge e = (u, v) is said to be cut (or cross the cut) if
its endpoints are in different partitions of the cut. The weight of a cut C for
a graph G is defined as the sum of the weights of the graph’s edges crossing
the cut.

Max-Cut is a combinatorial optimization problem in which given an undi-
rected (weighted) graph G = (V,E) and edge weights, the objective is to
find a cut C of maximum weight.

Max-Cut can also be formulated as a bCSP by replacing each vertex vi
with a variable xi, and every edge (vi, vj) with a constraint xi ⊕ xj

6 with
a matching weight. An assignment of false to variable xi corresponds
to vertex vi being placed in partition V0, and an assignment of true to
variable xi corresponds to vertex vi being placed in partition V1. Clearly, a
constraint c corresponding to an edge e is satisfied if and only if edge e is cut.

The decision version of Max-Cut was shown to be NP-complete by Karp [9],
thus the optimization version is NP-hard. The optimization version can
be approximated to a factor of 1/2 using a simple randomized algorithm.
An SDP-based algorithm proposed by Goemans and Williamson improves
the approximation ratio to αGW ≈ .878 [10]. Assuming the unique games
conjecture[11], this is the best possible approximation ratio achievable by a
polynomial time algorithm [12].

1.1.3 Max-DiCut

Given a directed (weighted) graph G = (V,E) and edge weights we ∈ R+

(for every e ∈ E), a directed cut C of graph G is defined as a bipartition
(V0, V1) of the graphs vertices. A directed edge e = (u, v) is cut by C (or
crosses cut C) if vertex u is in partition V0, and vertex v is in partition V1.
The weight of a directed cut C is equal to the sum of the weights of the cut
edges. Max-DiCut can be seen as a generalization of Max-Cut for directed
graphs.

6⊕ denotes the exclusive-or (xor) operator.
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Analogously to Max-Cut, Max-DiCut can also be formulated as a bCSP
problem by replacing each vertex vi with a variable xi, and every edge
(vi, vj) with a constraint ¬xi ∧ xj with a matching weight. An assignment of
false to variable xi corresponds to vertex vi being placed in partition V0, and
an assignment of true to variable xi corresponds to vertex vi being placed
in partition V1. It can be verified that an edge e is cut if and only if the
matching constraint c is satisfied.

Max-DiCut is known to be NP-hard, as Max-Cut can be reduced to Max-
DiCut by replacing every undirected edge (u, v) with two directed edges (u, v)
and (v, u). Max-DiCut can be approximated to a factor of 1/4 using a simple
randomized algorithm. Using linear programming the approximation ratio
can be improved to 1/2 [13]. The best known algorithm achieves an approx-
imation ratio of 0.874 using SDP [14]. A class of algorithms that choose a
cut based only on the degrees of the vertices, proposed by Feige and Jozeph,
called oblivious algorithms achieve an approximation ratio of .483 [15]. In
the same paper, it was shown that there is no oblivious algorithm with an
approximation ratio of 0.4899.

1.2 Mechanism design

Mechanism design is a field interested in designing functions, or so called
mechanisms, that facilitate collective decision making for a set of players.
In our setting, m players p1, . . . , pm try to decide on an assignment a to n
boolean variables x1, . . . , xn. Every player pi has a weight wi, and a private
clause cprivi known only to him. The weights of the players and the set of
variables are assumed to be common knowledge. Given an assignment a, we
define the utility function of player pi as ui = cprivi (a). Alternatively, given a
probability distribution P over assignments and a random assignment a from
P , the utility of pi is equal to the probability of the assignment a satisfying
cprivi : ui = E[cprivi (a)]. The goal of every player is to maximize its utility
function. A mechanism M is a function that aggregates the preferences of
the players and chooses an assignment. Every player is required to report
a clause cpublici to M. We refer to cpublici as the public or reported clause of
pi. The reported clause cpublici does not necessarily match the private clause
cprivatei . That is, players might misreport their preference. If a player pi
changes his report from ci to c′i, we say pi deviated from ci to c′i. Formally, we
define a deterministic mechanismM as a mapping from a set of m reported
clauses to an assignment to n variables, i.e.,

M : {{0, 1}n → {0, 1}}m → {0, 1}n.
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A randomized mechanism maps the reported clauses to a probability distri-
bution of assignments. We sometimes use the notation a =M(C) to denote
the assignment a chosen by mechanismM for reported clauses C. We are in-
terested in designing mechanisms choosing assignments that (approximately)
maximize the social welfare (SW). The SW of an assignment a is defined as
the sum of the players’ utilities times their weight: SW (a) =

∑
iwi · cprivi (a).

As calculating SW requires knowledge about the players’ private clauses, the
mechanism has to incentivize players to report truthfully (do not misreport
their true preference)7. A mechanism is strategy proof (SP) if none of the
players can gain by misreporting. That is, for every player pi and every pos-
sible reported clause ci, the utility of the player is maximal when reporting
truthfully, i.e.,

∀pi : ∀ci : ui(c
priv
i , c−i) ≥ ui(ci, c−i),

where c−i denotes the reports of the other players. A mechanism is group-
strategy proof (GSP) if no coalition of players can gain by misreporting. That
is, there is no coalition of players Pcoal for which after a joint deviation from
their private clauses cprivcoal to some ccoal none of the coalitions’ players lose,
and at least one of the players strictly gains, i.e.,

∀Pcoal : ∀ccoal : (∃pi ∈ Pcoal : ui(ccoal, c−coal) > ui(c
priv
coal , c−coal))

→ (∃pi ∈ Pcoal : ui(ccoal, c−coal) < ui(c
priv
coal , c−coal)),

where c−coal denotes the reports of the players outside the coalition. Clearly,
a GSP mechanism is always SP8, but an SP mechanism is not necessarily
GSP. Unfortunately, for some problems it is not possible to design an
optimal SP (or GSP) mechanism, so one has to resort to approximations.
We say a mechanism provides an α approximation, if for every possible set
of private clauses, the social welfare of the chosen assignment a is worse by
at most a factor of α than the social welfare of the optimal assignment aopt,

i.e., SW (a)
SW (aopt)

≥ α.9 The same clause is allowed to be reported by multiple

players even in the unweighted case. We show in chapter 2 that strategy

7In most previous works on mechanism design, truthfulness is incentivized using pay-
ments. That is, the mechanism not only chooses an assignment, but also a value vi that
every player pi has to “pay”. Thus, the utility function depends not only on the chosen
assignment but also on vi. However, in some scenarios payments are impossible to enforce
(e.g., in the case of mechanisms involving the web) or are unethical (for example, when
matching kidney patients to organ donors). In such scenarios there are no payments, or
equivalently they are always set to zero. This is the case we consider in this thesis.

8This follows from the fact that coalitions consisting of a single player are allowed.
9In this case the social welfare is calculated with respect to the reported clauses instead

of the private clauses.
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proofness and group-strategy proofness for the unweighted case generalize
to the weighted case (assuming rational weights). In some problems the
players’ private and public clauses are restricted to a set of allowed clauses
(e.g., in case of Max-SAT only disjunctive clauses are allowed).

Approximate mechanism design without money was introduced by Procaccia
and Tennenholtz in their paper [1] in which they describe mechanisms with-
out money for facility location problems. Several other classes of problems
have been considered since then, Boicheva surveys several of them in her the-
sis [2]. A multi-agent version of Max-SAT was considered by O’Connell and
Stearns [16]. In contrast to this thesis, they restrict themselves to polynomial
time computation, and use different notions of truthfulness. They describe a
deterministic 1/2-approximation algorithm similar to one of our mechanisms
(see Mechanism 3.33).

1.3 Our results

The main results of this thesis are showing that for every class of bCSP
without tautologies there exists a (1 − ε) (for every constant ε > 0), and
proving that there does not exist a deterministic GSP mechanism for Max-
SAT, Max-Cut, and Max-DiCut with a non-zero constant approximation
ratio.

In Chapter 2, we prove that there exists an optimal deterministic SP mech-
anism for every class of bCSP problems (see Theorem 2.6), and describe a
randomized GSP mechanism that provides a (1−ε)-approximation (for every
constant ε > 0) for classes of bCSP problems without tautologies and con-
tradictions (see Corollary 2.9). Furthermore, we prove that approximation
guarantees for the unweighted case generalize to the weighted case for every
bCSP class (see Section 2.5). Finally, we show that for classes of bCSP with
tautologies and/or contradictions mechanisms choosing assignments from
distributions depending only on the number of variables are almost optimal
(see Section 2.4). In later chapters we complement this result by showing
that the almost best randomized mechanism for Max-SAT, Max-Cut, and
Max-DiCut with tautologies and/or contradictions is the one that chooses
the value of every variable with uniform probability.

In chapter 3 and 4, we show that there is no deterministic GSP mechanism
for Max-SAT, Max-Cut, and Max-DiCut with a constant non-zero approxi-
mation ratio.
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We also describe and analyze several mechanisms for these bCSP classes.
Table 1.1 provides an overview of the approximation ratios of the best poly-
nomial time mechanisms we describe. The 1/2 and 1/4 randomized approxi-
mations for Max-SAT, Max-Cut, and Max-DiCut are achieved by a simple
randomized algorithm setting each variable to one of the values {true, false}
with uniform probability.

Class
Deterministic Randomized

SP GSP SP GSP
Max-SAT 1/2 (3.34) non-const (3.32) 1/2 1/2
Max-1-SAT 1 (2.6) 1/2 (3.34) 1 (2.6) 1-ε (2.9)
Max-Cut 1/2 (4.48) − 1/2 1/2
Max-DiCut 1/4 (4.48) non-const (4.43) 0.483 (4.44) 1/4

Table 1.1: Approximation ratios of the best polynomial time mechanisms.
The numbers in parantheses refer to the theorems proving the corresponding
results.

Thesis organization

In Chapter 2, we describe results that apply for a large class of boolean
constraint satisfaction problems. In Chapter 3, we show results specific for
Max-SAT. Finally, in Chapter 4, we show results specific for Max-Cut and
Max-DiCut.



Chapter 2

General bCSP results

In this chapter, we present results that hold for general bCSPs. First, we de-
scribe a class of deterministic mechanisms, which we call enumerative mech-
anisms, and show that all of them are strategy proof. Second, we prove
by construction that for every bCSP problem there is an optimal deter-
ministic strategy proof mechanism. Third, we describe a construction that
given an enumerative mechanism (with some restrictions) providing an α-
approximation yields a randomized group-strategy proof mechanism provid-
ing an α(1 − ε) approximation. Finally, we show that for bCSP problems
that allow tautological (or contradictory) clauses, the best approximation ra-
tio is achieved by a mechanism that picks an assignment from a distribution
independent of the reported clauses.

2.1 Enumerative mechanisms

We start by defining the class of deterministic mechanisms, which we call
enumerative mechanisms. Then we show that every enumerative mechanism
is strategy proof.

Mechanism 2.1. Given a bCSP instance I = 〈X,C,Db,W 〉1, n = |X| ≥ 1,
and a function A(n) ⊆ {0, 1}n. For every n, fix a total order over A(n).
Choose assignment a from set A(n) maximizing the total weight of satisfied
clauses. In case there are multiple assignments with maximal size, break ties
according to the ordering defined on A(n).

In other words, an enumerative mechanism has a pre-defined set of possible
assignments for instances with a given number of variables. From this set
the assignment with largest weight is chosen (using a consistent tie-breaking

1Db assigns the domain {0, 1} to every variable. That is, the variables are boolean.
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rule).

We will refer to an enumerative mechanism by Menum
A(n) .

Definition 2.2. Given two assignments a1, a2 ∈ A(n) with weights w1, w2,
we say that (w1, a1) � (w2, a2) if and only if one of the following conditions
is met:

1. w1 > w2,

2. w1 = w2 and a1 > a2 according to the ordering over A(n).

Basically, (w1, a1) � (w2, a2) means the first pair is lexicographically larger
than the second.

Observation 2.3. Given an enumerative mechanism Menum
A(n) and an in-

stance I with n variables. Define the set

AI(n) =

{(
wa(C), a

) ∣∣∣∣ a ∈ A(n)

}
,

and order its tuples lexicographically. Let (wmax
I , amax

I ) be the lexicographically
largest pair in AI(n). Observe that Menum

A(n) chooses amax
I .

Theorem 2.4. Every enumerative mechanism is strategy proof.

Proof. Consider player pi with private clause cprivi . In case pi reports
truthfully, let the chosen assignment be amax

I .

If cprivi (amax
I ) = 1, the player has no incentive to deviate, as his utility is

already maximal.

In the remaining part of this proof we assume cprivi (amax
I ) = 0. We only need

to show that there is no deviation after which the player’s utility increases
to 1.

Assume pi deviates to some clause c′i. Let us define the problem instance
after the deviation as I ′ = 〈X,C−cprivi +c′i,W 〉. AI′ can be defined in terms
of AI (see Observation 2.3 for the definition) as

AI′ =

{
f(w, a)

∣∣∣∣ (w, a) ∈ AI

}
,
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where

f(w, a) =


(
w, a

)
, for cprivi (a) = c′i(a) (2.1)(

w +W (c′i), a
)

for cprivi (a) = 0, c′i(a) = 1 (2.2)(
w −W (cprivi ), a

)
for cprivi (a) = 1, c′i(a) = 0 . (2.3)

From the definition of f(w, a) we see that after any deviation

� the weight wmax
I of the assignment amax

I does not decrease, as the assign-
ment did not satisfy cprivi before the deviation. Thus, for f(wmax

I , amax
I )

either 2.1 or 2.2 applies.

� the weight wa of any assignment a for which cprivi (a) = 1 holds does
not increase, as for f(wa, a) either 2.1 or 2.3 applies.

By the definition of enumerative mechanisms and by the assumption that
cprivi (amax

I ) = 0, we know that before the deviation the following was true:

∀(wa, a) ∈ AI , cprivi (a) = 1 : (wmax
I , amax

I ) > (wa, a) (2.4)

As the weight of amax
I does not decrease, the weight of any a for which

cprivi (a) = 1 holds does not increase, and the ordering on A(n) does not
change, 2.4 must still hold after the deviation. In other words, the mechanism
prefers amax

I to any of the assignments satisfying cprivi both before and after
the deviation as well.2 Thus, the assignment chosen for I ′ does not satisfy
cprivi , and the utility of pi remains 0 after any deviation. As the player does
not gain by any deviation, the mechanism is indeed strategy proof.

2.2 Optimal mechanisms

In this section, we show that an optimal deterministic algorithm using a
lexicographic tie-breaking rule yields an optimal deterministic strategy proof
mechanism. This implies that for every bCSP problem there is an optimal
deterministic strategy proof mechanism.

Mechanism 2.5. Given an instance I and an optimal algorithm A. Solve
I optimally using A breaking ties lexicographically.

Theorem 2.6. Mechanism 2.5 is an optimal strategy proof mechanism.

2The mechanism does not necessarily choose amax
I after the deviation. The only im-

portant observation is that it does not choose an assignment satisfying cprivi after the
deviation.
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Proof. As Mechanism 2.5 picks an optimal assignment for every instance I,
the mechanism is indeed optimal.

Set A(n) = {0, 1}n. Order the elements of A(n) lexicographically3. For
strategy proofness, it is enough to note that the enumerative mechanism
Menum

A(n) is equivalent to Mechanism 2.5.

Note 2.7. Given an optimal algorithm A for a family of bCSP problems in
n variables, the lexicographically largest optimum can be found using O(n)
calls to A.

2.3 α(1− ε) randomized GSP mechanisms

In this section, we describe a group-strategy proof randomized mechanism
that provides an α(1 − ε) approximation for a class of bCSP given an enu-
merative mechanism that provides an α-approximation for the same class.
The mechanism requires that the bCSP class does not allow tautological or
contradictory clauses.4

The main theorem and a corollary of it are stated below. We prove the
theorem in a later part of this section.

Theorem 2.8. Mechanism 2.11 is a randomized α(1 − ε)-optimal group-
strategy proof mechanism.

Corollary 2.9. Every class of bCSP without tautologies and contradictions
has a randomized GSP mechanism that provides an approximation ratio of
(1− ε).

Throughout this section Menum
A(n) refers to an enumerative mechanism

providing an approximation ratio of α. We denote the assignment chosen by
Menum

A(n) by ã, and its weight by w̃.

For a totally ordered set of possible assignments A(n) and assignment
a ∈ A(n), the function Ord(a,A(n)) assigns a unique non-negative integer
to every assignment a. It assigns zero to the assignment with lowest order,
one to the assignment with second lowest order, and so on.

3This defines a total ordering on A(n).
4A tautological clause is a clause that is satisfied by every assignment, e.g., x ∨ ¬x. A

contradictory clause is one that is not satisfied by any assignment, e.g., x ∧ ¬x.
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Define the function

fA(n)(w, a) = 1− (w − 1) · |A(n)|+Ord(a,A(n))

n · |A(n)|
(2.5)

and fix a constant 1 > ε > 0.

Observation 2.10. Notice that, by the definition of function f , for two pairs
(w1, a1) 6= (w2, a2)

fA(n)(w1, a1) > fA(n)(w2, a2) if and only if (w1, a1) ≺ (w2, a2).

The main intuition behind Mechanism 2.11 is to assign a tuple consisting of
the weight of an assignment a and a to every instance.
In Mechanism 2.11 and its proof we assume that the instances are unweighted
(i.e., the weight of all clauses is 1). The mechanism can be adapted for the
weighted case, but we omit details.

Mechanism 2.11 α(1− ε)-optimal randomized mechanism Mrand

Require: an instance I with n variables,
an α approximate enumerative mechanism Menum

A(n) ,

a constant 0 < ε < 1

1: ã← the assignment chosen by Menum
A(n) for instance I

2: w̃ ← the weight of ã
3: arand ← a random assignment chosen uniformly from {0, 1}n

4: p← εfA(n)(w̃, ã)

5: return ã with probability 1− p and arand with probability p

Consider Mechanism 2.11. From this point on till the end of this section we
refer to players with private clauses satisfied by ã as winners, and to players
with private clauses not satisfied by ã as losers. The expected utility of player
pi for a randomly chosen assignment5 is denoted by urandomi . The utility of
pi for ã is denoted by uchoseni . If pi is a winner uchoseni = 1, if pi is a loser
uchoseni = 0. Observe that 0 < urandomi < 1, as tautologies and contradictions
are not allowed. Let 0 < p < 1 be the probability of choosing a random

5This assignment is chosen uniformly from the set of all assignments {0, 1}n, and not
from A(n).
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assignment, and 1− p be the probability of choosing ã. The expected utility
of a winner is

ui = purandomi + (1− p)uchoseni = urandomi + (1− p)(1− urandomi ). (2.6)

The expected utility of a loser is

ui = purandomi + (1− p)uchoseni = purandomi . (2.7)

Observe, that the utility of a winner is always greater than the utility of a
loser, regardless of p.

We will refer to the assignment chosen by the enumerative mechanism after
the deviation by ã′ and to its weight by w̃′.

Lemma 2.12. For a winner pi and any gainful deviation, the following con-
ditions must hold:

1. pi remains a winner after the deviation: cprivi (ã′) = 1,

2. (w̃′, ã′) � (w̃, ã).

Proof. If the first condition is not satisfied, then pi becomes a loser after the
deviation. From equations 2.6 and 2.7 we know that the utility of a loser is
always less than the utility of a winner, thus, if the first condition were not
satisfied, the utility of pi would decrease. Hence, the first condition must be
satisfied by any gainful deviation.

Suppose the second condition is not satisfied, and (w̃′, ã′) � (w̃, ã) holds.
If (w̃′, ã′) = (w̃, ã), the probability of choosing a random assignment does
not change by the deviation, and the utility of player pi stays unchanged.
If (w̃′, ã′) ≺ (w̃, ã), by Observation 2.10 the value of f increases. By the
definition of Mechanism 2.11 (see line 4 of the definition), the probability p
of choosing a random assignment increases with increasing f . From equa-
tion 2.6, we know that the utility of a winner decreases with increasing p.
Hence, no deviation that does not satisfy condition 2 is gainful for a win-
ner.

Lemma 2.13. For a loser pi and any gainful deviation, one of the following
two conditions must hold:

1. pi becomes a winner after the deviation: cprivi (ã′) = 1,

2. (a) pi remains a loser after the deviation: cprivi (ã′) = 0,
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(b) (w̃′, ã′) ≺ (w̃, ã).

Proof. Assume there is a gainful deviation not satisfying any of the two
conditions, that is, after the deviation the following two hold:

(I) pi remains a loser after the deviation: cprivi (ã′) = 0, and

(II) (w̃′, ã′) � (w̃, ã).

Condition (II) implies that the probability p of choosing a random assignment
after the deviation decreases (see Observation 2.10, and line 4 of the definition
of Mechanism 2.11). By equation 2.7, the utility of a loser decreases with
decreasing p. Hence, there is no gainful assignment that does not satisfy any
of the conditions listed in the lemma.

Proof of Theorem 2.8. Recall that ã is chosen with probability 1 − p with
p = εfA(n)(wopt, aopt). As fA(n)(w̃, ã) < 1 for every possible pair (w̃, ã), ã is
chosen with probability not less than 1 − ε. Since ã is an α-approximation,
the mechanism provides indeed an approximation ratio of α(1− ε).

For group-strategy proofness we need to show that for every coalition any
deviation from truthful reporting that strictly increases at least one of the
coalition’s players’ expected utility, also strictly decreases at least one of its
players’ utility. We show this by considering all possible types of coalitions
in terms of their composition by winners and losers.

We denote the set of players in the coalition by Pcoal, the reported clause
of player pi after the deviation by c′i, and the set of reported clauses before
(resp. after) the deviation by C (resp C ′).

Observation 2.14. Notice, that before the deviation

w(ã, C) ≥ w(ã′, C), (2.8)

and after the deviation

w(ã, C ′) ≤ w(ã′, C ′). (2.9)

Both inequalities follow from the definition of enumerative mechanisms.

The weight of an assignment a for a coalition Pcoal before the deviation can
be calculated by

w(a, C) =
∑

pi∈Pcoal,

cprivi (a)=1

1 +
∑

pi /∈Pcoal,

cprivi (a)=1

1, (2.10)
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and after the deviation by

w(a, C ′) =
∑

pi∈Pcoal,
c′i(a)=1

1 +
∑

pi /∈Pcoal,

cprivi (a)=1

1. (2.11)

Notice that the only difference between the equations is in the calculation of
the weight of the coalition’s players.

Observation 2.15. No gainful deviation leaves the utility of any player un-
changed, and every gainful deviation for a coalition Pcoal must be strictly
gainful for every player of coalition Pcoal.

Proof. After a gainful deviation either the chosen assignment, or its weight
(or both) has to change. Otherwise, the utilities of the players remain un-
changed, and the deviation is not gainful. Thus, after the deviation the prob-
ability p of choosing a random assignment changes (see Observation 2.10).

There are three types of coalitions we need to consider. Coalitions that
contain both losers and winners, coalitions that contain only winners, and
coalitions that contain only losers.

Coalition consisting of both winners and losers. By Observa-
tion 2.15, the deviation must be strictly gainful for both losers and winners,
hence, the conditions from Lemma 2.12 and 2.13 must be satisfied at the
same time. Thus, for any gainful deviation the following must hold:

1. every player of the coalition becomes a winner after the deviation,
i.e., ∀pi ∈ Pcoal : cprivi (ã′) = 1,

2. the probability of choosing the assignment chosen by the enumerative
mechanism increases after the deviation,
i.e., (w(ã′, C ′), ã′) � (w(ã, C), ã).

The first condition is implied by the fact that a change to the probability p
of choosing a random assignment can not be gainful for winners and losers
at the same time, hence, each player must become a winner. The second
condition follows from Lemma 2.13 and condition 2.

As all of the coalition’s players are satisfied by the newly chosen assignment
ã′, its weight before the deviation must be equal to

w(ã′, C) = |Pcoal|+
∑

pi /∈Pcoal,

cprivi (ã′)=1

1.



2.3 α(1− ε) randomized GSP mechanisms 21

The coalition’s players’ reported clauses after the deviation are not neces-
sarily satisfied by ã′, hence, w(ã′, C) ≥ w(ã′, C ′). From Observation 2.14,
we know that w(ã, C) ≥ w(ã′, C), and w(ã, C ′) ≤ w(ã′, C ′). To sat-
isfy condition 2, it must be that w(ã, C) = w(ã′, C) = w(ã′, C ′). As
w(ã, C) = w(ã′, C ′) and ã was chosen before the deviation, it must be that
(w(ã′, C ′), ã′) ≺ (w(ã, C), ã), contradicting condition 2. Thus, there are no
gainful deviations for coalitions of this type.

Coalition consisting of losers only. In this case for any gainful deviation
one of the conditions from Lemma 2.13 must hold:

1. every player of the coalition becomes a winner after the deviation,
i.e., ∀pi ∈ Pcoal : cprivi (ã′) = 1,

2. (a) at least one of the players remains a loser after the deviation,
i.e., ∃pi ∈ Pcoal : cprivi (ã′) = 0

(b) the probability of choosing the assignment chosen by the enumer-
ative mechanism decreases after the deviation,
i.e., (w(ã′, C ′), ã′) ≺ (w(ã, C), ã),

Observe that the equation

w(ã, C) =
∑

pi /∈Pcoal,

cprivi (ã)=1

1 (2.12)

holds, as none of the coalition’s players are satisfied by the assignment
chosen before the deviation. Hence, w(ã, C ′) ≥ w(ã, C).

We start by showing that there is no deviation for which the first condition
holds. Suppose there is a deviation that satisfies condition 1. As all of the
coalition’s players become winners after the deviation, it must be that

w(ã′, C) = |Pcoal|+
∑

pi /∈Pcoal,

cprivi (ã′)=1

1.

Observe that w(ã′, C) ≥ w(ã′, C ′). From Observation 2.14, it follows that
w(ã, C) ≥ w(ã′, C). Hence, w(ã, C ′) ≥ w(ã, C) ≥ w(ã′, C) ≥ w(ã′, C ′). This
implies (w(ã′, C ′), ã′) ≺ (w(ã, C ′), ã). Thus, ã is chosen after the deviation
as well. As ã does not satisfy any of the coalitions’ players, this deviation
does not satisfy condition 1, contradicting our initial assumption.
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Now, assume there is a deviation for which condition 2 holds. From equa-
tion 2.12 and Observation 2.14, we know that w(ã′, C) ≤ w(ã, C) ≤ w(ã, C ′).
As ã′ is chosen after the deviation, it must be that w(ã′, C ′) > w(ã, C ′).
However, this implies (w(ã′, C ′), ã′) � (w(ã, C), ã), contradicting condition
2(b). Thus, there is no gainful deviation satisfying condition 2.

As there is no gainful deviation satisfying either of the two conditions,
coalitions of this type do not gain by deviating.

Coalition consisting of winners only. In this case for any gainful devia-
tion both conditions from Lemma 2.12 must hold:

1. every player of the coalition remains a winner after the deviation,
i.e., ∀pi ∈ Pcoal : cprivi (ã′) = 1,

2. the probability of choosing the assignment chosen by the enumerative
mechanism increases after the deviation,
i.e., (w(ã′, C ′), ã′) � (w(ã, C), ã).

As all of the coalition’s players are winners both before and after the devia-
tion, the following two equations must hold:

w(ã, C) = |Pcoal|+
∑

pi /∈Pcoal,

cprivi (ã)=1

1,

w(ã′, C) = |Pcoal|+
∑

pi /∈Pcoal,

cprivi (ã′)=1

1.

Notice that w(ã, C) ≥ w(ã, C ′) and w(ã′, C) ≥ w(ã′, C ′). This observation
together with observation 2.14 implies that w(ã, C) ≥ w(ã′, C) ≥ w(ã′, C ′).
Condition 2 requires that w(ã′, C ′) ≥ w(ã, C), hence, w(ã′, C ′) = w(ã, C).
As ã′ has lower order than ã, it must be that (w(ã′, C ′), ã′) ≺ (w(ã, C), ã),
contradicting condition 2. Therefore, there is no gainful deviation for this
type of coalition.

As there are no gainful deviations for any of the three possible types of
coalitions, the mechanism is indeed group-strategy proof.

Note 2.16. The time complexity of Mechanism 2.11 depends mainly on the
enumerative mechanism used by it. It runs in polynomial time when the
enumerative mechanism used by it runs in polynomial time.
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2.4 Randomized GSP hardness for bCSP

with tautologies

In this section, we show that for classes of bCSP where tautologies (or contra-
dictions) are allowed, the best possible approximation ratio is achieved by a
mechanism that returns the same distribution of assignments independently
of the players’ reports. This result holds only for classes where every player is
allowed to report any clause regardless of his private clause (e.g., this result
does not hold for classes with publicly known clause sizes6).

Theorem 2.17. Consider a class of bCSP problems with nvar variables and
a set of allowed clauses C, with at least one clause c ∈ C being a tautology
or a contradiction. Let C ′ be the set of all allowed non-tautologic and non-
contradictory clauses. Over all possible probability distributions P , let pbest be
an upper bound on the minimum probability that P satisfies a clause c ∈ C ′:

∀P : pbest ≥ min
c∈C′

P
a∼P

[c(a) = 1]. (2.13)

There is no randomized group-strategy proof mechanism for this class of prob-
lems that provides an approximation ratio better than pbest + ε, for any con-
stant ε > 0.

Proof. Let n = |C ′|. Fix ctaut ∈ C to be a tautological (or contradictory)
clause, and choose an integral m such that m ≥ n

ε
. Consider n+ 1 instances

Ii (for 0 ≤ i ≤ n), each with n + m players. In instance Ii (i > 0) every
clause c ∈ C ′ is reported exactly once, except for clause ci ∈ C ′ that is
reported m+ 1 times. In instance I0, every clause c ∈ C ′ is reported exactly
once, clause ctaut is reported m times.

LetM be a randomized group-strategy proof mechanism. Suppose, that for
instance I0 mechanism M chooses a probability distribution P . Observe,
that for every instance Ii (i > 0)M must choose a distribution Pi such that
for every clause c ∈ C ′ the probability that it is satisfied by an assignment
chosen from Pi is less than equal to an assignment chosen from P , i.e.,

∀c ∈ C ′ : P
a∼P

[c(a) = 1] ≥ P
a∼Pi

[c(a) = 1]. (2.14)

Assume condition 2.14 does not hold. Hence, ∃c ∈ C ′ : Pa∼P [c(a) = 1] <

Pa∼Pi
[c(a) = 1] must be true. Assume c′ is a clause that satisfies this. A

6In this class players are only allowed to report clauses with the same size as their
private clause.
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coalition of the player reporting c′ and the players reporting ctaut in instance
I0 could deviate such that the new reports would match those of instance
Ii. The player reporting c′ would gain, and the players reporting ctaut would
not lose as their utility is always 1 (or 0). Hence, condition 2.14 must hold,
otherwise M would not be GSP.

From the definition of pbest (see 2.13) it follows that there must be a clause
ci ∈ C ′ such that:

P
a∼P

[ci(a) = 1] ≤ pbest.

Also, from 2.14 it follows that the same holds for the distribution Pi chosen
for instance Ii:

P
a∼Pi

[ci(a) = 1] ≤ pbest.

The optimal distribution for instance Ii satisfies at least m clauses (a dis-
tribution that satisfies clause ci with probability 1 has this property, for
example), the distribution Pi satisfies at most n+ pbestm clauses (ci is satis-
fied with probability at most pbest, everything else with probability at most
1). Thus, the approximation ratio provided by M for Ii is no better than:

n+ pbestm

m
≤
n+ pbest

n
ε

n
ε

= pbest + ε.

The implication of the above theorem is that for classes that allow for tautolo-
gies or contradictions, the best randomized group-strategy proof mechanism
is only marginally better than a trivial mechanism that chooses the same dis-
tribution for every possible instance (the chosen distribution might depend
on the number of variables). For Max-Sat, Max-Cut, and Max-DiCut the
(asymptotically) best trivial algorithm is the one that sets every variable to
true with probability one half. It achieves an approximation ratio of 1/2 for
Max-Sat and Max-Cut, and an approximation ratio of 1/4 for Max-DiCut.
These claims are proven in the next chapters, in theorems 3.30 and 4.41.

2.5 Reduction between unweighted and

weighted bCSPs

In this section, we show that the same hardness results for (group-)strategy
proofness apply for both the weighted and unweighted cases of bCSPs
(assuming rational weights) by reducing the weighted version to an un-
weighted version. The opposite direction follows directly from the fact that
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an unweighted bCSP is a special case of the corresponding weighted bCSP
with every weight set to one.

The reduction from the unweighted to weighted version introduces a
dependency in the time complexity on the weights of the players.

Recall, that the weights are assumed to be public knowledge. In the
unweighted case, the weight of every players is assumed to be one. Keep
in mind that the same clause can be reported by multiple players, so the
unweighted multi-agent version is not equivalent to the unweighted version
of the corresponding combinatorial version. The reduction we show here
requires the weights to be rational.

Mechanism 2.18 α-approximation mechanism for weighted bCSP

Require: instance I = 〈X,C,W,Db〉,
α approximation mechanism Munw for unweighted bCSPs

1: Let Iscaled be a scaled version of I where every weight is scaled to an
integer by the same factor f .

2: Let Iunw be an instance where every reported clause c of Iscaled with
weight w is replaced by w unweighted clauses.

3: return assignment a chosen by Munw for instance Iunw

Observation 2.19. Every α-approximation mechanism for the unweighted
instance provides an α-approximation for the weighted instance.

Proof. Consider Mechanism 2.18. Observe that every assignment a satisfies
the same fraction of the total weight in all three instances I, Iscaled, Iunw.

Observation 2.20. A deviation of a player with weight w from clause c to
c′ in instance I is equivalent to a deviation of w · f players from clause c to
c′ in Iunw.

Theorem 2.21. Mechanism 2.18 is a GSP mechanism for weighted bCSP if
Munw is a GSP mechanism for the unweighted version of the same class.

Proof. By Observation 2.20, for every deviation on I, there is an equivalent
deviation on Iunw. Hence, if there is a coalition of players for instance I that
can gain by deviating, there must also be such a coalition for instance Iunw.
As Munw is GSP, there is no such coalition for Iunw.
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Theorem 2.22. Mechanism 2.18 is a SP mechanism for weighted bCSP if
Munw is a SP mechanism for the unweighted version of the same class.

Proof. By Observation 2.20, if Mechanism 2.18 is SP for weighted bCSP, it
must be that for every instance I and every coalition Pcoal of size w where
every player reports clause c, there is no clause c′, such that a deviation
where every player of Pcoal deviates from c to c′ is gainful.

Assume for the sake of contradiction that there is an instance I where a
coalition Pcoal of size w can gain by deviating from a clause to c to a clause
c′. Consider w + 1 instances: Ii (0 ≤ i ≤ w). In instance Ii, w − i players
of Pcoal report clause c, and i players of Pcoal report c′. The reports of all
other players are equivalent to their reports in I. Notice that if in instance
Ii one of the players reporting c deviates to c′, the reported clauses after
the deviation match those of instance Ii+1. Similarly, if one of the players
reporting c′ deviates to c, the reported clauses after the deviation match
those of instance Ii−1. By assumption, in instance I0 mechanism Munw

chooses an assignment that does not satisfy c, and in instance Iw it chooses
an assignment that satisfies c. Therefore, there must exist an i, such that
the assignment chosen for Ii satisfies c and the one chosen for Ii+1 does not
satisfy c (or vice versa). However, this means that mechanism Munw is not
SP, as there is a player in either Ii or Ii+1 that can gain by deviating. As this
contradicts are initial assumption, there can not exist such an i, and neither
(or both) of the assignments for I0 and Iw must satisfy clause c. Hence,
Mechanism 2.18 must be strategy proof.

The previous theorems together with Observation 2.19 imply that if there is
SP (resp. GSP) α-approximation mechanism for the unweighted version of
some class of GSP, there must also be a SP (resp. GSP) mechanism for the
weighted version of the same class with matching approximation ratio.



Chapter 3

Max-SAT

In this chapter, we show hardness results for deterministic group-strategy
proof mechanisms for Max-SAT and Max-1-SAT, and present deterministic
mechanisms with matching approximation ratios.

3.1 Hardness results

In this section, we first show that there is no deterministic group-strategy
proof mechanism for Max-Horn-2-SAT1 that provides a non-zero constant
approximation ratio. Second, we show that there is no deterministic group-
strategy proof mechanism for Max-1-SAT and Max-Horn-2-SAT with pub-
licly known clause sizes2 that provides an approximation ratio larger than 1/2.
Third, we prove that a trivial randomized algorithm setting each variable to
true with probability 1/2 provides the best possible approximation ratio for
Max-SAT with tautologies.

Theorem 3.23. There is no deterministic group-strategy proof mechanism
for Max-Horn-2-SAT with an approximation ratio of ε (for any constant
ε > 0).

Proof. Let n be an integer larger than 4/ε. All the instances we consider in
this proof have n + 4 players, to which we refer by pi (1 ≤ i ≤ n + 4), and
two variables x, y. There are 4 possible assignments for these instances:

a1 = {0, 0}, a2 = {0, 1}, a3 = {1, 0}, a4 = {1, 1}.
1Max-Horn-2-SAT is a subclass of Max-SAT where only Horn-clauses, clauses with at

most one positive literal, are allowed, and every clause contains at most 2 literals.
2By publicly known clause sizes, we mean that the players are only allowed to deviate

to clauses that have the same number of literals as their private clauses.
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We fix the reported and private clauses of the last four players pn+1≤i≤n+4 in
all instances to the following:

cn+1 = x, cn+2 = ¬x, cn+3 = y, cn+4 = ¬y.

Consider the following 7 clauses:

c1 = x ∨ ¬y, c2 = ¬x ∨ y c3 = ¬x ∨ ¬y,

c4 = x, c5 = ¬x, c6 = y, c7 = ¬y.

Consider 7 instances Ij (1 ≤ j ≤ 7), in instance Ij all of the first n players
p1≤i≤n report clause cj. Suppose that M is a deterministic GSP mechanism
that provides an approximation ratio of ε.

First, we prove two auxiliary lemmas.

Lemma 3.24. For every instance Ij (1 ≤ j ≤ 7), mechanism M chooses
an assignment that agrees3 with clause cj on at least one literal.

Proof. Any assignment a for instance Ij that does not satisfy clause cj sat-
isfies at most 4 clauses. As cj is reported by more than 4 players in instance
Ij, the optimum must satisfy that clause, and therefore satisfy at least n
clauses. Hence, if M chooses a, the provided approximation ratio is less
than or equal to 4

n
and strictly less than 4

4/ε
= ε. Therefore,M has to choose

an assignment that agrees with clause cj on at least one literal for instance
Ij (for every 1 ≤ j ≤ 7).

Lemma 3.25. For instances Ij (1 ≤ j ≤ 3), the assignment chosen by M
must agree with cj on both literals.

Proof. Assume the players report truthfully, and their reported clauses
match the clauses of instance I1. From Lemma 3.24, we know that the
chosen assignment must agree with c1 on at least one literal, so mechanism
M can not choose assignment a2. We claim that M can not choose
assignments a1 and a4 either. Suppose M chooses a1. Consider a coalition
Pcoal consisting of players p1≤i≤n and pn+1. Notice that pn+1 has utility 0
before the deviation. Let all of Pcoal’s players deviate to clause c4. After the
deviation the new set of reported clauses matches I4. By Lemma 3.24, for
instance I4 mechanismM chooses either a3 or a4. Thus, after the deviation
player pn+1 becomes satisfied, and gains by the deviation. Observe, that
all of the other players of the coalition remain satisfied after the deviation.

3An assignment agrees with a given literal, if that literal is satisfied by the assignment.
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Hence, ifM chooses a1 for instance I1, coalition Pcoal can gain by deviating.
Therefore,M can not choose a1 for instance I1. The same reasoning can be
used to show that M can not choose a4 for instance I1 either.

Thus, for instance I1 mechanismM has to choose a3, that is an assignment
that agrees on both literals with c1.

We do not prove the claim for instances I2 and I3, as the proofs for those
instances follow the same structure.

Now suppose the players report truthfully, and the set of reported clauses
matches instance I3. Consider a coalition Pcoal consisting of players p1≤i≤n
and pn+1. From Lemma 3.25, we know that for instance I3 mechanism M
chooses assignment a1. Assume players p1≤i≤n deviate to clause c1, such that
the new set of reported clauses matches I1. By Lemma 3.25, for instance I1
mechanism M chooses a3. However, a3 satisfies the previously unsatisfied
player pn+1, and all of the other players of coalition Pcoal. Thus, Pcoal gains
by this deviation. Therefore, M is not group-strategy proof, contradicting
our initial assumption. Hence, there is no deterministic group-strategy proof
mechanism providing approximation ratio of ε (for any constant ε > 0)4.

Theorem 3.26. There is no deterministic group-strategy proof mechanism
providing an approximation ratio of 1/2 + ε (for any constant ε > 0) for
Max-1-SAT.

Proof. Consider an instance I with k > d 1
2ε

+ 1e variables X = {x1, . . . , xk}
and n = 2km (m ∈ Z+) players. There are 2k possible singletons. Assume for
every singleton clause c there are exactly m players having c as their private
clause. Consider a deterministic GSP mechanism M. The assignment a
chosen byM for I satisfies km = n/2 players5. Let clause cunsat be a clause not
satisfied by a. Suppose all players of the coalition consisting of the players not
satisfied by a deviate to cunsat. The new optimum has size 2(k−1)m, however
M has to still choose assignment a not satisfying cunsat. Otherwise,M would
not be GSP. As a satisfies km clauses, M provides an approximation ratio
of km

2(k−1)m = k
2(k−1) . By the definition of k, the approximation ratio provided

by M is strictly less than 1/2 + ε. Thus, there is no deterministic GSP
mechanism for Max-1-SAT providing an approximation of 1/2 + ε (for any
constant ε > 0).

4This also implies that there is no deterministic GSP mechanism with an approximation
ratio of ε (for any constant ε > 0) for general Max-SAT.

5Every assignment satisfies exactly km players in this instance.
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Corollary 3.27. There is no deterministic group-strategy proof mechanism
providing an approximation ratio of 1/2 + ε (for any constant ε > 0) for
Max-Horn-SAT with publicly known clause sizes.

The corollary follows from the fact that Max-1-SAT is a subclass of Max-
Horn-SAT with publicly known clause sizes.

Lemma 3.28. For every distribution over assignments to n variables
x1, . . . , xn, there is a clause that is satisfied with probability less than or equal
to 1/2.

Proof. Let p be the probability that an assignment setting x1 to true is
chosen. Hence, a positive singleton with x1 is satisfied with probability p,
and a negative singleton with x1 is satisfied with probability 1 − p. As
min(p, 1 − p) ≤ 1/2, no distribution over assignments satisfies every clause
with probability strictly larger than 1/2.

Mechanism 3.29. Set every variable to one of the values {true, false} with
uniform probability.

Theorem 3.30. Mechanism 3.29 is a GSP mechanism that provides an ap-
proximation ratio of 1/2 for general Max-SAT that allows tautologies. There
is no GSP mechanism that provides an approximation ratio of 1/2 + ε (for
any constant ε > 0) for this class.

Proof. In Lemma 3.28, we proved that there is no distribution that satisfies
every clause with probability strictly larger than 1/2. Hence, by Theorem 2.17,
there is no mechanism that provides an approximation ratio of 1/2+ε (for any
constant ε > 0). A disjunctive clause is satisfied if at least one of its literals
is satisfied. As Mechanism 3.29 satisfies every literal with probability 1/2, it
achieves an approximation ratio of 1/2 for general Max-SAT. The mechanism
is GSP, as the distribution from which it chooses an assignment does not
depend on the reports of the players.

This means that this simple mechanism achieves the best possible approxi-
mation ratio for Max-SAT with tautologies.

3.2 Deterministic SP and GSP mechanisms

In this section, we describe a deterministic GSP mechanism for Max-SAT
that provides an approximation ratio of 1

n
, and a deterministic mechanism

that provides an approximation ratio of 1/2 that is GSP for Max-1-SAT
and Max-Horn-2-SAT with publicly known clause sizes, and SP for general
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Max-SAT.

In the remainder of this section, we denote the assignment that sets all vari-
ables to true by atrue, and the assignment that sets all variables to false by
afalse.

Mechanism 3.31 Deterministic GSP mechanism for Max-SAT

Require: instance I = 〈X,C〉, |X| = n, |C| = m

if watrue(C) = m then
return atrue

else
return afalse

end if

Theorem 3.32. Mechanism 3.31 is a group-strategy proof mechanism for
Max-SAT providing an approximation ratio of 1

n
. This bound is tight.

Proof. Observe that the two possible assignments are each others comple-
ments, therefore, every clause is satisfied by at least one of them. As afalse
is chosen only in case there is at least one clause not satisfied by atrue, the
chosen assignment satisfies at least one clause. Therefore, the mechanism
must provide an approximation of 1

n
.

Consider an instance with n players and two variables x, y. The first player
reports c1 = ¬x, all other players report ci = y. Mechanism 3.32 sets both
x and y to false, satisfying one clause. The optimal assignment sets x to
false and y to true, satisfying n players. Thus, the mechanism provides an
approximation ratio of at most 1

n
. Hence, the bound on the approximation

ratio is tight.

Recall that the mechanism chooses afalse if and only if there is at least one
player not satisfied by atrue. Hence, if atrue is chosen, it is guaranteed that
every player is satisfied. Thus, the only case where a deviation can be gainful
is when afalse is chosen in case of truthful reporting and there is at least one
player not satisfied by it. The only clauses not satisfied by afalse are clauses
consisting of only positive literals. The mechanism chooses atrue only in case
there are no players with clauses consisting of only negative literals. Thus,
the only deviations after which the mechanism changes to atrue are the ones
where every player pi with private clause ci consisting of only negative literals



32 Max-SAT

deviates to a clause c′i containing at least one positive literal. However, as
the private clauses of these players are not satisfied by atrue, such a deviation
would decrease their utilities. Hence, there is no (strictly) gainful deviation
for any coalition, and the mechanism is group-strategy proof.

Mechanism 3.33 Deterministic mechanism for Max-SAT

Require: instance I = 〈X,C〉, |C| = m

if wafalse(C) ≥ m/2 then
return afalse

else
return atrue

end if

Theorem 3.34. Mechanism 3.33 is a deterministic GSP mechanism for
Max-1-SAT and Max-Horn-SAT with publicly known clause sizes, and a SP
mechanism for general Max-SAT. The mechanism provides an approximation
ratio of 1/2.

Proof. To see that the mechanism provides an approximation ratio of 1/2,
notice that the mechanism always chooses an assignment that satisfies at
least half of all clauses. It is guaranteed that one of the assignments (or both)
satisfies at least half of all clauses, as they are each other’s complements.

To prove group-strategy proofness for Max-Horn-SAT with publicly known
clause sizes (and implicitly for Max-1-SAT), notice that any Horn-clause
with size of at least 2 is satisfied by afalse. The only clauses that are not
satisfied by afalse are positive singletons. Hence, atrue is chosen only in
case more than half of all clauses are positive singletons. If the mechanism
chooses afalse in case of truthful reporting, any deviation after which the
mechanism chooses atrue must have players with negative singleton private
clauses deviate to positive singletons. However, as their private clauses are
not satisfied by afalse, they would lose by such a deviation. Analogously,
any deviation after which the mechanism changes from atrue to afalse has
players with positive singleton private clauses deviate to negative singletons
(recall, that every clause with a size of at least two satisfies afalse, hence we
do not need to consider those). However, such a deviation would make them
lose as well. Thus, this mechanism is indeed GSP for Max-Horn-SAT with
publicly known clause sizes (and implicitly for Max-1-SAT).
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Finally, to see that it is a strategy-proof mechanism for general Max-SAT,
notice that the only deviations after which the mechanism chooses a different
assignment are those after which the number of clauses satisfied by afalse
drops below (or exceeds) half of the total number of clauses. However, a
player satisfied (resp. not satisfied) by afalse can not increase (resp. decrease)
the number of clauses satisfied by afalse by deviating. Thus, the mechanism
is indeed SP for general Max-SAT.

Alternativly, an enumerative mechanism with two complementary clauses
and any tie-breaking rule also yields a polynomial deterministic SP mech-
anism for general Max-SAT providing an approximation ratio of 1/2. Such
a mechanism is equivalent to the mechanism described by O’Connell and
Stearns [16].

3.3 Randomized mechanism

In this section, we present a randomized GSP mechanism for Max-SAT with
publicly known clause sizes.

Mechanism 3.35. Let arand be an assignment chosen with uniform prob-
ability from the set of all possible assignments, and asing be an assignment
chosen by Mechanism 2.11 only based on the singleton clauses. Choose arand
with probability 4/5, and asing with probability 1/5.

Theorem 3.36. Mechanism 3.35 is a polynomial time GSP mechanism for
Max-SAT with publicly known clauses sizes providing an approximation ratio
of 3−ε

5
(for any constant ε > 0).

Proof. Let s be the total number of singletons satisfiable by a single assign-
ments, and let d be the total number of non-singletons. By the definition of
Mechanism 2.11, assignment asing satisfies in expectation at least (1− ε) · s
clauses. The randomly chosen assignment arand satisfies in expectation at
least s

2
+ 3d

4
clauses. Hence, the expected number of clauses satisfied by

Mechanism 3.35 is at least

1− ε
5
· s+

4

5
·
(
s

2
+

3d

4

)
=

3− ε
5
· s+

3

5
· d ≥ 3− ε

5
· (s+ d).

As the optimal assignment satisfies at most (s+ d) clauses, Mechanism 3.35
provides indeed an approximation ratio of 3−ε

5
(for any constant ε > 0).
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Notice that both asing and arand are computable in polynomial time, hence,
Mechanism 3.35 runs in polynomial time.

Observe, that only asing depends on the reports of the players. As it depends
only on the singleton clauses, and Mechanism 2.11 is GSP, Mechanism 3.35
must be GSP as well.

By choosing asing optimally instead of using the GSP (1− ε)-approximation
mechanism, we get a polynomial time SP (instead of GSP) mechanism pro-
viding a clean approximation ratio of 3

5
.



Chapter 4

Max-Cut and Max-DiCut

In this chapter, we show hardness results and describe a few mechanisms
for Max-Cut and Max-DiCut. First, we show that there is no determin-
istic group-strategy proof mechanism that provides a non-zero constant
approximatio ratio for either problem. Second, we present a deterministic
GSP mechanism that provides an approximation ratio of 1/n for Max-DiCut.
Third, we prove that every oblivious algorithm1 is a polynomial-time
randomized SP mechanism for Max-DiCut. Finally, we construct a deter-
ministic SP mechanism for Max-Cut and Max-DiCut by derandomizing a
simple randomized algorithm that chooses the partition for every vertex
with uniform probability using a pairwise independent distribution.

In contrast to the previous chapters, we use the graph theoretical notation in
this chapter. That is, players report edges, instead of clauses, the variables
are replaced by vertices, the mechanism chooses a cut instead of an assign-
ment, and the players are satisfied if and only if their private edge is cut by
the chosen cut.

4.1 Hardness results

In this section, we show that there is no deterministic GSP mechanism for
Max-Cut and Max-DiCut that provides a non-zero approximatio ratio.

Theorem 4.37. There is no deterministic GSP mechanism for Max-DiCut
that provides an approximation ratio of ε (for any constant ε > 0).

1In an oblivious algorithm the partition for every vertex v depends only on the degrees
of that vertex. The partition for every vertex is chosen independently of the other vertices.
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Proof. Let n be an even integer larger than 4 satisfying the following condi-
tions:

4

n2 − n− 2
> ε,

n2 − n− 2

2
≥ n2

4
.

Let G = (V,E0) be a complete directed graph with n vertices and m = n2−n
edges. All of the instances considered in this proof have m players. Consider
an instance I0 where each edge of G is reported by exactly one player.

Observation 4.38. For every pair of non-trivial directed cuts2 Ca, Cb of G
there exists a pair of edges ea, eb such that ea is cut only by Ca but not by Cb,
and eb is cut only by Cb but not by Ca.

Consider a deterministic GSP mechanismM with an approximation ratio of
ε and let C0 = (V0, V1) be the cut that M chooses for I0.

Claim 4.39. For every instance I with m players where every edge e ∈ E0

that is cut by C0 is reported by at least one player, mechanism M chooses
cut C0.

Proof. SupposeM chooses a cut C different from C0 for such an instance I.
From Observation 4.38 we know that there is at least one edge e ∈ E0 cut by
C and not cut by C0. Let Pcoal be a coalition consisting of all players of I0
whose reported edges are not cut by C0. Observe that there is a deviation
for coalition Pcoal from truthful reporting, such that before the deviation the
reported clauses of all players (including those outside the coalition) match
I0 and after the deviation the reported clauses (again including the players
outside the coalition) match I. As there exists at least one player p ∈ Pcoal

whose private edge is cut by C but not by C0, and none of Pcoal’s players’
private edges are cut by C0, the coalition gains by such a deviation. As M
is GSP, it must choose C0 for every instance I where every edge cut by C0

is reported by at least one player.

If |V1| > 1, let v1, v2 be two vertices from the set V1, and let ui, uj be two
vertices from the set V0 (ui and uj may refer to the same vertex). And denote
four directed edges e1 = (ui, v1), e2 = (uj, v2), e3 = (v1, v2), and e4 = (v2, v1).
For the case where |V1| = 1 (and |V0| > 1), we use a slightly different
definition. Let u1, u2 be two vertices from the set V0, and let vi, vj be two
vertices from the set V1 (vi and vj may refer to the same vertex). Denote four
directed edges e1 = (u1, vi), e2 = (u2, vj), e3 = (u2, u1), and e4 = (u1, u2).

2A non-trivial cut is a cut C = (V0, V1), where both partitions V0, V1 are non-empty.
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(a) Graph for the case |V1| > 1
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(b) Graph for the case |V0| > 1

Figure 4.1: Graphs for instance I1

The edges are depicted on Figure 4.1. The edges are defined such that
it does not matter for the remainder of the proof whether |V1| > 1 or |V1| = 1.

Let I1 be an instance where one player reports each one of the edges e1 and
e2, and exactly n2−n−2

2
players report e3 and e4. For the remainder of this

proof, assume that I1 represents the players’ private clauses.

Let C1 be the cut chosen by M for instance I1. As the optimum cuts e3 or
e4, the size of the optimum is at least n2−n−2

2
. Any cut that does not cut e3

and e4, cuts at most 2 edges. Therefore, the approximation ratio provided
by such a cut is 2

n2−n−2
2

< ε. Hence, C1 chosen by M for I1 must cut either

e3 or e4.

Notice that e3 and e4 can not be cut by the same cut, thus, there are at
least n2−n−2

2
players whose edges are left uncut. Furthermore, any cut that

cuts e4 does not cut e2 and e3, and any cut that cuts e3 does not cut e1
and e4. W.l.o.g., assume C1 cuts e3. Let Pcoal be a coalition consisting of all
of the players reporting e4 and e1. Notice that none of Pcoal’s players have
their edges cut by c1. Suppose the players of Pcoal deviate in a way that
after the deviation every edge e ∈ E0 cut by C0 is reported by at least one
player. There is at least one such deviation as the number of players in the
coalition is larger than the number of edges cut by C0

3. By Claim 4.39, for
an instance with such reportsM chooses cut C0. As the private clause of the
player reporting e1 before the deviation become cut after the deviation, the
coalition gains by deviating. Hence, forM to be GSP, it must choose C0 for

3The number of edges cut by C0 is at most n2
/4, the size of Pcoal is at least n2−n−2

2 . n

satisfies n2−n−2
2 ≥ n2

4 by definition.
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instance I1. However, C0 cuts 2 edges in case of I1, whereas the optimal cut
cuts at least n2−n−2

2
edges. Thus, the approximation ratio provided by the

mechanism is strictly less than ε, contradicting our initial assumption.

Theorem 4.40. There is no deterministic GSP mechanism for Max-Cut that
provides an approximation ratio of ε (for any constant ε > 0).

Proof. Let n be an integer larger than 5/ε. Consider 6 instances Ii (1 ≤ i ≤ 6)
with 4 vertices and 5+n players each. Notice that for graphs with 4 vertices,
6 different edges are possible (self-loops excluded). We refer to these edges
by ei (1 ≤ i ≤ 6). In instance Ii edge ei is reported by n players, the other
5 edges are reported by only one player each. Let M be a deterministic
group-strategy proof mechanism providing an approximation ratio of ε.
Denote the cut chosen by M for instance Ii by Ci.

Observe, that for every instance Ii, the chosen cut Ci has to cut edge ei.
Every cut that does not cut ei cuts at most 5 reported edges. The optimum
cuts ei, and cuts, therefore, at least n reported edges. As 5/n < ε, the
approximation ratio provided by a mechanism choosing such a cut is less
than ε. Hence, Ci must cut ei.

Next, we show that δ(Ci) ∩ δ(Cj) 6= ∅ implies Ci = Cj.
4 Assume this is

not the case, and there exist a pair of cuts Ci, Cj with δ(Ci) 6= δ(Cj), and
an edge e∗ ∈ δ(Ci) ∩ δ(Cj). The following three cases are possible (the case
where e∗ = ej is not considered explicitly as it is equivalent to one of the
other cases after swapping the definitions of ei and ej):

1. e∗ = ei, and there is an edge e such that e ∈ δ(Cj) and e /∈ δ(Ci).
Notice, that cut Cj cuts both ei and e, but Ci cuts only ei. Consider a
coalition Pcoal consisting of all players reporting edges e or ei. Suppose
in case of truthful reporting the reported edges match instance Ii. After
a deviation by n− 1 players from reporting ei to reporting ej, the new
reports match instance Ij. As cut Cj satisfies every player of Pcoal, the
coalition gains by such a deviation. AsM is GSP, such an e∗ does not
exist .

2. e∗ = ei, and there is no edge e that satisfies e ∈ δ(Cj) and e /∈ δ(Ci).
As δ(Cj) 6= δ(Ci), there must exist an edge e satisfying e ∈ δ(Ci) and
e /∈ δ(Cj). Therefore, it must be that δ(Cj) ⊂ δ(Ci). Consider a
coalition Pcoal consisting of all players reporting edges e or ej. Suppose
in case of truthful reporting the reported edges match instance Ij. After

4δ(C) is the set of edges cut by C.
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a deviation by n− 1 players from reporting ej to reporting ei, the new
reports match instance Ii. As e ∈ δ(Ci), e /∈ δ(Cj) and δ(Cj) ⊂ δ(Ci),
the coalition gains by such a deviation. Hence, there does not exist
such an e∗.

3. e∗ 6= ei and e∗ 6= ej. In this case, there must exist a cut Ck with
e∗ = ck. As δ(Ci) 6= δ(Cj), δ(Ck) must be different from δ(Ci) or δ(Cj)
(or both). By relabeling i, j, k we get to the same scenario as in case 1
or case 2. Therefore, there is no such e∗.

As there is no edge e∗ for which e∗ ∈ δ(Ci) ∩ δ(Cj) (when δ(Ci) 6= δ(Cj)), it
follows that δ(Ci)∩ δ(Cj) 6= ∅ implies δ(Ci) = δ(Cj). Thus, any pair of cuts
chosen by the mechanism must either be completely disjoint or equal, while
still satisfying ei ∈ Ci.

The condition that ei ∈ Ci implies that every edge must be cut by at least
one of the cuts. For a complete graph with 4 vertices, every cut cuts either
3 or 4 edges. As the cuts must be completely disjoint (or equal) and every
edge must be cut by at least one cut, every Ci must be equal to some cut of
size 3 (notice that setting any Ci to a cut of size 4 immediately violates the
disjointness property). However, it is not possible to assign cuts of size 3 to
every Ci in a way that satisfies both disjointness and ei ∈ Ci.

Theorem 4.41. There is no distribution over cuts (resp. directed cuts) for
graphs with n vertices where the minimum probability of an edge being cut is
larger than n

2(n−1) = 1/2 + o(1) (resp. n
4(n−1) = 1/4 + o(1)).

Proof. Observe that any cut for a graph with n vertices cuts at most n2/4
edges. A complete graph with n vertices has n2−n

2
edges, and a complete

directed graph with n vertices has n2 − n edges. Therefore, the minimum
number of cuts (resp. directed cuts) required to cut every edge is at least
n2−n

2

n2/4
= 2(n−1)

n
(resp. n2−n

n2/4
= 4(n−1)

n
).

4.2 Deterministic GSP mechanisms

In this section we describe a deterministic GSP mechanism for Max-DiCut.

Mechanism 4.42 Deterministic GSP mechanism for Max-DiCut

Define Ci (for 1 ≤ i ≤ n) as the cut ({vi}, V − {vi}).
return the Ci with the minimal i cutting at least one edge.
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Theorem 4.43. Mechanism 4.42 is a polynomial time deterministic group-
strategy proof mechanism providing an approximation ratio of 1

n
for Max-

DiCut. This bound is tight.

Proof. The mechanism is, clearly, deterministic. It is polynomial, as it
considers only a polynomial number of cuts.

Notice, that for every pair of cuts Ci, Cj (1 ≤ i, j,≤ n and i 6= j) the sets of
cut edges δ(Ci), δ(Cj) are pairwise disjoint. Assume that for an instance I
Mechanism 4.42 chooses cut Ci. By the definition of Mechanism 4.42, there
is no cut Cj with j < i that satisfies at least one player. Therefore, we only
need to consider deviations from I after which the mechanism chooses a cut
Cj with j > i. Such a deviation requires all players with private edges cut
by Ck for every k < j deviate to an edge cut by Cj. However, players with
edges cut by Ci lose by such a deviation, as their private edges are not cut
by Cj. Thus, such a deviation is not gainful, and the mechanism is indeed
GSP.

Observe that for every possible instance the mechanism chooses a cut that
cuts at least one edge, hence, for instances with n players, it must have an
approximation ratio of 1

n
. Consider an instance where n − 1 players report

edge (v1, v2), and 1 player reports edge (v0, v2). Mechanism 4.42 chooses a cut
that cuts only (v0, v2) (the optimal cut cuts edge (v1, v2) as well), therefore
the bound on the approximation ratio is tight.

4.3 Oblivious algorithms for Max-DiCut

The bias of a vertex v is defined as the fraction of its in-degree compared to
its total degree:

bias(v) =
din(v)

din(v) + dout(v)
.

An oblivious algorithms [15] for Max-DiCut is a randomized polynomial time
algorithm in which the probabilities of putting a vertex into V0 or V1 depend
only on the bias of the vertex and are independent of the other vertices. We
say an oblivious algorithm is monotone if the probability of a vertex being
put into partition V0 is non-decreasing with increasing bias. Every algorithm
described by Feige and Jozeph [15] is monotone.

Theorem 4.44. A monotone oblivious algorithm is a strategy-proof mecha-
nism for Max-DiCut.
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Proof. Consider a player pi with a private edge (u, v). After any deviation
by pi from truthful reporting the following conditions hold:

d′out(u) ≤ dout(u),

d′out(v) ≥ dout(v),

d′in(v) ≤ din(v),

d′in(u) ≥ din(u).

Thus, bias(u)′ ≥ bias(u), bias(v)′ ≤ bias(v), and p′[u ∈ V0, v ∈ V1] ≤ p[u ∈
V0, v ∈ V1]. Hence, no deviation is gainful for pi and the mechanism is indeed
strategy proof.

The best known oblivious algorithm provides an approximation ratio of 0.483,
and the best possible approximation ratio attainable by an oblivious algo-
rithm is strictly less than 0.4899 [15].

4.4 Simple polynomial time randomized GSP

and deterministic SP mechanisms

In this section, we present a simple randomized GSP mechanism for Max-
Cut and Max-DiCut, and show that this mechanism can be derandomized to
provide a deterministic SP mechanism with a matching approximation ratio.

Mechanism 4.45 Simple randomized mechanism

Pick n random bits b1, . . . , bn.
return cut C = (V0, V1) with vertex vi being in set Vbi .

Theorem 4.46. Mechanism 4.45 is group-strategy proof and provides a 1/2
approximation for Max-Cut and a 1/4 approximation for Max-DiCut.

Proof. As the cut is chosen independently of the reported edges, no devia-
tions are gainful, and the mechanism is GSP.

The expected number of edges cut in the undirected case is:

E[|C|] =
∑

(vi,vj)∈E

Pr[vi 6= vj] =
∑

(vi,vj)∈E

1

2
=
|E|
2
.
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Analogously, in the directed case it is:

E[|C|] =
∑

(vi,vj)∈E

Pr[vi = 0, vj = 1] =
∑

(vi,vj)∈E

1

4
=
|E|
4
.

As the number of edges cut by the optimum is always less than or equal to
|E|, the mechanism indeed provides a 1/2-approximation for Max-Cut and
1/4-approximation for Max-DiCut.

The approximation ratio of Mechanism 4.45 relies only on the fact that
for every edge e = (vi, vj) the partitions for the endpoints are chosen
uniformly and independently of each other. Thus, the only requirement on
the probability distribution is that the random bits b1, . . . , bn are uniformly
distributed and pairwise independent.

It is possible to construct 2l−1 pairwise independent and uniformly distributed
random variables (bits) from l independent random variables (for more details
see Section 2 in [17]). Thus, dlog2 n+ 1e uniform random bits are needed to
construct n pairwise independent uniform random bits. As there is only a
linear number of possible assignments to these logarithmic number of bits,
such a distribution can generate only a linear number of different cuts. It
is possible to generate and enumerate all of these in polynomial time. As
the expected number of edges cut by a cut taken randomly from these is 1/2
for Max-Cut and 1/4 for Max-DiCut, there must exist at least one cut in the
support of this distribution with a matching size.

Mechanism 4.47 Enumerative mechanism based on pairwise-independence

1: Let Xn be a pairwise independent distribution over n bits with polyno-
mial sized support Rn

2: Order Rn lexicographically
3: return lexicographically largest cut with maximal size from Rn

Theorem 4.48. Mechanism 4.47 is a polynomial time deterministic strategy
proof mechanism providing an approximation ratio of 1/2 for Max-Cut and 1/4
for Max-DiCut.

Proof. The mechanism is an enumerative mechanism with A(n) = Rn and
lexicographic ordering. Thus, by Theorem 2.4, it is strategy proof and
deterministic.
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As the expected number of edges cut by a random cut (resp. directed cut)
generated by Xn is |E|/2 (resp. |E|/4), its support must contain at least one
cut of size |E|/2 and at least one directed cut of size |E|/4. Therefore, the
mechanism provides a 1/2-approximation for Max-Cut, and 1/4-approximation
for Max-DiCut.





Chapter 5

Conclusions

In this thesis, we presented several results for multi-agent models of boolean
constraint satisfaction problems. However, many interesting questions about
these models are still open. The simplest open problem in our opinion is
whether a deterministic group-strategy proof mechanism for Max-Cut with a
non-zero non-constant approximation ratio exists. We strongly believe there
does not exist such a mechanism. This may sound counter-intuititve, as such
a mechanism exists for Max-DiCut, which can be viewed as a generaliza-
tion of Max-Cut. A second interesting problem is finding a polynomial time
randomized mechanism with an approximation ratio better than that of the
simple uniform randomized mechanism setting each variable to one of the
values {true, false} with uniform probability for Max-SAT and Max-Cut.
The fact that such mechanisms exist for Max-DiCut provides a reason to
believe in the existence of such mechanisms. Another open problem worth
looking at is proving upper bounds for polynomial time randomized (both SP
and GSP) mechanisms and polynomial time deterministic SP mechanisms.
The known hardness results for approximation algorithms for these problems
extend immediately to our model, but it might be possible to get stronger
bounds using both truthfulness and complexity arguments. None of the up-
per bounds proven in this thesis take computation time into account. Also,
it is unclear if there are polynomial time deterministic mechanisms providing
a better approximation ratio than the derandomization of the simple uni-
form randomized mechanism. All of the polynomial time deterministic SP
mechanisms described in this thesis are enumerative mechanisms. We do not
know if there exist any SP non-enumerative mechanisms providing better
approximation ratios.
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