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Abstract 

Virtual Reality (VR) has been found to be an effective rehabilitation tool for brain 

injury patients. We show that motion data from these VR sessions can be effectively 

used to both cluster and classify patients according to types of injury. Neural Network 

and other tools were used to differentially classify patients with traumatic brain 

injury, cerebral vascular accident (stroke) with and without spatial neglect and healthy 

individuals solely from the motion data. Clustering techniques also successfully 

duplicated the classification division. These results have potential implications for 

scientific research, automated diagnosis and integrated individually adaptive therapies 

in the virtual reality technology. 
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1 Introduction 

1.1 Background 

1.1.1 Virtual Reality in Rehabilitation 

Recent advances in computer science and engineering have allowed scientists 

and clinicians to introduce virtual reality (VR) technology to various medical fields in 

general, and to rehabilitation in particular. Virtual reality applications let patients 

function in simulated environments where they are safe on one side, but practice real-

world functions on the other side (see review at Weiss et al., 2006). For example, a 

stroke patient may practice virtual street crossing in the clinic before trying to cross a 

street in the physical world (Kats et al., 2005).  

Beyond the ecological validity offered by virtual environments, they are also 

carefully controlled so they can be standardized, and the behavior of the patients is 

monitored and recorded. The collected data can be analyzed and used for clinical 

diagnosis or progress evaluation as well as general scientific research.  

In the current study we focused, as a proof of concept, at the rehabilitation of 

brain injuries, and in particular at the population of CerebroVascular Accident 

(Stroke) patients.  

A stroke is a lesion of the brain resulting from a disturbance in the blood 

supply to the brain, due to obstruction or rupture of a blood vessel. Stroke causes a 

neurological deficit which may lead to various types of disabilities such as cognitive, 

emotional and motor impairments. In some cases stroke leads to spatial neglect. 

Patients with neglect are impaired in directing attention to selective part of space, 

 
 

Figure 1. Various Pen and Paper 

Neglect tests 

Figure 2. Pen and Paper Neglect test of 

star cancellation. 
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usually the half of space that is opposite the injured hemisphere, and are unaware of 

their deficit (Robertson and Halligan, 1999). 

Neglect is commonly assessed using paper-and-pencil tests (See Figure 1 and 

Figure 2). However, these tests have several substantial drawbacks that often lead to a 

misdiagnosis of less severe cases. For example, a stroke patient who had passed the 

traditional tests and even got back his driver license yet experienced multiple car 

accidents which occurred due to lack of attention and awareness to the neglected 

visual hemifield (Deouell, Sacher and Soroker, 2005). Other studies have also shown 

the weakness of conventional tests in neglect, and the potential of using virtual reality 

technology for accurate assessment of this neurological condition (Dvorkin et al., 

2008, 2011). 

Several types of VR methods 

are used for the investigation and 

treatment of stroke. The main one we 

used for this study implements a 3D 

environment, where the patient has to 

reach and "touch" a virtual ball 

appearing at various spatial locations 

(see Figure 3). Each reaching trial 

produces a data vector which includes the x,y,z coordinates and orientations (6 

degrees of freedom) of the moving hand at 60 Hz sampling rate. 

Beyond the 3D experiment we also used machine learning tools in order to 

analyze data gathered by a 2D VR system, where subjects perform virtual shopping. 

In this VR application the data is only two-dimensional and also is very noisy. 

Finally, in this experiment we included traumatic brain injury (TBI) participants, 

which constitute another common patient population. 

1.1.2 Machine Learning Approach 

As virtual reality platforms produce very large amounts of data, many 

researchers end up reducing the analysis to simple outcome measures such as reaction 

time, accuracy level etc. Thus meaningful information may be ignored due to the 

difficulties involved in identifying the relevant clinical features hiding in the data. 

 

Figure 3. The VRROOM 3D platform. 
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We propose that such patient data are prime candidates for analysis using 

machine learning tools. This study aims to explore how various approaches may be 

used for analysis of patient data under constraints posed by the clinical conditions. 

We focus on analysis based solely on motion data, since this is common in 

almost all VR platforms. 

In analyzing the data produced by these VR platforms, we had to overcome 

several hurdles. First and foremost, the sample size in these studies is quite small for 

technical and clinical reasons. Moreover, as the participants get tired with time, the 

length of each experimental session is rather limited.  

 

Thus we had to find ways to process noisy and scarce data. These issues will 

be addressed later on. As even simple human motor performance is quite challenging 

for meaningful analysis, we approached this challenge using three levels of 

classifications as each one may yield a solution for a different clinical or scientific 

challenge. 

Two-class classification: This approach may be quite valuable when it comes 

to differential diagnosis (DD). Several types of brain lesions may produce very similar 

performance, not always easily clear even to a professional eye. Thus it would be of 

clinical benefit to detect which of the suspected conditions the patient suffers from. 

After training on some clear cut cases, it may be possible to generalize and classify 

the more questionable cases. Such classification may assist for example in 

differentiating between Neglect and Hemianopsia (cortical blindness), as in both 

conditions patient behave in very similar ways. 

Zero-class classification (clustering): Clustering techniques lend themselves 

for analysis of heterogeneous populations, like stroke patients. Since no two stroke 

patients are identical, clustering them into subclasses leads to better classification than 

the coarse ones used today, i.e., mild, severe, and so forth.  

One-class classification: One-class filters are those that are trained and 

produced using only data from one-class, yet it produces a classification on new data 

that says the data point is in the class or not. This is inherently a much more difficult 

task than 2-class classification, for the simple reasons that there are no negative 

samples to learn from. Although harder to implement, this approach has the advantage 

that it is in principle scalable in the sense that it may lead to the creation of arrays of 

condition-specific classifiers.  
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After sufficient training of a set of one-class filters, one can bring a novel data 

vector and test it on these filters to see whether this patient tested positive for the 

"mild neglect" or "severe neglect" or "mild upper-left hemi-field but otherwise OK" 

etc. This may focus the clinicians in treating only the impaired faculties of the 

patients. 

Since data is so expensive and scarce, we were also interested in the 

possibility of combining data from different VR platforms. Thus we can expand the 

data pool for each of the relevant pathological conditions (e.g., Neglect, TBI) and base 

our clinical diagnosis on a larger sample. For example, one can train a neural network 

(NN) (Fausett, 1994) on data from two platforms in two separate hospitals where 

neglect patients perform various tasks. Once trained, the NN would be able to assist 

clinicians in both hospitals and even from another clinic using yet another platform.   

 Of course, this is a complex problem because different systems have different 

ways of dealing with the data, even of different dimensions, and the users perform 

different tasks.  Nonetheless, if they are all motion data, we thought it worthwhile to 

see how they can be merged.  

All of the previously described classification categories will benefit from a 

large, combined, multi-platform VR data set. 

 

 

1.2 Contribution of study 

As virtual reality technology gains popularity in the field of rehabilitation, 

clinicians and scientists need an appropriate way to interpret the data acquired in VR 

therapy sessions. We believe that finding efficient ways to harness machine learning 

for analysis of human behavior has a significant potential to better understanding of 

brain injuries. These injuries manifest themselves in such a wide spectrum, so patients 

may suffer from inaccurate evaluation of their condition. Also, better analysis of 

movement patterns may greatly assist neuroscientists in their pursuit of better 

understanding of brain mechanisms such as perception, attention, motor planning and 

control. Specifically we can imagine using these tools in the following fields: 

1. Differential diagnosis - detect which of the suspected conditions the 

patient suffers from. 
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2. Prognosis - build a virtual model of the individual which we would want to 

extract automatically from data based on his performance in the VR 

sessions.  Then an individual rehabilitative protocol can be obtained by 

simulating the behavior of an avatar in the VR; and simply testing how the 

avatar improves under a large variety of protocols. 

3. Individualized treatment – once a good one is established, it can be 

immediately applied to the patient who is being treated in the same VR 

environment. 

1.2.1 Goals of study  

In the present study we aim to demonstrate the abilities of machine learning 

tools to classify patients according to their pathology using captured motor data.  

To do this our primary tool is 2-class classification. However because of 

scaling concerns (over the number of possible diagnoses) we utilized the 1-class 

approach.  

We also want to see how the scale and availability of patient data can be 

increased in order to make the learning system as general as possible and not VR 

platform specific. This would also allow for cross platform classification. 

Another goal is to see if one can classify patients of a certain disease 

according to the severity of their condition, using clustering techniques working on 

the same captured motor data. 

In the following sections we shall demonstrate the feasibility of these 

approaches suggesting the relevance of machine learning tools.  
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2 Methods 
We gathered data from 2 VR platforms. Data analysis was done using NN (in 

various arrangement, as described below), Support Vector Machines (SVM) 

(Cristianini and Shawe-Taylor, 2000) and k-means (Loyd, 1982), with the main tool 

being NN.  

2.1 Data from 3D Experiment - VRROOM 

Population: 29 volunteers participated in a study performed by Dvorkin et al., 

2008. Ten of them were diagnosed as suffering from stroke without clinical signs for 

neglect, nine suffered stroke and showed signs for neglect. The other ten were healthy 

adults in similar ages. The patients were diagnosed as having different levels of 

severity of their medical condition, ranging from mild to severe. 

Procedure: Participants were positioned in front of the VRROOM (Virtual 

Reality and Robotics Optical Operations Machine) system (Patton et al., 2006), shown 

in Figure 3. On each trial a virtual target appeared randomly in space in one of 49 

possible positions. Participants were instructed to reach toward the target as soon as 

they detected a target appearing within the scene, using their unimpaired arm. Each 

subject was presented with 343 target stimuli altogether. 

Analysis: The data vectors were first preprocessed in order to eliminate pre-

mature movement initiations or omissions (i.e., when the subject did not respond 

within three seconds). Also, any hand movement prior to the stimulus appearance was 

ignored as it is not part of the experiment. 

The input vectors were of several types: 

� Long vectors - including the data from the onset of the target stimulus in the 

virtual environment till the end of the hand movement.  

� Movement vectors – consisting of data from the response of the subject, i.e., 

only from the moment the subject started a physical response. 

� Initial/final vectors – These vectors included the initial/final 130 data points of 

the movement. As oppose to the former types, these vectors were of fixed 

lengths. 
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2.2 Data from 2D experiment - GestureXtreme 

Population:  99 volunteers participated in a study performed by Rand et al., 

2004. 54 were healthy adults, 11 adults who suffered from CVA (without neglect), 9 

children suffering from TBI and 25 healthy children.  

Procedure: A virtual supermarket was presented to the participants using the 

GestureXtreme platform (www.GestureTek.com). This system is based on video 

motion capture technology where user is captured by video camera and sees his image 

in immersive 2D VR environment on 

the screen (Figure 4). Motion tracking 

algorithm produces two-dimensional 

coordinates of the user's movements. 

The participants were instructed to 

touch certain virtual products 

according to a shopping list (Rand et 

al., 2004). The system did not have 

markers on the user's body, except for 

a hand glove so the motion tracking 

was very limited in its abilities. Thus 

the collected motion data was very noisy and fragmented. 

Analysis: In this experiment we implemented learning tools in a challenging 

virtual environment. 

The data vectors were first preprocessed in order to find least noisy segments 

where the movements of the hand are consistent over a period of several seconds. At a 

rate of 15 frames per seconds, a typical segment consisted of several coherent chunks 

of 7-10 second durations. Thus each participant produced eventually about 750 

measurements (x,y,t) of his hand.  

The noisy and fragmented nature of the data prevented us from creating input vector 

of whole movements or even long snippets. A snippet is a consecutive sequence of 

differentials (dx,dy,dt). For the 2D experiment we used snippets of length five.   

 

 

Figure 4. A sample view of a subject within 

a GestureXtreme virtual Environment. 
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2.3 Combined Platforms 

Population: the only identical categories in both experiments were healthy 

and non-neglect stroke. The combined population included 64 healthy adults, 20 

stroke patients and 25 healthy children. 

Analysis: The characteristics of each platform were studied by plotting the 

trajectories of select subjects' trials. An example can be seen in Figure 5 and Figure 6. 

  

Figure 5. A sample trajectory of a healthy 

subject trial (x,y,t) on the GestureXtreme 

platform 

Figure 6. A sample 2D projected 

trajectory of a healthy subject trial (x,y,t) 

on the VRROOM platform 

In order to experiment on data from both experiments, a geometric 

transformation was needed. The 3D data was transformed to 2D by removing the Z 

axis: (x,y,z) -> (x,y,0).  This projection was chosen because the nature of the subject 

movement in the 3D experiment was such that there was relatively little movement in 

the z dimension. Beyond the obvious difference of dimensionality between the two 

platforms, the merging of the data raised another challenge for this task. As can be 

seen in Figure 5 and Figure 6 the GestureXtreme data are very noisy and unstable. 

We used varying lengths of "snippets" from both data sets, seeking the optimal 

length that might remove the platform specific movement characterization and hoped 

that the intrinsic information will remain.  

There was considerable more data in the 3D dataset, so we selected a 

representative subset of the 3D data, which took into account all of the different target 

locations.  
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2.4 Architecture and Training 

2.4.1 Two-Class 

GestureXtreme (2D): For this experiment we used a feed forward network 

architecture with one hidden layer, which received as input a 15 element vector – 5 

consecutive hand movements vectors (dx,dy,dt). The hidden layer had 5 elements. All 

together an architecture of 15-5-1 (Figure 7). For the more difficult case (TBI v. 

CVA) a network of the structure 15-20-10-1 (2 hidden layers) was applied. Previous 

2-class classification work on the GestureXtreme has been published (Feintuch, 

Manevitz, Mednikov et al., 2006). The results shown here confirm their results.  

 

Figure 7. NN for the GestureXtreme experiment. 

VRROOM (3D): Here we used the same feed forward network architecture 

with a different input layer, consisting of various lengths, consecutive hand movement 

vectors (x,y,z). 1400 elements for a long vector (1400-5-1), 1000 elements for a 

movement vector (1000-5-1), 130 elements for initial/final vectors (130-5-1).  

Combined Platforms: After an extensive empirical search for the optimal 

"snippet" length, we settled on length of 90 data points (dx,dy,dt). We found that 2 

hidden layers were more effective, and thus the final network structure was 270-300-

10-1.  

At first, the training method was Levenberg-Marquardt (Marquardt, 1963). 

Later on we discovered that the resilient back-propagation algorithm (Riedmiller and 

Braun, 1993), which modifies the update-values for each weight according to the 

behavior of the sequence of signs of the partial derivatives in each dimension of the 

weight-space, obtains the same stable results only with a much faster processing time. 
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Empirically, we found that it was sufficient to run training for 50 epochs for the 

simpler classification task of healthy v. CVA. It was necessary to increase the number 

of epochs from 50 to 300 for the more difficult task of CVA v. TBI classification. 

Cross-validation: One subject was removed during the training session. It 

was used for testing of the generalization. This was repeated as many times as there 

were subjects and percent of successful classifications was calculated.  
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2.4.2 One-Class 

This was run only on 3D data from VRROOM. For these experiments we used 

a back propagation neural network, structured such that the number of neurons in the 

hidden layer is smaller than the input layer and output layer, which have the same 

number of neurons. The "compression" rate (ratio between number of neurons in the 

input and hidden layers) was chosen to be 5 as is exemplified in Figure 8. The input 

layer was of various lengths, 1000 elements for a movement vector (1000-200-1000) 

and 130 elements for initial/final vectors (130-26-130). 

 

 

Figure 8. An example of a NN with a compression rate of 5 
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We used the resilient back propagation training method, with the number of 

epochs being 300. A simple Euclidean distance metric was used to measure how close 

the output was compared to the input. Subjects at a distance below a manually chosen 

threshold were inside the class, while subjects at a distance above the threshold were 

outside the class. For a discussion on automatic threshold selection methods see 

Manevitz and Yousef, 2007. An example for severe neglect is shown in Figure 9  

 

Figure 9. Severe neglect classifier experiment. The threshold was chosen 

to be 3.3 
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2.4.3 Zero-Class (Clustering) 

For both of these experiments we used a Kohonen Self Organizational Map 

(SOM) network (Fausett, 1994).  

VRROOM (3D): The input layer was of various lengths, 1000 elements for a 

movement vector and 130 elements for initial/final vectors. 

We experimented on different lengths of line topologies (from 2 clusters up to 

300).  

Each data point was placed in a cluster numbered between 1 and the total number of 

clusters. We emphasize that the clustering is done on data points without 

consideration of which individual patient, the data point belongs to. In Figure 10 you 

can see, for example, the histogram; color separated for subject, for Kohonen 

Clustering to 7 neurons of all of the 1278 data points of Neglect patients (only some 

of the patients are shown for clarity). N9 appears to be on one extreme while N5 on 

the other. N4 seems closer to N9, than N1 is.  

 

Figure 10. Histogram for Kohonen Clustering to 7 clusters of data points of 4 Neglect 

patients. 

In order to have a simple way of showing the relationship between the different 

subjects, we place a subject on a linear scale in the correct place relative to the other 

subjects. This is possible by calculating the average of its data points' cluster numbers.  
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For example in Figure 11, the linear scale for Neglect subjects is presented. 

 

a – 2 neurons 

 
b – 7 neurons 

 

c – 50 neurons 

 

d – 300 neurons 

Figure 11. Clustering results for Neglect subjects. Kohonen line topology of various 

amount of neurons: a - 2 neurons, b – 7 neurons, c - 50, d - 300 

Demonstrated in this example, when using the kohonen line topology, the 

order of the patients was strikingly preserved, no matter the amount of clusters. 

Except in the case of patients N7 and N9, all the rest of the group ordering and 

spacing were preserved. The N7-N9 switch was local. They kept their topological 

distance from N6 and the others. 

The topology we have chosen as a good representation was that of a line with 

7 clusters. For a movement vector the architecture was 1000-7 and for initial/final 

vectors it was 130-7. Training was 50 epochs. 

GestureXtreme (2D): In this experiment we used the same linear scale 

technique and network topology as in the 3D experiment. 

For length 5 snippets the architecture was 15-7 (see Figure 12). Training was 

50 epochs as well. 
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Figure 12. Kohonen SOM clustering algorithm NN architecture length 5 snippet 

vectors (15 neurons) for the chosen 7 clusters line topology 
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2.5 Data point result analysis 

All experiments' training and testing were conducted on each of the subjects' 

data points (whether long vectors or short vectors). 

For substantive clinically beneficial results, we transformed the results to be 

subject specific instead of subject's data point specific. Towards this end the data 

points result were averaged by each subject and then put to the specific metric of the 

classification kind (threshold for 1-class and 2-class, and putting on a liner scale 0-

class). In some of the 2-class results we also show data point rates for comparison.  

These rates are calculated using a simple plurality rule on all subjects' data 

point results combined together without consideration of any specific subject.  
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1 Results 

1.1 Terminology  

When describing the results in text and tables there are four main populations whose 

subjects are referred to by a combination of letter and number:  

� Healthy participants are denoted as H. In the 2D experiment HA represent 

healthy adults and HC represents healthy children.  

� Stroke (a.k.a. CVA) who were not diagnosed as suffering from neglect are 

denoted as S.  

� Stroke patients who are also suffering from neglect are denoted as N.  

� People with traumatic brain injury (TBI) are denoted as T.  

1.2 Two-Class 

1.2.1 3D experiment 

As seen in Table 1 the generalization success rates in classification of long 

vectors were 72-89%. It is not surprising to see that the best rate was achieved for the 

Healthy/Neglect classification, for neglect is a condition which tends to be explicitly 

manifested. From a clinical point of view the distinction between neglect and CVA is 

(72%) is certainly more meaningful, since traditional assessments often lead to a 

misdiagnosis of less severe cases of neglect. 

As explained earlier, long vectors include all data from the onset of the target 

stimulus till the end of the hand movement. This includes the target detection as well 

as both movement planning and execution. Thus the distinction between different 

populations may be the result of a cognitive perceptual component, (i.e., reflecting the 

target detection latency of response phases), or a motor component. Such evidence 

has of course a scientific merit but it does not require a neural network to measure 

response time. 

While there is ample evidence for a perceptual deficit associated with neglect, 

motor control studies have produced a large amount of contradictory data. 

Hence we also attempted to perform a 2-class classification using movement vectors. 

In this case the input included only data from movement initiation to its completion. 

Furthermore, as neglect, almost by definition, manifests itself in one half of 

the visual field, we chose to use only the relevant hemi-field in the input data. 
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The classification results resemble very much the ones produced with the long 

vectors, ranging from 72% to 89%. This implies that the distinction between the 

populations manifests itself in more complicated ways than reaction time.  

In order to further investigate the differences between these populations, we used 

another length of input. This was done by preparing a vector consisting of either the 

initial or the final movement segment (length of 130 data points). This approach may 

assist in focusing the research to the critical point of the hand trajectory, where the 

difference may lie.  

Table 1. Success rates of 2-class classification in 3D data. 

Vector size Populations 

BP NN 

Success Rate 

By Patient 

BP NN 

Success Rate 

By Data Point 

Long Healthy/CVA 78% 62% (4010/6458) 

Long Healthy/Neglect 89% 79% (4557/5791) 

Long Neglect/CVA 72% 63% (3584/5703) 

 

Movement Healthy/CVA 78% 68% (4378/6458) 

Movement Healthy/Neglect 89% 78% (4515/5791) 

Movement Neglect/CVA 72% 66% (3737/5703) 

 

Initial segment Healthy/CVA 39% 43% (2791/6458) 

Initial segment Healthy/Neglect 83% 70% (4058/5791) 

Initial segment Neglect/CVA 78% 61% (3470/5703) 

 

Final segment Healthy/CVA 67% 53% (3435/6458) 

Final segment Healthy/Neglect 89% 61% (3547/5791) 

Final segment Neglect/CVA 61% 52% (2962/5703) 

 
While significant, the classification results are not as decisive, ranging from 

39% to 83%. However, when comparing the success level of the classifications, it 

seems that it was easier for the NN to classify healthy from CVA or from neglect in 

the final segment, compared to the initial segment (67% vs. 39% and 89% vs. 83% 

respectively). On the other hand, the more challenging classification, the one between 

CVA and neglect patients seems to be more distinct in the initial segment (78%) 

rather than the final segment (61%). Such results imply that the deficit caused by 

neglect is more likely to be expressed at earlier stages of motion execution. The 

Healthy vs. CVA by-patient result for initial segment (39%) is lower than the data 

points result (43%), which is closer to 50%. It’s very likely that the patient percentage 

will be lower than data point percentage when the success rate is around 50% 

(similarly, it is likely that patient percentage will be higher than data point percentage 
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when success rate are much higher). In addition, further experimentation showed that 

longer and longer inputs of initial segment increased the success rate linearly up to the 

maximal result of complete movement (78%). 

It should be noted that the key findings of this analysis were also reproduced using 

SVM with a linear kernel and the results were comparable. 

3.2.2 2D experiment 

Compared to the previous VR system, this platform produced very noisy data, 

thus the preprocessing reduced the inputs to short vectors snippets, each one covering 

5 consecutive position measurements. 

The results, appearing in Table 2, indicate that the NN had high success (72%-

95%) rates in comparing the three populations who participated in this experiment, 

namely healthy, CVA and traumatic brain injury. It is interesting to mention that in 

the CVA group there was a patient who was consistently misclassified as healthy even 

when his data were the training phase. Reviewing closely his medical files revealed 

that this particular patient indeed suffered from CVA but he had only cognitive 

impairments but no physical disability. This anecdote, beyond demonstrating the 

clinical potential of the system, suggests that this particular NN classified according to 

movement features of the subjects' motor behavior rather than by cognitive features. It 

is not surprising as in this experiment the input consisted of rather short movement 

segments, which apparently are not sufficient for containing meaningful cognitive 

information.  

Table 2. Success rates of 2-class classification in 2D data. 

Input Vector 

Length 
Populations 

BP NN 

Success Rate 

By Patient 

BP NN 

Success Rate 

By Data Point 

Length 5 

snippets 
Healthy/CVA 85% 90% (11500/12670) 

Length 5 

snippets 
Healthy/TBI 95% 95% (11167/11806) 

Length 5 

snippets 
TBI/CVA 72% 59% (1414/2393) 

Length 5 

snippets 

Healthy Adults/ 

Healthy Children 
50% 80% (10641/13351) 

 
Since the TBI patients were all much younger than the CVA patients, it was 

possible that it is the age difference that accounts for the classification between these 

populations, rather than the clinical condition. To control for this variance we tried to 

classify the healthy children from the healthy adults. As seen in Table 2, the 
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classification failed (50%), so it appears that age did not play a role in the CVA/TBI 

classification. 
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1.2.2 Combined Platforms 

The only subject categories suitable here are healthy and non-neglect stroke, 

since these conditions were the only ones mutual to both experiments. 

The results, appearing in Table 3, indicate that for combined platform training, the 

NN had high success rates only for relatively long "snippets" – 90 data points (270 

neurons). Attempts to have a shorter snippet more resembling the one used for the 

GestureXtreme-only experiments (5 data points) gave unsatisfactory results. In 

addition network architectures using 1 hidden layer (regardless of its size) also was 

not able to successfully classify the different populations. It might be possible that the 

network is actually learning two separate networks within itself for the different 

platforms, but we think the chance for that is relatively small due to the tightness of 

the architecture.  Even though the nature of the movement is quite different between 

the platforms, as can be seen from Figure 5 and Figure 6, the results with the longer 

vectors are quite encouraging. 

Table 3 Success rates of 2-class classification in combined platform 

Vector size Training Set Origin 
BP NN 

Average Success 

Notes 

30 data points 
VRROOM and 

GestureXtreme 
75% 

Failed with  
VRROOM 
healthy 

90 data points 
VRROOM and 

GestureXtreme 
90% 

 

90 data points VRROOM only 50% 
Failed with all   
GestureXtreme 

stroke 

90 data points GestureXtreme only 50% 

Failed with all   

VRROOM 

stroke 

 

On the other hand we were unable to succeed at Cross Platform (training on 

one platform and testing on the other). When training on VRROOM data only or on 

VIVID data only, the NN could classify the other platform population only at chance 

levels.  It is possible that this might be rectifiable by a more careful matching of the 

training and testing environment, but we have no results in this direction.    
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One-Class 

1.2.3 3D experiment 

The success rates in 1-class classification are not as good as in 2-class 

classification. This is to be expected as an inherent characteristic of 1-class compared 

with 2-class networks. Table 4 states the most interesting results. It is not surprising to 

see that the best classifier is achieved for the healthy population. We hypothesize that 

this is because the variance between healthy individuals is relatively small.  The same 

could not be said for the CVA and Neglect populations, for which the individual 

behavior seems to vary more substantially from the milder to the more severe cases.  

In order to further investigate this we chose to also train on input data only 

from trials where the target for reaching was in the neglected hemi-field. This caused 

the results to be significantly improved, especially for CVA and Neglect, which may 

point to the more stark difference in movement of Neglect patients and CVA patients 

when the former have difficulty perceiving the left hemi-field targets. 

Table 4 Success rates of 1-class classification in 3D data 

Vector size 
Targets Included Training Set 

Population 

Compression NN 

Average Success 

Notes 

Movement All Healthy 93%  

Movement 
All 

CVA 69% 
Failed on most 

Healthy 

Movement All Neglect 50%  

Movement All Non-Mild Neglect 76%  

Movement All Severe Neglect 100%  

 

Movement  Left Only Healthy 93%  

Movement  Left Only CVA 83%  

Movement 
Left Only 

Neglect 62% 
Failed on most 

CVA 

Movement Left Only Non-Mild Neglect 83%  

Movement Left Only Severe Neglect 100%  

 

Movement Right Only Neglect 50%  

Movement Right Only Non-Mild Neglect 50%  

Movement Right Only Severe Neglect 93%  

 

Initial segment All Healthy 83%  

Initial segment 
All 

CVA 62% 
Failed on most 

Healthy 

Initial segment All Neglect 50%  

Initial segment All Severe Neglect 97%  

 

Final segment All Healthy 62% Failed on most 
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CVA 

Final segment 
All 

CVA 62% 
Failed on most 

Healthy 

Final segment 
All 

Neglect 59% 
Failed on most 

CVA 

Final segment 
All 

Severe Neglect 66% 
Failed on most 

Healthy 

 

By experimenting on smaller and smaller sub-sets of Neglect (Full, Non-Mild 

Severe Only) a pattern emerged. The more homogenous the group of Neglect subjects 

and the more severe the group was, the better the separation from the other groups.  

It is worthy to note that by removing just two extremely mild neglect subject 

"outliers" ("Non-Mild" Neglect) the performance improved considerably (from 50% 

to 76% for all targets and from 62% to 83% for left target only). Figure 13 and Figure 

14 show the difference between using neglect and non-mild neglect for 1-class 

classification running on left target trials only. The margin between the neglect group 

and the CVA group increases substantially in the latter case. 

  

Figure 13. Neglect classifier for "Left targets 

trials only" experiment. The threshold was 

chosen to be 3.3 

Figure 14. Non-Mild Neglect classifier for 

"Left targets trials only" experiment. The 

threshold was chosen to be 3.2 

Interestingly when using shorter input vectors to represent the initial and final 

segments of movement, the Healthy classifier results were less successful especially 

in the latter case. Possibly the initial movement is more robust and uniform in this 

population. But the minute corrections needed to reach and stay at the target may be 

more varied between different healthy subjects. 

Following these results, we decided not to pursue 1-class experiments on the 

GestureXtreme platform, due to the nature of the data. The 2D data were in short 

snippets, which, as we conclude from the 3D results, do not produce meaningful 
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outcomes. This limitation, of course, prevented us from conducting combined-

platform experiments as well. 
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1.3 Zero-class (Clustering) 

3.3.1 3D experiment 

Stroke causes a wide array of damages leading to many types of medical 

conditions. Some of these sub-categories have received a distinctive title, such as 

neglect. Yet the definitions are rather broad, and the cut-off points are not completely 

well defined. In this phase of the study we picked various subsets of the patients and 

put them on a linear scale using clustering tools as described in the methods section. 

Following this, the patients' medical records were examined in order to test the 

clinical validity of their placements, and whether they point to meaningful directions. 

We chose various population types, and employed the Kohonen algorithm to cluster 

them in a line of 7 clusters. The main results appear in Figure 15, followed by the 

central findings. 

First we were interested in finding out how homogenous our healthy control 

group is by itself (Figure 15, Panel A). Most of the healthy subjects were placed close 

together. One subject however, referred to as H10, was placed all by his own, for 

unclear reasons. 

Figure 15. Clusters produced for 3D data. 

Vector size, 

Populations, 

(Num. of 

clusters 

allowed) 

Kohonen Scale 

A) 

Movement, 

Healthy, (7) 

 

B) 

Movement, 

CVA, (7) 

 

C) 

Movement, 

Neglect, (7) 
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D) 

Movement, 

Healthy/CVA, 

(7) 

 

E) 

Movement, 

Healthy/ 

Neglect, (7) 

 

F) 

Movement, 

Neglect/CVA, 

(7) 

 

G) 

Movement, 

All, (7) 

 

H) 

Initial 

segment, 

Healthy/CVA, 

(7) 
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I) 

Initial 

segment, 

Healthy/ 

Neglect, (7) 

 

J) 

Initial 

segment, 

Neglect/CVA, 

(7) 

 

K) 

Initial 

segment, 

All, (2) 

 

L) 

Final 

segment, 

Healthy/CVA, 

(2) 

 

M) 

Final 

segment, 

Healthy/ 

Neglect, (2) 
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N) 

Final 

segment, 

Neglect/CVA, 

(2) 

 

O) 

Final 

segment,  

All ,(2) 

 

 
The CVA population by itself appeared to be divided into two distinct groups 

(B). The neglect patients, however, were placed into several groupings (C). 

Reviewing their medical records revealed that all the patients closer to cluster #7, 

towards the right end of the scale were diagnosed with only mild neglect, while the 

left end patients were more severe cases. Thus the neglect patients were successfully 

placed on a severity scale. 

When comparing pairs of populations, some interesting clusters have emerged. 

When healthy and CVA subjects were pooled together (D), all the CVA subjects were 

close to each other with three healthy patients who were closer to them than to the 

other healthy patients. This suggests that the border between healthy and stroke is not 

always clear cut. The healthy and neglect populations (E), were placed apart, where 

the healthy were separate (except for H10), and the neglect were divided again into 

two groups, severe and mild. 

When pooling together the two patient populations, CVA and neglect (F), all 

of the mild neglect patients, N1, N2, N5 and N8, performed well enough to be 

"upgraded" to the CVA side. This suggests that the distance between neglect and non-

neglect stroke patients is positively correlated to the severity of the neglect symptoms. 

A similar trend was observed when we clustered all the subjects (G), as the severe 

neglect patients were in one side, some of the healthy were in the other, and a middle 

cluster included all the CVA, the mild neglect and even three healthy subjects. 
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As before, we also focused at the initial and final segments of the motion. The 

initial segment (H-K) produced a similar pattern, although much less distinct. For 

example, when clustering the CVA and neglect populations, some of the severe 

neglect subjects (N4 and N6) were closer to stroke subjects than to other severe 

neglect subjects. The clustering of the final segment (L-O) produced essentially one 

group for all healthy and stroke subjects and put severe neglect farther away. It seems 

that the more the data are fragmented, the harder it is for the system to differentiate 

between the different severities. 

The key findings were reproduced also when employing k-means. The clusters 

k-means generated showed similar trends to kohonen. K-means does not take 

topology (the neighboring clusters) into consideration, so inherently this method is 

more limited in its ability to help put the various population on a single scale. 

1.3.1 2D experiment 

Looking at Kohonen clustering for the 2D data (SeeFigure 16), the clustering 

of Healthy and CVA adhered to the medical condition (Figure 16, Panel C). The two 

populations were far apart on the linear scale, aside from S10, who, as mentioned 

earlier, suffered no motor disability. When clustering Healthy children and TBI 

children (D), the two groups were mostly separate from each other. Healthy children 

were placed together with healthy adults (E). When clustering the two patient 

populations the TBI population seems to be more homogenous and clustered close to 

each other (F). However due to the heterogeneous patients' nature of the CVA 

population one cannot detect two separate clusters for stroke and TBI. When pooling 

all of the classes together (G), we essentially replicate the previous findings. 

Figure 16. Clusters produced for 2D data. 

Input vector 

length, 

Populations, 
(Num. of 

clusters 

allowed) 

Kohonen Clusters 

A) 

Length 5 

snippet, 

CVA, (7) 
 

B) 

Length 5 

snippet, 

TBI, (7) 
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C) 

Length 5 

snippet, 

Healthy 

Adults/ 
CVA 

(7) 

 

D) 

Length 5 

snippet, 

Healthy 

Children/ 

TBI 

children, (7) 
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E) 

Length 5 

snippet, 

Healthy 

Children/ 

Healthy 

Adults, (7) 

 

F) 

Length 5 

snippet, 

TBI/CVA, 

(7)  
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G) 

Length 5 

snippet, 

All, (7) 
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2 Discussion and future directions 

2.1 Discussion 

In this study we demonstrated how machine learning tools may assist the 

clinician or scientist in analyzing data collected by VR platforms. This can be done 

even though these data are based on very small samples and even when the data are 

extremely noisy and partial. We proposed several approaches for achieving 

meaningful results.  

First, two-class classification may assist in differential diagnosis. This was 

demonstrated as in both experiments, as several patient populations were 

differentiated one from another notably above chance level: CVA vs. neglect (3D 

Experiment) and CVA vs. TBI (2D Experiment). In this study, we picked medical 

conditions where we could assess the patients also in conventional methods. We 

believe that our approach may aid also in more hard to distinguish conditions such as 

spatial neglect and hemianopsia, which are related to different brain mechanisms, but 

lead to a similar behavior. 

Furthermore, from the scientific aspect, running such classifications can be 

done while using different segments of the data as input. The results may direct the 

researcher to the key components in motion or behavior, which are sensitive to the 

classification. For example, the data in the 3D experiment suggest that perhaps the 

difference in reaching behavior between neglect patients and non neglect CVA 

patients lies at the very beginning of the motion, where the classification between 

them is quite high (78%). Such pointers may aid researchers in hypothesizing models 

of brain functions and in designing the experiments to validate them. 

 

The zero-class approach in the 3D study, suggested how the rigid distinction 

between various conditions may be misleading. By having the mild neglect subjects 

N1,N2,N5,N8 close to non-neglect CVA patients on the linear scale, it was shown 

how some neglect patients behave in a similar way to non-neglect CVA patients or 

how certain CVA patients have mild neglect-like behavior. This approach can point 

the rehabilitation professionals to better understanding and organization of 

heterogeneous or wide spectrum disorders. This is true for many other broadly defined 

pathologies. For example it would be of significant value if zero-class clustering may 



34  

aid in separating the wide spectrum of attention deficit disorders (ADD) into 

meaningful sub-categories. 

Under the 2D environment the results were not as conclusive. We cannot 

discern if it is due to the intrinsic characteristics of these diseases (CVA and TBI) or 

due to the high level of noise the GestureXtreme platform incurs. 

Another way to better define and profile complicated medical conditions may 

be achieved by implementing one-class classifications. Our results indicate that one 

can create a successful one-class classifier for homogenous groups even when training 

on small-size samples. For example, when severe Neglect and CVA patients are 

presented with stimuli on the left side, statistically significant 1-class filters are 

produced for either class. Also a healthy classifier has a very high success rate (93%) 

of differentiation. 

The more homogenous the group of Neglect subjects and the more severe the 

group was, the better the separation from the other groups. (Compare for example 

Neglect sub-class results when presented with stimuli on the left side: all Neglect – 

62%, Non-Mild Negelct – 83%, Severe Neglect – 100%). 

After sufficient training of a set of one-class filters, one can bring a novel data 

vector and test it on these filters to see whether this patient tested positive for the 

"mild neglect" or "severe neglect" or "mild upper-left hemi-field but otherwise OK" 

etc. This may focus the clinicians in treating only the impaired faculties of the 

patients. 

For 2-class combined platforms (Healthy vs. Stroke), even though the nature 

of the movement is quite different between the GestureXtreme and Vivid platforms, 

the results are quite encouraging. This may lead to expanded data pools for each of 

the relevant pathological conditions. 

On the other hand we were unable to succeed at 2-class cross platform (training on 

one platform and testing on the other).   We conjecture that the two platforms may be 

too different even for short snippets.   It is possible that having two more closely 

related platforms (in terms of noiseless signals and kind of motor activity) might 

result in improved results. 
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2.2 Future directions  

 
The work reported on here, seems to show that brain damage can be both 

classified, and clustered using various machine learning techniques.  However, we 

have inconclusive results on the use of one-class techniques; that is, it appears to be 

reliable in some cases, but not in others.   Preliminary work studying this was done, 

but future work should try to make it clear in which cases the method can be relied on. 

We also point out that the "Kohonen-style" topological clustering has the 

advantage in that one can try to find topologies that help visualize the structure of the 

disease.  We showed a simple example of this in a linear structure on the neglect 

scale.  More complex topologies are probably appropriate for other conditions. 

The work on merging data across platforms has great potential.   This work 

needs to be extended over many data sets from a variety of platforms.    Success in 

this area would help researchers and applications as then data can be leveraged from 

many sources.  

Finally, in our vision for the long range, we see the possibility of "closing the 

loop" and using the classification and clustering methodology as keys for making 

rehabilitation protocols both adaptive and individualized. This is especially tempting 

in the context of rehabilitation in the virtual reality environment.  What is needed is 

the development of a virtual model of the individual which we would want to extract 

automatically from data based on his performance in the VR sessions.  Then an 

individual rehabilitative protocol can be obtained by simulating the behavior of an 

avatar in the VR; and simply testing how the avatar improves under a large variety of 

protocols. Once a good one is established, it can be immediately applied to the patient 

who is being treated in the same VR environment. 
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  סיווג וקיבוץ של פציעות מוח מנתוני תנועה של חולים 

  בסביבת מציאות מדומה

  

  

  נתן סילניצקי

  

  תקציר

כלי יעיל לשיקום חולים עם פגיעות כמציאות מדומה ית בשנים האחרונות התבססה טכנולוגי
אנחנו מראים .  הודות לכך שהיא מאפשרת לחולים להתנהג באופן טבעי בסביבה מדומהמוח

שתמש בצורה יעילה בנתוני תנועה מתוכניות מציאות מדומה כדי לסווג ולקבץ שניתן לה
נעשה שימוש ברשתות נוירונים וכלים אחרים במחקר . חולים על פי סוג הפתולוגיה שלהם

 ויחידים בריאים רק על הזנחת צדשבץ עם או בלי , כדי לסווג בין חולים עם פציעות טראומה
 הלתוצאות אלו ישנ. שיכפלו בהצלחה את החלוקה של הסיווגשיטות קיבוץ . פי נתוני התנועה

י הוספת יכולות ממוכנות לתהליך האבחון "ע,  וקלינימחקר מדעיעבור  משמעות ישומית
   .וההערכה
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