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Abstract

A program to automate the finite element method (FEM) using various soft-computing techniques is presented. The overall
program is discussed, and the implementations of three specific sub-problems (mesh placement, node numbering, and adaptive
meshing) are described. It is also argued that the overall architecture of an “intelligent finite element package” can serve as a
“test-bed” for many soft-computing techniques.
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1. Scientific background

The finite element method (FEM) is a computation-
ally intensive method for the numerical solution of
partial differential equations. It is a widely used tool
and in many cases is the method of choice. This is
especially (but not exclusively) true in structural engi-
neering and solid continuum mechanics. The finite el-
ement procedure has been proved most effective when
applied to linear boundary value problems in spatial
domains which are complicated geometrically[15].

Basically (and oversimplifying), the FEM works by
deciding a priori on a certain kind of simple approxi-
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mation to the solution, and by dividing up the region
of solution into small “elements”, and allowing the
parameters of the simple approximations to vary from
element to element. The requirement that the individ-
ual local solutions remain consistent together with,
e.g. boundary conditions, results in linear constraints
on the parameters. These are then solved by standard
linear algebra techniques.

However, in practice one can not use the FEM as a
“black-box” solver; i.e. it is not sufficient to know the
governing equations, the geometry, and the boundary
and initial conditions in order to obtain high-quality
numerical results. It is well appreciated among finite
element users in industrial and scientific communities
that the successful application of this technique re-
quires substantial amount of experience and expertise
in order to make the computation feasible and the re-
sults accurate at the same time. This is true with regard
to any of the large commercial finite element packages
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available currently, although various codes may have
a different amount of flexibility.

This is because there is a very large number of pa-
rameters that need to be chosen; computational limita-
tions make the choice of these parameters crucial for
successful use. These are knowledge-based require-
ments; and current usage requires much human exper-
tise. There are no known effective algorithms that can
replace a human user in all cases; and many of the
problems are known to be computationally intractable
in the general case[9].

On the other hand, the complexity of some of
the problems are beyond the realm of efficient man-
ual control (e.g. in more than two dimensions or in

Fig. 1. Some general tasks in the finite element method.

quite complicated situations like parallel implemen-
tations which are not directly amenable to human in-
tuitions).

In recent years, there has been a large development
of tools for artificial intelligence, neural networks
(NNs), fuzzy logic and related disciplines (called by
some “soft computing”[34–36]), which our work
and analysis indicate are applicable to the problems
under discussion here. Each problem can in fact be
attacked by a number of methods, butusually, a cer-
tain approach suggests itself as the most promising
one in each case. Thus, expert system technology[14]
seems most appropriate to replace human numberers,
self-organizing neural networks[18] and fuzzy logic
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“critics” [34] seem appropriate for mesh placement,
neural network non-linear predictors are appropri-
ate for dynamic mesh placement for solutions to
time-dependent PDEs[33], distributed artificial in-
telligence [28] and genetic algorithms[12] can be
appropriate for load balancing in parallel computa-
tion, and so on. The specific problems and tools we
have in mind are described inFig. 2.

Our main goal in working on the finite element
method is, of course, the automation of the method;
and any efficient means towards that is welcome. In
this paper, we report on our results so far.

In addition, we have come to realize[20,21] that
the FEM serves as a rich test-bed appropriate for the
serious use of these techniques in real world (i.e.
non-“toy”) problem settings. Evaluating these tech-
niques in realistic settings is in itself an important
research goal. In fact, our initial work has already re-
sulted in advancing somewhat[22] one of the most
classical neural network algorithms as a result of eval-
uating the needs in the realistic setting.

We point out that since one can compare results
with analytic ones in certain settings, it allows for
quantitative evaluation of the effectivity of the tech-
niques. In principle, this allows one to compare and
evaluate competing techniques and directions both
between themselves and with current commercial
packages.

By a test-bed we have in mind a system that allows
one to implement a variety of techniques on various
problems, run it easily on “real-world” applications,
and be able to do some sort of evaluation/comparison
studies with other techniques.

Intelligent automation of the FEM can be appropri-
ate because of the following reasons:

• There are a wide variety of optimization/satisfaction
sub-problems to be solved. Various techniques are
applicable to the different problems.

• The architecture of the automation is modular.
This means that each of the sub-problems can be
solved more or less independently. (“More or less”
means that when all the solution steps are in place,
one has to consider another optimization problem
concerning trade-offs. However, this affects only
the potential optimality of the FEM solution, and
not the effectivity of the individual steps.) Each
of the steps can be evaluated individually as to

how it affects the global quality of the numerical
solutions.

• The nature of the FEM, a numerical solver for par-
tial differential equations, makes it easy to generate
test problems. In fact, any partial differential equa-
tion with boundary conditions defines a test case.
This means it is almost as easy to work on real world
problems as on artificial simple or “toy” ones. One
can also provide test cases with analytic solutions
to provide a natural “gold standard” for evaluations.

• The importance of the FEM means that there are
commercial codes available for comparison.

1.1. Some sub-problems for the finite element
method

In Fig. 1, we list some of the human-based tasks
that must be performed in using the FEM.Fig. 2 lists
some of the corresponding possible techniques.

So far, together with our students, Akram Bitar,
Miha Margi and Malik Yousef, we have implemented
three of these solutions: (temporal mesh adaptation
using feed-forward neural networks, automated mesh
numbering via an expert system and mesh place-
ment via a self-organizing neural network). In the
following sections, we sketch the results of these
sub-problems (full details appear or will appear else-
where[20,21,23]).

Fig. 2. Table of problems and soft-computing solution approaches.
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2. Dynamic mesh adaptation for temporal PDEs

Time is often treated distinctly from spatial dimen-
sions in the solution phase of PDEs. That is, the typi-
cal method of choice for solution of such equations is
not to treat time as simply another dimension, but to
“simulate time”; i.e. to repeatedly solve the equations
for different times; using the previous solution as the
starting conditions for the next one.

However, in a dynamic system, this implies that one
should not use the same mesh at different times. For
example, when the solution of a hyperbolic problem
involves a shock wave that propagates through the
mesh, the location of the critical regions, namely the
shock vicinity, keeps changing in time. To get optimal
numerical results with a fixed computational effort, it
is important that there be more mesh elements near

Fig. 3. Using neural networks to forecast future FEM gradient values. Gradient values for two previous times and all the neighboring
elements are used as input to the network.

this shock vicinity at each time step. Another example
is a problem of fluid flow in a cavity, where flow cells
are generated and undergo continuous changes in their
shapes and size as time proceeds[11].

Thus, the mesh choice should be dynamic; varying
with time. In current usage, the method is to use the
gradient of the solution at timetn to indicate where the
mesh should be modified (where it should be refined
and where it can be made coarser) at timetn+1. The
work [11] used this mechanism.

However, this suffers from the defect that one is al-
ways one step behind. If the area of interest is prop-
agating (a common phenomenon) then one may be
always refining directly behind the most interesting
phenomenon. This is also assuming that one does not
miss the “action” altogether. One can look at this as a
special instance of a control problem.
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In this section, we present a new method based on
artificial neural networks that enables one to predict
the critical regions ahead of time, thus allowing the
adaptation of the mesh at the appropriate times and
places. Our mechanism relies on the universal approxi-
mator[5,8,19,24]property of feed-forward neural net-
works. In the current version, we train the network to
serve as a function generating the next gradient value
at an element in the mesh, based on the current and
previous gradient values of the element and its im-
mediate neighbors. This is a proper time series prob-
lem and the time series neural networks can be used
to predict the future gradient values.Fig. 3 illustrates
this concept. (The idea of using a neural network as
a “plant” predictor has been developed in the context
of control theory and signal analysis[32,33].)

Table 1
One-dimensional examples

Method No. of refined elements L2 norm L∞ norm

Maximum Average Maximum Average

NN modifiera 70 0.15756 0.0869 0.1653 0.1056
Standard modifier 70 0.1826 0.1022 0.1914 0.1222
No adaptation 0 2.5332 1.0053 3.4708 1.0643

NN modifierb 98 0.4423 0.1928 0.5190 0.2342
Standard modifier 91 0.6671 0.2686 0.8230 0.3142
No adaptation 0 1.4622 0.6985 1.6288 0.6456

Comparison between FEMs run with: (i) the neural network predictor of the gradient measure; (ii) “standard” refinements using the gradient
measure; and (iii) no adaptation.

a Example 1:

∂2u

∂t2
= ∂2u

∂x2
, 0 ≤ x ≤ 10,

u(0, t) = 0 and u(10, t) = 0.

u(x, 0) =
{

1 − |1 − x|, 1 ≤ x ≤ 2,

0, otherwise.

Number of initial elements: 10; time: 12; time step: 0.08; threshold for refinement= 0.08 (gradient); improvement:L2 error norm= 15%;
L∞ error norm= 13.6%.

b Example 2:

∂2u

∂t2
= ∂2u

∂x2
, 0 ≤ x ≤ 25,

u(0, t) = 0 and u(25, t) = 0,

u(x, 0) =
{

exp( 1
2(−(x − 5)2)), 0 ≤ x ≤ 10,

0, otherwise.

Number of initial elements: 15; time: 25; time step: 0.12; threshold for refinement= 0.2 (gradient); improvement:L2 error norm= 28%;
L∞ error norm= 25%.

We used two different networks, one for boundary
elements and one for interior elements. Using a small
number of networks means that a very few time steps
generate much data for training. (That is, many differ-
ent elements give training data to the same network.)

Thus, there are two steps to our methodology: (1)
training the neural network to predict the indicators
(at least) one step in advance; and (2) applying the
indicators to the refinement in the FEM solution.

In our experiments, we examined the numerical re-
sults of applying this procedure using the FEM on dif-
ferent time-dependent PDE problems using different
parameters for the NN algorithm and comparing this
with: (i) FEM with no adaptation; and (ii) FEM us-
ing the “standard” adaptation via the current gradient
indicator.
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Fig. 4. Time series prediction test for the one-dimensional wave equation (see text). Blue (×) indicates test values; red (�) the network
response.

In this study, the MATLAB’s Neural Network Tool-
box [6] was used for designing and training the neural
network. In the examples tested, the results are fairly
dramatic. First, using the Levenberg–Marquardt train-

ing algorithm[27] (a variant of Gauss–Newton) the
training was both quite swift and exceptionally accu-
rate (Fig. 4). Second, the improvement in the FEM
numerical results (as compared with the “standard”
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gradient adaptive method) reached as high as 28% on
some examples; and never fell significantly below the
standard method. (The variance in the improvement
depends on the shape of the wave; and is to be ex-
pected. That is, for some waves it is more important
to predict the gradient than others.)

We used two different networks, one for bound-
ary elements and one for interior elements. The
architecture of both networks was six input units
(corresponding to the value of the gradient of the ele-
ment and its two neighbors in the current and previous
times), six hidden units (with tan-sigmoid transfer
function), and one output unit (with linear transfer
function) that gave the prediction of the output value
(Fig. 3).

Complete details on this work will appear in[23].
Here we give some sample examples.Fig. 4 shows
the results of a typical prediction test for interior and
boundary elements. Training took about 117 epochs
to converge to extremely small error (about 0.00024)
in the interior elements prediction. Results for the
boundary elements were similar. When applying this
modifier to the FEM mesh, the numerical improve-
ment over the “standard” gradient modifier varied
from no significant improvement to an improvement
of more than 25% (both in theL2 norm and in theL∞
norm).

Fig. 5. Analytic solution.

Table 1presents the comparison results for two sam-
ple examples, where the initial condition of the wave
is a Gaussian. The analytical solution is well known
for these types of problems and it depends on the
initial and boundary conditions. The wave splits into
two waves (with the same width but half the height)
that travels to the left and to the right with speed
c = 1. When such a travelling triangle reaches the
edge, it turns over and returns upside down (Fig. 5).
The NN-modified solution and the “standard” gradient
modifier are displayed inFig. 6. Compare the graphs
in Fig. 6. Observing the areas indicated in the figure,
one can see that the NN chose to place its resources in
the correct places. Looking at the refinement markings
(in red or dots on thex-axis); one can see that, as sug-
gested by our theory, the NN is keeping pace with the
development of the solution, whereas the “standard”
method is always on step behind, which at critical lo-
cations causes increased numerical error.

Since such examples have analytic solutions, we
were able to calculate the actual numerical errors of
each of the methods.

Two sample examples done in two dimensions are
presented inTable 2. Note that: (i) the prediction of
the gradient was very accurate (Figs. 7 and 8); and (ii)
the improvement in the FEM numerical results were
around 6.5% over the standard gradient methods.
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Fig. 6. Results from FEM on one-dimensional wave equation. The left figures are refined with the NN predictor. Also indicated is the analytic
solution. The right figures are refined with the “standard” gradient indicator. Compare the segments of the curves on the left (enclosed
rounded rectangles) with the corresponding ones on the right to see how the NN predictory focuses the resources in the correct places.

In summary, a version of a NN modifier for the
FEM mesh has been implemented, which is designed
to adaptively change the mesh based on aprediction
of the gradient. In experimental work, we have shown
that the NN can accurately predict the gradient and
applying this mesh results in a substantial numerical
improvement.

3. Heuristically numbering the nodes

When applied to linear boundary value problems,
the finite element discretization of the governing par-

tial differential equations leads finally to a linear sys-
tem of algebraic equations[15],

Kd = F

whereK is the so-calledstiffness matrix, F the load
vector, andd the vector of unknowns. The dimension
of the system (1) in typical industrial applications is
of order 100 or 1000 or even 10,000. This dimension
arises from the chosen discretization of the spatial do-
main; i.e. the spatial domain is divided intoelements
connected to each other by nodes. These nodes are
numbered andK ij 
= 0 only if nodesi and j belong
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Table 2
Two-dimensional examples

Method No. of refined elements AverageL2 norm AverageL∞ norm

NN modifiera 803 0.4057 0.4846
Standard modifier 803 0.4314 0.5029

NN modifierb 246 0.2962 0.3359
Standard modifier 232 0.3256 0.3807

Comparison between FEMs run with: (i) the neural network predictor of the gradient measure; and (ii) “standard” refinements using the
gradient measure.

a Example 1:

∂2u

∂t2
= ∂2u

∂x2
+ ∂2u

∂y2
, −1 ≤ x ≤ 1; −1 ≤ y ≤ 1,

u(−1, y, t) = 0 and u(1, y, t) = 0, for − 1 ≤ y ≤ 1,

u(x, −1, t) = 0 and u(x, −1, t) = 0, for − 1 ≤ x ≤ 1,

u(x, y, 0) =
{

15x(x + 1)y(y + 1), −1 ≤ x ≤ 0; −1 ≤ y ≤ 0,

0, otherwise.

Number of initial elements: 28; time: 3; time step: 0.05; improvement:L2 error norm = 6%; L∞ error norm = 3.6%; threshold for
refinement= 1 (gradient).

b Example 2:

∂2u

∂t2
= ∂2u

∂x2
+ ∂2u

∂y2
, −1 ≤ x ≤ 1; −1 ≤ y ≤ 1,

u(−1, y, t) = 0 and u(1, y, t) = 0, for − 1 ≤ y ≤ 1,

u(x, −1, t) = 0 and u(x, −1, t) = 0, for − 1 ≤ x ≤ 1,

u(x, y, 0) = arctan
(
cos

( π

2π

))
,

∂2u

∂t2
(x, y, 0) = 3 sin(πx) exp

(
sin
( π

2π

))
.

Number of initial elements: 28; time: 3; time step: 0.08; threshold for refinement= 2.2 (gradient); improvement:L2 error norm= 9%;
L∞ error norm= 11%.

to a common element.Since the mesh is typically im-
posed on a physical domain and thus can be thought
of as a planar or spatial graph, mostK ij are zero, i.e.
K is a sparsematrix. This, in principle, reduces the
computational resources needed to solve such a sys-
tem; however, this is sensitive to how “near-diagonal”
all the non-zero entries are.

The discussion above implies that the order in which
the nodes are numbered is crucial, since this number-
ing determines how near-diagonalK is. Note first that
optimal numbering of a given mesh is an NP complete
problem[9]. Thus, for a mesh containing a large num-
ber of nodes and elements, it is of course impractical
to find an exact solution for the optimization problem
by performing a full enumeration. However, there are

so-called “algorithmic” solutions that have been incor-
porated in commercial software. Anecdotal evidence
about this software reports that: (i) a human expert can
often outperform it; (ii) at best, such algorithms typi-
cally result in rather complicated numberings involv-
ing substantial “windings” and for some applications
there is an advantage in the simplicity of the number-
ing. (These algorithms include the methods described
by Cuthill and McKee[4], King [17], Collins[3], Akin
and Pardue[1], Gibbs[10], Razzaque[26], Pina[25]
Sloan and Randolph[30], Fenves and Law[7], and
Sloan[31].)

Accordingly, we decided to test the feasibility of
developing an expert system to try and mimic the
heuristic mechanisms of a proficient human numberer.
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Fig. 7. Time series prediction test for the two-dimensional wave equation. Blue (×) indicates test values; red (�) the network response.

Actually, only some of the possible heuristics were
implemented, but the system proved to compare fa-
vorably with the human user on a variety of test ex-
amples. (Full details appear in[20].)

In order to state the optimization problem mathe-
matically, we introduce some notation. Let the dimen-
sion of the matrixK beN × N. Let bi be defined as
bi = i + maxKji 
=0j. In other words,bi is the height of
columni starting from the diagonal and up to the sky-
line. Now, let theaverage half bandwidth(AHB) and
the root mean square bandwidth(RMSB) be defined
as

AHB = 1

N

N∑
i=1

bi

and

RMSB =
(

1

N

N∑
i=1

b2
i

)1/2

It is apparent that the bandwidth depends on the
nodal numbering system. This dependence becomes
strong for large meshes. The optimization problem
under consideration can thus be stated as follows: Find
a numbering system for the nodes (from 1 toN) such
that AHB (or RMSB) will beminimal.

3.1. A brief description of the expert system
characteristics

One of the hardest steps in producing an expert sys-
tem is to construct the heuristics according to which
the expert system will perform, and which will mimic
the considerations of a human expert. To this end, we
note the following functions typically performed when
numbering the nodes of a finite element mesh manu-
ally and briefly comment on our system’s approach to
these tasks.

1. Preparation of numbering strategies for “paradigm
simple blocks” with different geometries and
topologies. Varying parameters of freedom are
associated with each strategy. These strategies
are achieved by experience, by trial and error,
and sometimes by full analysis. This step is not
“performed” for each mesh separately, but is rather
a database of knowledge an expert has accumu-
lated. Examples of simple blocks are rectangles,
annuli, discs.

2. Subdivision of the mesh into a disjoint union of
simple blocks. Our system does not perform this,
but receives it as given.

3. Choosing the order in which these blocks are
picked for numbering.
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Fig. 8. FEM result. Two-dimensional wave equation example 1 (Table 2). The left figures are refined with the NN predictor. The right
figures are refined with the “standard” gradient indicator.

In this step, the order of the simple blocks is de-
termined. To optimize the numbering a user tries to
keep the node numbers as continuous as possible.
However when passing from block to block, this
is often impossible. Thus, the goal is to keep the
“jumps” across block interfaces as small as possi-
ble. In the discussion that follows, acomponentis
a topological component, i.e. a maximal connected
sub-body.

In the implemented system, the procedure for
block ordering is as follows:

• Choose the first block to be numbered as the
largest simple block, based on the number of
nodes.

• Remove this simple block from the mesh. (This
may cause the remaining mesh to have several
disconnected components.)

• Place all the resulting separate components in
increasing order in a stack.

• Until the stack is empty do the following:
◦ Remove the smallest component from the

stack.
◦ From the chosen component, choose the next

simple block to be numbered in the following
way:
– Consider all simple blocks in the com-

ponent with an interface with the previ-
ously numbered block (there are always
such).
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Fig. 9. Ordering the simple blocks.

– Choose the one with the largest interface.
– Remove the chosen block from the com-

ponent. (This may divide the remaining
blocks into several connected compo-
nents.)

– Place the new components on the stack in
increasing order.

SeeFig. 9 for an example of how the blocks are
numbered.

4. For each block, choosing a numbering strategy,
depending on the topology and the geometry of
the block. That is, choosing the best match to a
paradigm simple block. Essentially, this has two
parts: (1) solution of a pattern recognition problem;
i.e. given a simple block find which of the paradigm
simple blocks it is closest to; and (2) after identifi-
cation, choosing a numbering method for the block
form amongst the possible methods mentioned in
step 1.

In the implemented version, all the blocks are
assumed to be pseudo-rectangles and there is only
one numbering strategy for numbering rectangles,
so this step is to a large extent vacuous.

Notwithstanding, it remains for the system to
perform the following analysis: (a) to decide on the

orientation of the block, regarded as having a rect-
angular shape; and (b) to be able to ignore small
perturbations. The first is done using an algorithm
involving the convex hull of the block and regres-
sion; the second is accomplished using a heuris-
tic (also involving the convex hull) that defines a
“grain size”.

5. For each block, determining the free parameters
associated with the strategy chosen for that block,
such as the node from which to start the number-
ing. For the rectangular strategy handled in the im-
plemented version, the only free parameter is the
node from which to start the numbering, and there
are four possibilities, corresponding to the four cor-
ners of the pseudo-rectangle. This is selected by a
heuristic that is based on both topological and ge-
ometrical considerations.

It is interesting and crucial to note that while the
mesh is a purely topological object as far as node
numbering is concerned, the user decides on the di-
vision based not only on topological criteria, but also
on geometriccriteria. This is an obvious logical fal-
lacy and it is easy to devise artificial mesh examples
where the results are extremely bad. Nonetheless, for
real meshes, the results seem acceptable.The reason
why human users can be so successful in numbering
meshes although basing their decisions on geomet-
ric considerations is that they intuitively rely on the
fact thatactual meshes are designed with implicit ge-
ometric constraints. For example, a good practice in
mesh design is to use elements which have aspect ra-
tios close to unity, namely quadrilaterals and triangles
which are nearly equilateral. Another good practice
is to pass from a crude region (large elements) to a
refined region (small elements) in a gradual manner
[16].

Our expert system tries to mimic a human user;
therefore, it uses geometric considerations as well as
topological ones. This is in contrast to the “algorith-
mic approach”, where only the topological proper-
ties of the mesh play a part in the node reordering
procedure.

The system was tested on a number of meshes taken
from the literature; here, we mention the largest mesh
tested to date similar to one that appears in[37],
which had 359 nodes and 559 triangular elements
(Fig. 10).
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Fig. 10. An example with 359 nodes and 559 elements. Half
bandwidth for a random numbering was 210.2, half bandwidth
for a human expert numberer was 15.9, half bandwidth for the
heuristic numberer was 17.6.

Here, the average half bandwidth of the system was
17.6; that of the human expert was 15.9 while for
comparison a random numbering resulted in a value
of 210.2.

Some other meshes were taken from applications in
large deformation continuum mechanics discussed in
[13] and solved by the finite element code NIKE2D.
The results were are quite comparable to that of the
human expert. (In one case, the expert system actually
outperformed the human expert.)

The results show that although the human expert
performs better than the expert system, the differences
between the two AHBs are reasonably small. Other
examples have been tested as well and the results com-
pared favorably with those of a human expert.

4. Mesh placement via self-organizing neural
networks

Once a topologic mesh has been defined (a prob-
lem we have suggested is appropriate for an expert
system), the mesh has to be given its geometry; i.e.
it has to be placed appropriately on the body. More-
over, there are points and regions which one wants
to cover with a finer mesh than other areas. These
are regions or points of “interest” where the approx-
imation used in the finite element method is intrinsi-
cally worse. Essentially, it is an optimization problem;

given a fixed amount of computation that one wants
to expend, which translates into a fixed amount of el-
ements; how should one best distribute these elements
so as to obtain the best approximation using the finite
element method. A better mesh results in a better ap-
proximation.

There are several requirements for the quality of a
mesh. For example, one wants the proportions of the
elements to be as close as possible to those with good
aspect ratios (the aspect ratio is the ratio of the radii
of circumscribed circle to that of the inscribed circle:
“good” means here close to one). For a quadrilateral
then, for the best results from the finite element method
one wants quadrilaterals close to squares and triangles
close to equilaterals. In addition, one wants the change
in size between elements determined by the mesh to
be gradual. Quantitatively, one wants to keep the ratio
of radii of circumscribed circles of adjacent elements
to be close to 1; globally, it means that the maximum
and minimum of such ratios of all pairs of adjacent
elements should be as close to 1 as possible.

Moreover, in a typical finite element mesh, the den-
sity of the nodes is taken to vary from being very high
near certain critical regions or points to more sparse
where simpler approximations will suffice.

This can be handled using a modification of
Kohonen’s self-organizing the neural network ap-
proach [21,29] by setting the probability density
function of the input to correspond to the desired den-
sity of the network. The “self-organizing” feature of
the Kohonen map will then place the highest density
of nodes according to the sampling of data according
to this density function. In this implementation, one
identifies the weight of the neurons with the geometric
coordinates of the body. The Kohonen map results in
an equiprobably response map of the neural net (con-
strained by its given topology) subject to the sample
data.However, in addition one requires that a mesh
be placed so that boundary points of the mesh fall on
the boundary of the domain. Unfortunately, since the
boundary has measure zero in the domain, the Koho-
nen algorithm will not meet this requirement. (The
topological preserving properties of the Kohonen map
will force boundary points of the neural network to
remain on the boundary of thenetwork.) We were
able to solve this problem by defining two Kohonen
maps; one between the one-dimensional boundaries;
and one between the full two-dimensional spaces and
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Fig. 11. Comparison of different algorithms.

Fig. 12. A sequence of snapshots of a mesh being placed via a NN algorithm.

doing an appropriate interweaving of the two. See
Fig. 11 for a comparison. (Diagram B is the basic
Kohonen map; diagram D is our solution; diagram
C is result obtained by a more direct oversampling
method we tried.) This is discussed further in[22].
Fig. 12gives a view of the algorithm in action.

Fig. 13. A typical comparison between the NN and a commercial package.

In a series of experiments, this algorithm was com-
pared with one of the most popular finite element pack-
ages over a series of problems, and was found to be
generally superior.Fig. 13gives a sample comparison
with the PLTMG[2] package. Full details of this ex-
periment can be found in[21].
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