
ARTICLE IN PRESS
0925-2312/$ - se

doi:10.1016/j.ne

$This work

Interdisciplinar

Neurocomputa

Institute for In
�Correspond
E-mail addr

yousef@cs.haif
Neurocomputing 70 (2007) 1466–1481

www.elsevier.com/locate/neucom
One-class document classification via Neural Networks$

Larry Manevitza,b,�, Malik Yousefa,c

aDepartment of Computer Science, University of Haifa, Haifa, Israel
bDepartment of Experimental Psychology, Institute of Mathematics, Oxford University, Oxford, UK

cWistar Institute, University of Pennsylvania, Philadelphia, Pennsylvania, USA

Received 28 September 2004; received in revised form 12 May 2006; accepted 18 May 2006

Communicated by T. Heskes

Available online 10 October 2006
Abstract

Automated document retrieval and classification is of central importance in many contexts; our main motivating goal is the efficient

classification and retrieval of ‘‘interests’’ on the internet when only positive information is available. In this paper, we show how a simple

feed-forward neural network can be trained to filter documents under these conditions, and that this method seems to be superior to

modified methods (modified to use only positive examples), such as Rocchio, Nearest Neighbor, Naive-Bayes, Distance-based

Probability and One-Class SVM algorithms.

A novel experimental finding is that retrieval is enhanced substantially in this context by carrying out a certain kind of uniform

transformation (‘‘Hadamard’’) of the information prior to the training of the network.

r 2006 Published by Elsevier B.V.
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Bottleneck neural network
1. Introduction

The goal of this research is to develop a filter that can
examine a corpus of documents and choose those of
interest.

This requires a method of defining what it means to be
‘‘of interest’’ and a method of matching the documents to
this definition. It is natural and convenient to assume that
the definition of interest be learned (see also [24,30,28]) by
observing examples, and, in this context, it is pertinent to
assume only positive examples. That is, one can have a
sample set of examples of documents which are ‘‘interest-
ing’’ and from this set develop a filter which can be applied
to select other such ‘‘interesting’’ documents. The reason
for using only positive examples is that one can (i) obtain
e front matter r 2006 Published by Elsevier B.V.
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such examples simply by observation; i.e. for many
applications an ‘‘active’’ teacher will not be necessary (ii)
in many contexts, it is easier to find ‘‘typical’’ examples
rather than typical ‘‘non-examples’’. By ‘‘typical’’ we mean
a valid sampling which appropriately represents the space.
See [20,2,12,11,27] for other papers on the use of positive
examples only. For example, in trying to develop an
intelligent ‘‘web-browser’’, one can imagine a system that
inobstrusively tracks a user and by following documents of
interest to him, builds a filter for future automated
retrieval. (See [33,18] for the use of the ideas of this paper
in building such an automated filter.)
In this paper, we investigate the efficacy of such methods

isolated to the context of document retrieval; but because
of the motivations above, we restrict ourselves as much as
possible to positive information.
In the sections below, we report on experiments with

various methods some using ‘‘pure’’ positive information;
and some ‘‘contaminated’’ by using negative examples
albeit after the training stage. Our methods involve
focusing on applying the ‘‘bottleneck’’ or ‘‘autoencoder’’
neural network in different ways. Our methods are also
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compared with other information retrieval methods
adapted to the positive example case.
INPUT
(dimension m)

OUTPUT
(dimension m)

COMPRESSION
(dimension k)

Fig. 1. A neural network with bottleneck.
2. The neural networks classifier

The basic design of the filter under discussion in this
section is a feed-forward neural network. In order to
incorporate the restriction of positive examples only, we
used the design of a feed-forward network with a ‘‘bottle-
neck’’. That is, under the assumption that the documents
are represented in an m-dimensional space; we choose a
three level network with m inputs, m outputs and k neurons
on the hidden level, where kom. The network is then
trained, under standard backpropagation to learn the
identity function on the sample examples. (This design,
now usually called the ‘‘autoencoder’’ after Japkowicz et al.
[12] was first used by Munro et al. [7] to produce a
compression algorithm. See also [12] for another use as a
novelty detector.)

The overall idea is that while the bottleneck prevents
learning the full identity function on m-space; the identity
on the small set of examples is in fact learnable. Thus, the
set of vectors for which the network acts as the identity
function is a kind of sub-space which is similar to the
trained set. (This avoids the ‘‘saturation’’ problem of
learning from only positive examples.) Thus, the filter is
defined by applying the network to a given vector; if the
result is the identity, then the vector is ‘‘interesting’’.1 See
Fig. 1.

To apply this idea to documents, one needs to (i) decide
on the number of hidden neurons in the architecture (i.e.
the tightness of the bottleneck) and choose the appropriate
learning rates, etc. related to any application of back-
propagation [29], (ii) encode the documents as vectors, (iii)
determine the appropriate acceptance thresholds (i.e. how
close to the identity is required for acceptance) when
applying the trained networks to classify new documents.
2.1. Architecture and training parameters

The architecture is feed forward with three levels. There
were 20 real valued inputs and outputs and six hidden level
neurons in most of our experiments. All neurons were
standard sigmoids. Initial weights were chosen as small
random values. The positive example vectors (see below)
were divided into two sets, training and testing. Training
proceeded according to standard backpropagation with
learning parameter .75 and momentum coefficient .08 until
the mean-square error fell below a predetermined level.
These parameters are standard (i.e. the same as in [11]; the
1Although, intuitively, it is more natural to use a bottleneck, recent

work by Japkowicz [10] has used an autoencoder with an ‘‘expander’’; i.e.

with more neurons in the hidden level. We tried this as well, but with

substantially poorer results. The Diablo [27] model uses a slightly different

architecture than ours for autoencoder purposes.
results were not sensitive to small changes in these
parameters).
Experimentally six hidden level neurons gave the best

result. We also examined our neural network filter with
different sizes of input and output (corresponding to
different numbers of features from the document, see
below) in order to investigate how this influenced the
performance of the classification task. (See Table 9 and the
appendix.) In addition, we examined different choices and
sizes of the hidden level; both in choosing the compression
of the bottleneck and considering the possibility of
expansion [10] instead of compression. (See the appendix
for these details.)
2.2. Data set and measurements

Our experiments were performed on the standard
Reuters data-base [16], a preclassified collection of short
articles. This is one of the standard test beds used to test
information retrieval algorithms [6,9].
For each category, we first used 25% of the positive data

for training and then tested on the remaining data (positive
and negative). Since other authors [6,13,19] have used the
‘‘ModApte’’ split which is the opposite split (75–25%), we
reran the experiments with this split as well and report the
results in the appendix. The results are quite similar to
those reported in this section.
Table 1 shows the 10 most frequent categories along with

the number of training and test examples in each. We
treated each of the 10 categories as a binary classification
task and evaluated the classifiers for each category
separately.
We used two kinds of measures to assess the perfor-

mance: (1) the number accepted divided by the total
number of documents in the class, and (2) the F1 measure,
the recall and the precision values.
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Table 1

Number of training/test items

Category name Num train Num test

Earn 966 2902

Acquisitions 590 1773

Money-fx 187 563

Grain 151 456

Crude 155 465

Trade 133 401

Interest 123 370

Ship 65 195

Wheat 62 186

Corn 62 184
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For text categorization, the effectiveness measure of
recall and precision are defined as follows:

recall ¼
Number of items of category identified

Number of category members in test set
,

precision ¼
Number of items of category identified

Total items assigned to category
.

Van Rijsbergen [31] defined the F1-measure as a
combination of recall (R) and precision (P) with an equal
weight in the following form: F1ðR;PÞ ¼ 2RP=ðRþ PÞ.

Note that this measure is in fact sensitive to the amount
of ‘‘balance’’ between the positive and negative examples
used in evaluation. Accordingly, we also calculate (and
present in the appendix) the accuracy; i.e. the percentage of
positive and negative examples that are correctly classified.
(See [25] for more on ‘‘balance’’.)

2.3. Text representation and feature selection

The simplest representation one can imagine, is to
assume a dictionary of possible words in all documents,
and then to include a binary vector in f0; 1gn whose
dimension n is the number of words in the dictionary.
Thus, a vector with a 1 in dimension j means that word wj

is in the document.
It is clear that one would not want to use simple variants

of words, but there are well known algorithms to strip
simple suffixes, etc. [23]. If instead of a binary vector, one
counts the number of occurrences in the document, and
then normalizes the vector to one, one has the term
frequency representation. In the literature, a correction to
this vector is often felt to be necessary to account for the
number of documents in which the word occurs. (That is,
the importance of a word in a specific text is inversely
related to how often it appears in other documents.)

Thus, instead of the frequency, one uses the tf-idf (term-
frequency-inverse-document-frequency) representation [26]
which is given by the following formula (where f ðwordÞ

means the frequency of the word in the document and
NðwordÞ means the number of documents the word
appears in):

tfidf ðwordÞ ¼ f ðwordÞ � log
n

NðwordÞ
þ 1

� �
.

To explain the heuristic mix of neural network encoding
and heuristic choice of representation used in our work, we
will need a few definitions:
Let C, the ‘‘corpus’’ be the set of documents to be

classified. Let T be a subset of C the class of ‘‘interesting’’
documents. Let E be a subset of T, the positive examples.
The problem is to define a function (or ‘‘filter’’), using only
information from E that distinguishes T from T , the
complement of T.
We proceed as follows: let D be the dictionary of all

words in
S

E; with each word associated to its frequency
in the list. Heuristically, we eliminate words which occur
in less than three documents (document frequency is
less than 3); and use standard algorithms to (i) eliminate
stop words and (ii) strip grammatical endings from
common words [23].
From this dictionary, we then choose the m words that

appear in the greatest number of documents of E. We call
these ‘‘keywords’’; however they are chosen automatically.
The choice of m is rather arbitrary. In our examples we
have typically used m ¼ 20; this was influenced by the work
of Weiner et al. [32].
However, we point out that the analysis in [32] used the

‘‘relevance’’ factor to rank the words. (See [32] for a
definition.) This information is not available to us, if we
assume knowledge of only positive examples. Table 9
shows some comparisons with different choices of m. There
is not a clear indication of optimal size of m from this data.
The proper choice of m in general requires further analysis.
(We point out here, that, while common [34] , this choice

of features can be problematic. In particular, a substantial
portion of examples can have very few non-zero features,
making it very difficult for excellent recall without faulty
precision. The distribution of number of non-zero features
amongst the examples used are given in Table 2).
We performed additional experiments using very large

vectors. (See the appendix.) In general, additional features
can in fact improve the network although the improvement
is very marginal.
For later reference (see ‘‘Hadamard product’’ below) we

define vT as the m-dimensional vector consisting of the
frequencies of occurrence of the keywords over the training
set of the positive examples. Then for each document e 2 E

we associate a vector of dimension m, which we will
continue to designate as e. Here ei is the frequency of the
ith chosen keyword in the document e.
At this point, the natural way to proceed would be to use

the vectors e to train the network by backpropagation to
the identity function. Then the network could be used as a
filter on the remainder of C, by (i) representing each
document in C by the vector of frequencies (normalized to
1) of the chosen keywords (Note that the representation of
each document in C depends on the class T for acceptance.)
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Table 2

Distribution of examples by the number of features with non-zero value

#Non-zero 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Earn 10 13 18 79 115 175 128 112 99 85 66 38 18 7 3 0 0

Acq 17 28 53 50 87 76 57 54 52 43 27 18 10 6 7 3 2

Money 2 5 11 12 18 26 23 21 16 8 12 6 11 8 5 1 2

Grain 1 6 6 16 16 23 28 14 15 8 7 3 3 2 1 0 1

Crude 1 5 8 9 14 12 16 17 13 14 8 13 5 9 4 4 2

Trade 1 4 3 6 4 9 12 12 11 12 9 10 13 7 6 8 2

Int 1 2 8 3 21 10 17 16 18 17 4 2 2 0 0 2 0

Ship 2 5 13 11 4 5 7 5 5 6 1 0 1 0 0 0 0

Wheat 0 0 1 6 8 8 9 13 5 5 2 1 1 0 1 1 0

Corn 1 0 1 5 2 2 15 6 8 4 4 3 5 4 0 1 0

#Non-zero is the number of features with non-zero values for the example represented by the vector.

Table 3

Neural networks comparison of the Hadamard and frequency representa-

tions for two typical categories in a neural network (using acceptance

method 3)

Training/test set Earn Grain

Hadamard Frequency Hadamard Frequency

736/966 779/966 75/151 58/151

2322/2902 2339/2902 180/456 162/456

Earn LT LT 139/3868 49/3868

Acquisitions 329/2362 2316/2362 29/2359 66/2359

Money 98/750 733/750 3/749 15/749

Grain 49/607 599/607 LT LT

Crude 65/620 613/620 15/619 41/619

Trade 57/534 495/534 27/515 39/515

Interest 67/493 447/493 9/493 13/493

Ship 8/260 260/260 3/234 2/234

Wheat 22/248 246/248 3/3 2/3

Corn 25/246 241/246 2/3 1/3

F1 0.781292 0.41804 0.415704 0.379836

Recall 0.800138 0.805996 0.394737 0.355263

Precision 0.763314 0.282181 0.439024 0.408060

LT denotes that the topic is the ‘‘learned’’ topic; it is used in the training

set and test set. After training is completed, the results of the training set

and control test subset of the category are listed in the first two lines of the

table. For each of the other categories, all examples which were cross-

listed in the trained category were removed.
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and (ii) applying the network to these vectors. If the result
is sufficiently close to the identity the document is accepted.
In the tables below, we refer to this as the ‘‘frequency
representation’’.

2.4. Hadamard product

We discovered experimentally that the following addi-
tional transformation, HT, of vectors substantially en-
hances performance.2

Here,

HTðeiÞ ¼ ei � vTi,

or

HTðeÞ ¼

e1

e2

:

:

:

em

0
BBBBBBBBB@

1
CCCCCCCCCA
�

vT1

vT2

:

:

:

vTm

0
BBBBBBBBB@

1
CCCCCCCCCA
¼

e1 � vT1

e2 � vT2

:

:

em � vTm

0
BBBBBB@

1
CCCCCCA

i.e. take the component-wise product with the frequency
vector of the dictionary.

Table 3 shows the comparison between using and not
using this Hadamard product in two sample classes. Note
that the Hadamard representation is substantially superior
in avoiding false positives.

It seems reasonable to look for a Bayesian explanation
of this phenomenon. Let g represent a given document, wi

the ith word in the dictionary, and E a set of training
examples. Assume that ei represents PðwijgÞ and vTi

represents PðwijEÞ; i.e. the probabilities of a chosen word
being wi given that you are either in the document being
tested or in the class of interesting examples. One can then
argue (under certain independent assumptions) using Bayes
rule that the product vector is representing the adjusted
2We call this the ‘‘Hadamard Product’’ after the well known term-wise

matrix multiplication (sometimes also called the ‘‘Shur Product’’) and the

term-wise product of infinite series.
probability of a word being chosen given that it is both in
the document g and an interesting example. (See the
appendix for a full derivation.)
In any case, it is clear that the Hadamard product

emphasizes the differences between large and small feature
entries.

2.5. Acceptance threshold determination

We used (in different experiments) six methods of
determining the threshold of acceptance when using the
bottleneck network. Recall that the error of the neural
network is the average of the square error (from the
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identity function) over all the training examples. (Bottom
Line: Method 6(b) is the final method of choice; obtaining
essentially the best results and using only positive
information in setting the threshold.)
1.
 The network was trained to a fixed constant error level
(0.00625) determined in advance. The threshold is
errorþ 0:2sd where

error ¼ the average of the square error over all the

training examples

and

sd ¼ standard deviation of the average error.

(This method uses only positive information.)

2.
 After training the network to an acceptable level of error

(0.001 average square error); we then ranked the
members of the training set according to their individual
errors; and set the threshold at the error level of the 90th
percentile. Note that this means that one should expect
false negatives at the rate of 10%. (This method uses
only positive examples.)
3.
 This is a more sophisticated method, based on a
combination of variance and calculating the optimal
F1 measure. During training, we checked the F 1 values
of the test set using different levels of error both as the
stopping point and as the threshold. We discovered that
there was always an error level at which the F1 started a
steep decline. (Note that the calculation of F 1 values
requires the availability of negative examples albeit only
after training of the network is completed. That is, the
negative examples are used for setting the threshold
only. In later methods below, this need of negative
examples is eliminated.) See Fig. 2.
We chose this error level to stop training. (It is our
conjecture that this is the point where the network starts
to reorganize itself to accept all data; i.e. starting to have
many false positives.) Then a secondary analysis was
performed to determine an optimal real multiple of the
0.1
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0.3

0.35

0.4

0.45

0.5

0 1 2 3 4 5 6 7 8 9 10 11

Training Period

F
1

Money-fx
Grain
Crude

Fig. 2. F1 values at different levels of error.
standard deviation of this average error to serve as the
threshold.
4.
 In the fixed recall level approach, we predetermine a set
of recall levels at which we want to compute precision,
and analyze the ranked documents in the test set to
determine, for each category, what decision threshold
would lead to the desired set of recall levels at the
precision–recall break-even points. (The precision–recall
break-even point is defined as the value where the
precision and recall value are equal.) Then the threshold
is chosen as determined by the largest such computed
break-even point.
As in the previous method, this calculation requires
knowledge of negative examples prior to using the test
set, but not in the training set.
5.
 After running our experiments a heuristic way to
determine the threshold using only positive information
was suggested by Japkowicz et al. [12]. Here it is
essentially suggested to train the network for a
heuristically determined fixed number of epochs (e.g.
200); to discover the maximal error in each epoch; to find
the threshold that is determined by these maximal
errors; and then to relax it by, e.g. 25%. A new example
is then accepted if it passes all epochs (after an initial
period) with the relaxed threshold.
However, direct application of this suggestion gave very
poor results (i.e. the precision and hence the F 1 values
dropped drastically). This was surprising given the
excellent results reported in [12].
6.
 After consideration, we decided that the problem
probably lies in the problematic representation of data
in our study. That is, from Table 2, we see that there are,
in some categories, a large number of examples which
are almost the zero vector. Thus, we decided to
implement Japkowicz’ idea, but with the opposite tack;
i.e. to tighten the threshold by an amount heuristically
related to the percentage of near zero vectors in the
training set. (The idea is that attempting to include these
vectors must harm the precision; since they do not have
enough information to distinguish them from negative
examples.)
(a) We then implemented this modified algorithm, using

a tightening dependent on the statistics of Table 2.
The result was a very dramatic increase in accuracy,
yielding, in many ways, the best results of all
methods.

(b) We then tried a further modification, combining
ideas from method 2 with the above, which removes
the necessity to analyze each data set separately.
In each epoch, separately, we tightened the thresh-
old sufficiently to disallow the classification of the
highest 25 percentile error cases from the training
set. Again, the motivation is that there were many
near zero vectors in our training set. The results
were nearly as good as the previous method. We

emphasize that this method does not use any
negative information.
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Table 5

Neural networks comparison between standard deviation (method 3) and

break-even point (method 4) for threshold determination

Category Standard deviation Break-even point

F 1 R P F1 R P

Earn 0.781 0.800 0.763 0.782 0.799 0.765

Acq 0.534 0.598 0.483 0.535 0.599 0.483

Money 0.542 0.641 0.470 0.540 0.600 0.491

Grain 0.415 0.394 0.439 0.413 0.399 0.428

Crude 0.537 0.505 0.573 0.539 0.498 0.587

Trade 0.573 0.600 0.547 N/A N/A N/A

Interest 0.496 0.416 0.616 N/A N/A N/A

Ship 0.393 0.328 0.492 0.377 0.297 0.517

Wheat 0.507 0.446 0.588 0.492 0.500 0.484

Corn 0.310 0.451 0.236 0.307 0.298 0.316

N/A denotes not available.

L. Manevitz, M. Yousef / Neurocomputing 70 (2007) 1466–1481 1471
2.6. Comparison amongst variants of the bottleneck neural

networks

In Table 3, we present the results on two typical classes
using the third acceptance threshold determination pre-
sented above (using standard deviation and F1 measure)
for both the Hadamard and the frequency representations.
In each entry the number of documents accepted and the
total number of documents appears. Note that for the
articles in the chosen category, it is desirable to accept as
many items as possible; while for the articles in the other
categories, it is desirable to accept as few items as possible.

It is clear from this table that the Hadamard representa-
tion is substantially superior to the frequency representa-
tion, especially in terms of avoiding false positives.

Table 4 shows a comparison of the tf-idf representation
with the Hadamard representation according to the second
method (90th percentile) of acceptance. Again we see that
the Hadamard representation is superior, with the tf-idf

giving many false positives.
In Table 5, we compared the third and fourth methods of

acceptance for the 10 most frequent categories. The results
show no significant difference between the two methods of
acceptance.

In Table 6 we compare methods 5, 6(a) and (b). The
results here were quite interesting. First, and initially
surprisingly, method 5 was rather poor in this context. The
relaxation of the threshold imposed in that method, while
allowing almost perfect recall, had very poor precision,
thereby resulting in poor F1 performance. In essence, the
relaxation allowed almost all data to be accepted into the
class. We believe there are two major reasons for this
failure: (1) the data is human classified real data; therefore,
the classification is not 100% reliable; (2) the representa-
tion of the data is not efficacious. Table 2 shows that about
1.5% of the training data is in fact the zero vector in this
Table 4

Neural networks comparison of the tf-idf and Hadamard representations

for three typical categories (using acceptance method 2)

Train test Silver Yen Dollar

Had. tf-idf Had. tf-idf Had. tf-idf

12/14 12/14 25/28 25/28 69/77 69/77

13/16 16/16 21/32 2/32 66/93 11/93

Coffee 1/80 80/80 1/80 13/80 1/80 4/80

Earn 2/594 594/594 2/594 486/594 12/594 12/594

Jobs 0/73 73/73 0/73 12/73 3/73 17/73

Gold 31/123 123/123 3/123 54/123 5/123 17/123

Dollar 0/173 173/173 119/173 129/173 LT LT

Yen 0/62 62/62 LT LT 44/62 12/62

Silver LT LT N/A N/A N/A N/A

F1 0.8125 0.02488 0.71186 0.00505 0.7333 0.1358

LT denotes that the topic is the ‘‘learned’’ topic; it is used in the training

set and test set. (N/A denotes not available.)
representation, 4% has at most one non-zero dimension,
9% has at most two non-zero dimensions, 16% has at most
three non-zero dimensions and 27.5% has at most four
non-zero dimensions.
It is reasonable to assume that some of these vector

representations are too weak to distinguish between data
and should really be considered as noise. This means that
setting a threshold that allows all of these data points to be
accepted is too weak and this is what happened under
method 5. (Japkowicz et al. [12] obtained excellent results
under method 5. The number of non-zero dimensions of
the training data used there is unknown to us, although we
imagine it was not small.)
This analysis suggested pursuing the opposite tack from

method 5; i.e. tightening the threshold requirement instead
of relaxing it. Experimentation with the degree of tighten-
ing revealed that this does improve the results; however,
the amount of optimal tightening varied substantially
between the classification task, with larger tightening
needed for the larger classes.
Method 6(a) presents a result obtained by these methods.

In some ways this was the best result. The amount of
tightening applied in this case was 15% for Earn, 5% for
Acq, 3% for Money, Grain, Crude, Trade and Int; and
.8% for Ship, Wheat and Corn. The different percentages
correspond to the relative size of the training sets. (See
Table 2.)
Since the analysis of 6(a) showed that changing the

threshold to eliminate acceptance of some of the training
set varies from classification to classification, we decided a
logical and more uniform method would be to (1) rank the
training set in each epoch according to error (2) tighten the
threshold to reject the worst 25 percentile of data. This is
method 6(b). The results here were essentially as successful
as 6(a).
In Table 7, we compare method 1 (fixed threshold),

method 3 (F 1 measure) and method 6(b). Method 3 and
6(b) were substantially superior to method 1, except for
subcategory ‘‘earn’’ where method 6(b) was substantially
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Table 6

Comparison between threshold determination methods 5, 6(a), and (b)

Category Method 5 Method 6(a) Method 6(b)

F1 R P F1 R P F1 R P

Earn 0.486 1.0 0.321 0.869 0.794 0.960 0.714 0.577 0.938

Acq 0.326 0.998 0.194 0.477 0.646 0.377 0.621 0.486 0.860

Money 0.111 1.0 0.059 0.529 0.486 0.579 0.642 0.621 0.665

Grain 0.094 0.982 0.049 0.424 0.342 0.557 0.473 0.368 0.661

Crude 0.099 0.997 0.052 0.602 0.572 0.636 0.534 0.544 0.524

Trade 0.079 1.0 0.041 0.436 0.396 0.486 0.569 0.546 0.595

Interest 0.073 1.0 0.038 0.638 0.613 0.665 0.487 0.337 0.874

Ship 0.039 1.0 0.019 0.353 0.471 0.283 0.361 0.512 0.278

Wheat 0.050 0.989 0.025 0.593 0.623 0.565 0.404 0.290 0.666

Corn 0.038 1.0 0.019 0.285 0.652 0.182 0.324 0.353 0.299

Avg 0.139 0.996 0.081 0.520 0.559 0.529 0.513 0.463 0.636

Wt.avg 0.296 0.997 0.186 0.637 0.648 0.662 0.615 0.516 0.795

Avg (also called macro Avg) is the simple average over all categories; Wt. Avg (also called micro Avg) takes into account the number of examples in the

different test sets.

Table 7

Neural networks comparison between constant threshold using only positive examples (method 1), F 1 and standard deviation using negative examples

(method 3) and the threshold tightening on percentile modification (method 6(b))

Method 1 Method 3 Method 6b

F1 R P F1 R P F1 R P

Earn 0.408 0.793 0.274 0.781 0.800 0.763 0.714 0.577 0.938

Acq 0.533 0.650 0.451 0.534 0.598 0.483 0.621 0.486 0.860

Money 0.481 0.479 0.483 0.542 0.641 0.470 0.642 0.621 0.665

Grain 0.359 0.458 0.295 0.415 0.394 0.439 0.473 0.368 0.661

Crude 0.433 0.524 0.369 0.537 0.505 0.573 0.534 0.544 0.524

Trade 0.395 0.486 0.332 0.573 0.600 0.547 0.569 0.546 0.595

Int 0.278 0.729 0.171 0.496 0.416 0.616 0.487 0.337 0.874

Ship 0.226 0.384 0.160 0.393 0.328 0.492 0.361 0.512 0.278

Wheat 0.435 0.462 0.411 0.507 0.446 0.588 0.404 0.290 0.666

Corn 0.304 0.440 0.232 0.310 0.451 0.236 0.324 0.353 0.299

Avg 0.385 0.540 0.317 0.508 0.517 0.520 0.513 0.463 0.636

Wt.avg 0.428 0.651 0.336 0.614 0.638 0.600 0.615 0.516 0.795

The Hadamard representation was used.
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superior on precision. There is no clear difference between
6(b) and 3. Note that method 6(b) uses only positive
information whereas method 3 needs some negative
examples to determine the threshold. On the other hand,
the percentile reduction of method 6(b) was chosen
heuristically.

In Table 8, we compare representations of the data. Two
methods, Hadamard and frequency, are presented and
their respective F1, recall and precision values are
presented for some of the ten most frequent categories in
the database. These experiments were run using the third
(F1 and standard deviation) method of acceptance. The
results show the clear superiority of the Hadamard
representation.

In Table 9, using only the Hadamard representation, we
investigated the effect of increasing the dimension of the
features. (That is, allowing a larger number of keywords,
while keeping the size of the hidden level the same.) There
is some improvement but it is not dramatic.

3. Experimental comparisons

To test the validity of our approach and for comparison
purposes, we implemented variants appropriate to the
positive example case of the following algorithms: (1)
Prototype (Rocchio) (2) Nearest Neighbor (3) Naive Bayes
(4) Distance Based Probability (5) One-Class SVM.
(Algorithms 2–4 were used by Datta [4] in his Ph.D.
dissertation.)

3.1. Prototype (Rocchio’s) algorithm

The Prototype algorithm is widely used in information
retrieval ([21,1,22,15] and others). This algorithm is used
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Table 8

Neural networks comparison of Hadamard and frequency representation

Hadamard Frequency

F 1 R P F 1 R P

Earn 0.781 0.800 0.763 0.418 0.805 0.282

Acq 0.534 0.598 0.483 0.347 0.363 0.332

Money 0.542 0.641 0.470 0.475 0.420 0.546

Grain 0.415 0.394 0.439 0.379 0.355 0.408

Crude 0.537 0.505 0.573 0.476 0.410 0.566

Trade 0.573 0.600 0.547 0.536 0.513 0.561

Int 0.496 0.416 0.616 0.478 0.405 0.583

Ship 0.393 0.328 0.492 0.388 0.400 0.376

Wheat 0.507 0.446 0.588 0.414 0.430 0.400

Corn 0.310 0.451 0.236 0.315 0.434 0.247

Avg 0.508 0.517 0.520 0.422 0.453 0.430

Wt.avg 0.614 0.638 0.600 0.413 0.555 0.373

Table 9

F1 values as a function of the number of features in the neural network

(method 3) using the Hadamard representation

Category Number of features

20 40 60 100 200

Grain 0.415 0.504 0.515 0.518 0.539

Crude 0.537 0.591 0.565 0.588 0.583

Trade 0.573 0.605 0.616 0.602 0.603

Interest 0.496 0.504 0.497 0.528 0.510

Ship 0.393 0.252 0.276 0.302 0.259

Wheat 0.507 0.487 0.491 0.501 0.495
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frequently because it is considered a baseline algorithm and
it is simple to implement. For extended details see [14].

The basic idea of the algorithm is to represent each
document e as a vector in a vector space so that documents
with similar content have similar vectors. The value ei of
the ith keyword is represented as the tf-idf weight.

The Prototype algorithm learns the class model by
combining document vectors into a prototype vector c.
This vector is generated by adding the document vectors of
all documents in the class E

c ¼
X
e2E

e.

In addition to generating the prototype vector, the
Prototype algorithm learns a constant d which is
the maximum distance between the vectors in E and the
prototype vector c. The distance is calculated using the
cosine measure.

During classification, whenever the distance of a test
example from the prototype vector is less than ld
(0olo ¼ 1) the test example is predicted as a member of
the class.

In our experiments we estimated the optimal l by testing
l over values between 0 and 1 and examining the F 1 value.
For this classifier algorithm we store the prototype vector
c, d and l.
3.2. Nearest neighbor

We used a modification of the Nearest Neighbor
algorithm [4] to learn from positive examples for one class.
The input for the modified algorithm, NN-PC (nearest
neighbor positive class), are examples from only one class.
In addition to storing the examples, NN-PC learns a
constant d which is the maximum distance that a test
example can be to any learned example and still be
considered a member of the positive class. Any test
example that has a distance greater than ld from any
training example will not be considered a member of the
positive class. d is calculated by

d ¼ max
x

min
yax

distanceðx; yÞ,

where x and y are two examples of the positive class, and
the cosine measure is used as the distance function.
Intuitively, d records how much the examples vary from
each other. When classifying test examples, if the test
example varies ‘‘too much’’ from the positive examples
then the test example is classified to not be a member of the
positive class. More specifically, if 9x : distanceðx; testÞod
then the test example is classified as a member of the
positive class, otherwise it is not.
In our experiments we estimated the optimal l as we did

in the Prototype algorithm. So for this classifier algorithm
we store all the training vectors, d and l.
3.3. Naive Bayes

Traditional Naive Bayes calculates the probability of
being in a class given an example, consisting of specific
values of different attributes. One calculates this by
assuming the different attributes are independent, applying
Bayes’ theorem and using the a priori probability of the
different classes. According to [5] this is surprisingly
accurate even when the independence assumption is
broken. (See Domingos and Pazzani [5] for a discussion
of the magnitude of the error. See also Hummel and
Manevitz [8] for another ‘‘partial independence’’ assump-
tion.)
However, when only the positive information is avail-

able, the usual calculations cannot be performed. Datta [4]
showed how the algorithm can be modified for positive
data only and we follow his presentation. Here we only
state the parameters used in our implementation and refer
the reader to [4] for explanations.
We calculate pðdjEÞ as the product of pðwjEÞ for all

words in the dictionary that appear in the document d.
Each of the pðwjEÞ is estimated independently using the
formula:

pðwjEÞ ¼
nw þ 1

nþ jdictionaryj
,

where nw is the number of times word w occurs in E, and
n is the total number of words in E.
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We calculate a threshold d by the minimum over all
examples in E, of the value pðdjEÞ for each document in the
set of examples. Then we experiment with values ld for
0olo ¼ 1 as in the previous algorithms using F 1 to find
the optimal threshold for acceptance. That is, given a new
document d, we accept it if the calculated value pðdjEÞ is
larger than the determined ld.

For this classifier algorithm we store d and l.

3.4. Distance Based Probabilities

This algorithm, DBP, establishes a distance between two
documents, based on the appearance or the absence of a
word from the dictionary in the document. Thus, the

distanceðd1; d2Þ ¼
X

w in difference set

pðwjEÞ2,

where the difference set is all words in the dictionary that
appear in one document and not in the other; and pðwjEÞ is
calculated as in the previous section.

Another alternative, DBP-cosine, which proves to be
superior in this context, replaces the distance with the
cosine between two documents.

Then, as in the Nearest Neighbor algorithm, d is
computed in the same manner as above. The DBP also
uses the same test for class membership as Nearest
Neighbor, namely if 9x : distanceðx; testÞod then the test
example is classified to be a member of the positive class,
otherwise it is not. Results are presented in Table 11.

In our experiments we estimated the optimal l as we did
in the Prototype algorithm. For this classifier algorithm we
store all the training vectors, d and l.

3.5. One-class SVM

Scholkopf et al. [3] suggested a method of adapting the
SVM methodology to the one-class classification problem.
Table 10

Nearest neighbor algorithm

Hadamard Frequency

F1 R P F1 R P

Earn 0.703 0.856 0.596 0.719 0.782 0.66

Acq 0.476 0.727 0.354 0.480 0.714 0.36

Money 0.468 0.735 0.343 0.374 0.712 0.25

Grain 0.333 0.403 0.284 0.259 0.660 0.16

Crude 0.392 0.632 0.284 0.241 0.404 0.17

Trade 0.441 0.588 0.353 0.199 0.775 0.11

Int 0.295 0.337 0.263 0.307 0.651 0.20

Ship 0.389 0.338 0.458 0.239 0.358 0.17

Wheat 0.566 0.677 0.486 0.202 0.532 0.12

Corn 0.168 0.391 0.010 0.087 0.733 0.04

Avg 0.423 0.568 0.352 0.310 0.632 0.22

Wt.avg 0.531 0.706 0.431 0.490 0.705 0.40

Comparison between Hadamard, Frequency, tf-idf and Binary representation
Essentially, after transforming the feature via a kernel,
they treat the origin as the only member of the second class.
Then using ‘‘relaxation parameters’’ they separate the
image of the one class from the origin. Then the standard
two-class SVM techniques are employed. Full details may
be found in [17].
We also implemented a somewhat different version of

the one-class SVM where we decided to identify these
outliers by counting the features of an example with non-
zero value; if this is less than a threshold then the feature is
labeled as a negative example. One then continues with the
standard two-class SVM. Full details may be found in [17].
3.6. Comparisons between the Neural Network and other

algorithms

In this section we present the results using the different
algorithms described above. In Table 10, we summarize
the results from the Nearest Neighbor algorithm with
Hadamard frequency tf-idf and binary document repre-
sentation. The results show that the Hadamard representa-
tion is superior also in this context.
In Table 11, we summarize the results from the Naive

Bayes algorithm and two version of the Distance Based
Probability algorithm. The results show that using the
cosine measure in the latter algorithm results in a dramatic
improvement.
Our main comparisons between the different algorithms

is summarized in Table 12. Seven methods are represented
with their respective F 1 results. Note that except for
method 6(b) and One-Class SVM, all use some negative
examples after the training is completed to optimize their
performance. NN under method 6(b) (column 2) uses only
positive information. The bottleneck Neural Networks is
presented with its Hadamard representation under meth-
ods 3 and 6(b) for the determination of threshold, Naive
Bayes is presented with the probability representation,
tf-idf Binary

F1 R P F1 R P

5 0.694 0.866 0.580 0.707 0.831 0.615

2 0.486 0.714 0.368 0.498 0.719 0.381

3 0.400 0.809 0.266 0.537 0.582 0.499

1 0.237 0.743 0.141 0.389 0.375 0.404

2 0.215 0.425 0.144 0.253 0.404 0.184

4 0.391 0.583 0.294 0.451 0.496 0.414

1 0.180 0.727 0.102 0.329 0.443 0.262

9 0.190 0.353 0.130 0.301 0.374 0.252

5 0.119 0.225 0.081 0.373 0.537 0.285

6 0.076 0.728 0.040 0.079 0.657 0.042

7 0.298 0.617 0.214 0.391 0.541 0.333

7 0.481 0.736 0.376 0.531 0.671 0.451

using only positive examples.
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Table 11

Results for Naive Bayes and Distance Based Probability Algorithms

Naive Bayes DBP DBP-cosine

F1 R P F1 R P F1 R P

Earn 0.708 0.709 0.706 0.471 0.912 0.318 0.612 0.846 0.479

Acq 0.503 0.609 0.428 0.312 0.926 0.187 0.376 0.798 0.246

Money 0.493 0.666 0.391 0.102 0.888 0.054 0.345 0.373 0.322

Grain 0.382 0.432 0.342 0.081 0.842 0.042 0.335 0.239 0.564

Crude 0.457 0.455 0.458 0.117 0.681 0.064 0.240 0.393 0.172

Trade 0.483 0.620 0.395 0.071 0.855 0.037 0.445 0.581 0.361

Int 0.394 0.481 0.334 0.072 0.859 0.037 0.326 0.675 0.215

Ship 0.288 0.271 0.308 0.033 0.846 0.017 0.231 0.184 0.310

Wheat 0.288 0.392 0.228 0.188 0.118 0.468 0.732 0.779 0.690

Corn 0.254 0.418 0.182 0.032 0.793 0.016 0.081 0.478 0.044

Avg 0.425 0.505 0.377 0.147 0.772 0.124 0.372 0.534 0.340

Wt.Avg 0.548 0.607 0.509 0.290 0.865 0.194 0.453 0.684 0.369

Table 12

Comparison of Neural Networks (Hadamard representation), Naive Bayes, Nearest Neighbor (Hadamard representation), Distance Based Probability

(cosine measure), Prototype algorithms (tf-idf representation) and one-class SVM

Neural Neural Naive Nearest DBP-cosine Prototype One-class

Networks Networks Bayes Neighbor SVM radial

(method 3) (method 6(b)) basis

F1 F1 F1 F1 F1 F1 F1

Earn 0.781 0.714 0.708 0.703 0.612 0.637 0.676

Acq 0.534 0.621 0.503 0.476 0.376 0.468 0.482

Money 0.542 0.642 0.493 0.468 0.345 0.484 0.514

Grain 0.415 0.473 0.382 0.333 0.335 0.402 0.585

Crude 0.537 0.534 0.457 0.392 0.240 0.398 0.544

Trade 0.573 0.569 0.483 0.441 0.445 0.557 0.597

Int 0.496 0.487 0.394 0.295 0.326 0.454 0.485

Ship 0.393 0.361 0.288 0.389 0.231 0.370 0.539

Wheat 0.507 0.404 0.288 0.566 0.732 0.262 0.474

Corn 0.310 0.324 0.254 0.168 0.081 0.230 0.298

Avg 0.508 0.513 0.425 0.423 0.372 0.426 0.519

Wt.avg 0.613 0.615 0.547 0.530 0.453 0.516 0.572
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Nearest Neighbor is presented with its Hadamard repre-
sentation, Distance Based Probability is presented with the
cosine measure, Prototype is presented with the tf-idf

representation, the bottleneck Neural Network is also
presented under method 6(b), and the One-Class SVM is
presented with its binary representation using the Radial
Basis as the kernel function. The results show that the
Neural Network (under either representation) is superior to
the other methods. However, the SVM methods turned out
to be quite sensitive to the choice of representation and
kernel in ways which are not well understood. See [17] for
full details on the usage of the SVM methods for this
problem.

4. Combining classifiers algorithms

If one assumes that the different algorithms function
better on different parts of the data, it is reasonable to try a
‘‘high-level’’ combination of the algorithms. In this section,
we performed a few such experiments combining three
algorithms in different ways: the NN under method 3,
the Naive Bayes Algorithm and the Nearest Neighbor
algorithm.
We determined the threshold parameter d for each

algorithm separately. However, in estimating the optimal l
value, we used the F 1 values of the combined algorithm.
Table 13 summarizes the results for combining the Naive

Bayes and the Nearest Neighbor algorithms. Results for
AND (two agree) and OR combination (one agree) are
presented. The AND combination is superior, but it does
not reach the level of the neural networks using method 3
or 6 for acceptance.
Table 14 summarizes the results for combining the

Neural Network (acceptance method 3) with Naive Bayes.
The results show no approvement over the Neural
Network method alone.
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Table 13

Combination of Naive Bayes and Nearest Neighbor algorithms

And Or

F 1 R P F1 R P

Earn 0.731 0.709 0.753 0.681 0.840 0.573

Acq 0.505 0.609 0.431 0.429 0.816 0.291

Money 0.500 0.666 0.400 0.393 0.680 0.276

Grain 0.412 0.425 0.400 0.321 0.392 0.272

Crude 0.488 0.445 0.541 0.259 0.391 0.194

Trade 0.522 0.615 0.453 0.459 0.633 0.360

Int 0.396 0.481 0.337 0.409 0.378 0.447

Ship 0.418 0.348 0.500 0.351 0.364 0.339

Wheat 0.367 0.629 0.260 0.475 0.736 0.351

Corn 0.302 0.413 0.238 0.204 0.516 0.127

Avg 0.464 0.534 0.431 0.398 0.574 0.323

Wt.avg 0.570 0.614 0.548 0.501 0.710 0.402

Table 14

Combination of Neural Networks and Naive Bayes algorithms

And Or

F 1 R P F1 R P

Earn 0.789 0.780 0.799 0.747 0.850 0.666

Acq 0.531 0.544 0.519 0.536 0.601 0.483

Money 0.556 0.625 0.502 0.550 0.612 0.500

Grain 0.454 0.385 0.553 0.427 0.462 0.397

Crude 0.526 0.533 0.519 0.513 0.565 0.469

Trade 0.568 0.568 0.568 0.576 0.625 0.534

Int 0.485 0.524 0.451 0.521 0.500 0.544

Ship 0.365 0.466 0.300 0.335 0.533 0.244

Wheat 0.470 0.489 0.452 0.167 0.682 0.095

Corn 0.332 0.266 0.441 0.332 0.532 0.241

Avg 0.507 0.518 0.510 0.470 0.596 0.417

Wt.avg 0.617 0.621 0.618 0.593 0.682 0.533

Table 15

Combination of Neural Networks and Nearest Neighbor algorithms

And Or

F1 R P F1 R P

Earn 0.797 0.792 0.802 0.762 0.770 0.755

Acq 0.505 0.736 0.385 0.531 0.544 0.519

Money 0.538 0.630 0.469 0.538 0.552 0.524

Grain 0.317 0.317 0.316 0.415 0.394 0.439

Crude 0.446 0.404 0.497 0.526 0.533 0.519

Trade 0.569 0.531 0.613 0.578 0.690 0.497

Int 0.503 0.440 0.588 0.515 0.518 0.512

Ship 0.417 0.507 0.354 0.365 0.466 0.300

Wheat 0.515 0.403 0.714 0.209 0.741 0.116

Corn 0.317 0.434 0.250 0.303 0.380 0.252

Avg 0.492 0.519 0.498 0.474 0.558 0.443

Wt.avg 0.602 0.656 0.582 0.597 0.628 0.582
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Table 15 summarizes the results for combining the
Neural Network (acceptance method 3) with Nearest
Neighbor. The results show no improvement over the
Neural Network method alone.

In Table 16, we summarize the results for combining the
Neural Networks (acceptance method 3), Naive Bayes and
the Nearest Neighbor algorithms. Results for OR (one
agree) combination, Majority combination (two agree) and
AND combination ( three agree) are presented. The only
mechanism to show a somewhat significant improvement is
the majority combination.
5. Discussion

In this paper, we systematically attempted to evaluate
the idea of classification of data by using a trained
compression–decompression scheme. We did this in the
context of document classification. The idea was that the
compression–decompression scheme would be valid only
on documents similar to the training set; hence classifica-
tion of new documents can be done by seeing how well the
scheme works on the document.
One of the major virtues of such a method is that it is

intrinsically a one-class algorithm; i.e. no negative exam-
ples are needed in the training of the compression–decom-
pression algorithm. While the limitation to positive
examples is severe, this limitation is actual in many
applications. (The one we have kept in mind was data
retrieval over the internet.) Of course, we should not expect
retrieval results to be as good as when full negative
information is also available. (See [25] for some discussion
on the relationship between one-class and two-class
learning.)
We implemented the compression–decompression with a

‘‘bottleneck’’ version of the autoencoder neural network.
We did extensive experiments to optimize the size of the
neural network and the parameters of acceptance.
We discovered that performing what we called a

‘‘Hadamard product’’ on the data representation resulted
in a substantial improvement in the results. Intuitively, this
modification emphasizes more frequent words in the
training set at the expense of more infrequent words. A
simple Bayesian explanation for this phenomenon was also
presented.
Extensive experiments were performed using different

methods to determine the acceptance criteria on the filter
(i.e. the ‘‘threshold’’). We found two methods that yielded
good results on the data examined. The first (method 3)
used an analysis of changes in the F1 measure which,
however, requires some negative information (albeit after

the training phase).
The second (method 6(b)) used only positive information

and produced in many ways the best results.
To test the efficacy of our methods we did a series of

comparative studies on the standard Reuters database
using positive information variants of several algorithms
(Nearest Neighbor, Rocchio, Naive Bayes and Distance
Based Probability). For each of these, we performed
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Table 16

Combining Neural Networks, Nearest Neighbor and Naive Bayes algorithms

One agree (OR) Two agree (Majority) Three agree (AND)

F1 R P F 1 R P F1 R P

Earn 0.681 0.840 0.573 0.731 0.709 0.753 0.727 0.709 0.745

Acq 0.518 0.623 0.444 0.531 0.544 0.519 0.517 0.573 0.471

Money 0.547 0.568 0.527 0.544 0.683 0.451 0.558 0.625 0.504

Grain 0.435 0.475 0.401 0.415 0.394 0.439 0.450 0.370 0.577

Crude 0.495 0.563 0.442 0.557 0.533 0.584 0.544 0.505 0.590

Trade 0.574 0.693 0.490 0.589 0.586 0.593 0.579 0.563 0.596

Int 0.524 0.564 0.489 0.516 0.537 0.496 0.485 0.524 0.451

Ship 0.335 0.533 0.244 0.402 0.461 0.357 0.440 0.466 0.417

Wheat 0.525 0.655 0.438 0.543 0.467 0.649 0.462 0.478 0.447

Corn 0.324 0.489 0.242 0.333 0.358 0.311 0.333 0.266 0.445

Avg 0.495 0.600 0.429 0.516 0.527 0.515 0.509 0.507 0.524

Wt.avg 0.571 0.686 0.492 0.598 0.602 0.600 0.593 0.597 0.596
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similar optimization techniques on their parameters.
(These optimization techniques did, in fact, require
negative examples; these negative examples are not used
in the ‘‘training’’ of the methods, but only in setting of e.g.
‘‘thresholds’’. To be fair, in two variants, we used the same
negative examples in setting the threshold of our compres-
sion filter.)

We measured the results using standard measurements
(recall, precision and F1). The results showed that using the
Hadamard representation and the neural network com-
pression–decompression classification scheme had the best
results. Moreover, it seems to be possible to choose the
threshold without the use of any negative examples.

Our experiments seem to indicate that this is a robust
result; thereby recommending this method (6(b)) for
further work.

In some additional work, we saw that using a majority
rule between three of these algorithms allows for some
boosting of the results (both for recall and precision). This
implies that somewhat different information is being used
by the different methods.

The experimental results showed that the kernel auto-
associator can provide better or comparable performance
for concept learning and recognition in various domains
(the Reuter dataset is not used in this study). Thus, this
approach could be considered in order to improve the
performance of our methods applied on textual datasets.
6. Criticism, future work and directions

There are many directions in which we feel this work
could be expanded and improved.

Although we carried out extensive experiments, there are
so many parameters in the various learning procedures that
it was impossible to check all possibilities. Some of our
methodology was heuristic and it should be possible, at
least in some of the cases, to come up with a more
principled approach to the choice of parameters.
For example, although our experimental results with the
Hadamard representation are quite clear, there is no result
which shows that this is an ‘‘optimal’’ representation.
Similarly, our feature selection (the dictionary of key-

words) is a relatively primitive mechanism. A consequence
is the number of vectors with very few non-zero values. (As
noted above, we dealt with this essentially by dealing with
the threshold). Perhaps a sophisticated set of features
would obtain better results.
Another interesting point is that many other works use a

much larger number of features [6] which, at first glance,
makes our choice of 20 seem somewhat unusual. However,
these other works typically use the same features for all
categories, whereas our method chose the most frequent
features for each category separately. Therefore, since our
work involved 10 categories; a more appropriate compar-
ison from our work is about 200 features. However, to
compare we did further experiments allowing the vector
sizes to increase until all words were used. (See the
appendix and Fig. 4). This did increase the accuracy, but
only marginally. In principle, the increased size would
require more training data because of the larger network,
hence such a decision is problem dependent.
We would also like to point out some additional works

that have appeared since the original submission of this
paper. First, the method of this paper has been applied to
produce an intelligent web-browser [18]. This browser
annotates the links on a page with recommendations based
on a model of the user built from one-class information on
the user’s interests.
Second, Raskutti and Kowalczyk [25] has recently

shown that one class methods can be preferable to two
class methods in certain circumstances where the available
information is unbalanced. The experiments there use one-
class and two-class versions of SVM.
Third, we mention that Zhang et al. [35] has suggested a

different kind of autoassociator (a ‘‘kernel autoassocia-
tor’’). In this case an inverse function is constructed to the
projection to kernel space (as in SVMs) instead of being
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Table 17

Number of training/test items

Category Dic size Num train

positive

Num test

positive

Num test

negative

Earn 2270 2765 1081 1701

Acq 3111 1580 703 2079

Money 1965 604 197 2585

Grain 1485 414 148 2634

Crude 1755 380 186 2596

Trade 1716 351 118 2664

Interest 1167 329 131 2651

Ship 858 187 89 2693

Wheat 831 204 72 2710

Corn 739 175 57 2725
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learned in the ‘‘bottleneck’’ neural network as we do in this
paper.

Finally, since support vector machines have recently
given very good results in document retrieval using positive
and negative examples [6] and for now seems to be the most
promising method in many cases. We gave a full
comparative study in a companion paper [17] using a
modification of the method [3] appropriate for positive
information. (Roughly, it works well, but is still not quite
as good as the best NN compression method.) It will be
very interesting to combine the ideas of compression,
Hadamard product and the SVM paradigm in future
research.
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Appendix

In this appendix, we include some additional results,
as well as a more complete Bayesian justification of
the Hadamard product. As an additional check, we also
reran our results using Matlab Neural Network Toolbox
software.

Here are the results of these checks.
(1)
 We reran the tests using a different break between
training/testing (i.e. 75%/25%) to allow comparison
with other work in the literature (e.g. ModApte) [6].
There is no significant difference between these results
and our earlier results. Results are reported in
Table 18. (Table 17 shows the training/testing data
break-down.)
(2)
 We reran the results varying the number of features.
(i) In our earlier results, we chose 20 features under

the influence of [32]. However, using only positive
features we do not have the possibility of
‘‘relevance’’ features as they did. One should note
that these features are subject specific thus a direct
comparison with, e.g. [13,6] is difficult. Roughly,
joining all the features together we used about 200
features.

(ii) In verifying the results using a large number of
features, we see some very minor improvement
continues all the way to ‘‘all features’’. However, it
is relatively small—thus it is application dependent
whether one wants to proceed beyond the
small number of features we chose. Figs. 3 (F 1

values) and 4 (Accuracy results) show results using
a varying number of features with a fixed
number(6) of hidden neurons with the Hadamard
representation.

(iii) There is a phenomenon of a surprising level of
performance using only one or two features. This
has been noticed before by McCallum and Nigam
[19] in this category of information retrieval (i.e.
one keyword does a reasonable job of classifying
articles). We ignore this in our analysis.
(3)
 As mentioned in Section 2, we investigated the use of
‘‘expansion’’ as well as ‘‘compression’’ in an auto-
encoder as discussed in [10]. The bottom line is that
expansion was not useful in this application. Fig. 5
shows typical results of different F1 values using
different numbers of hidden level neurons.
(4)
 Since the data set is appropriate for two-class results as
well, one can compare our results with results obtained
from two class methods to try to see how much is lost
by not using that data. Comparisons with the NN
method in this paper are not exact; however, because it
is an intrinsic one-class method. Dumais et al. [6]
reported results for five two-class methods Find-Similar
(or Rocchio’s method), Naive-Bayes, Bayes-Nets,
Decision Trees and Linear-SVM. Mutual information
was applied to select the most informative features; 300
keywords were chosen for SVMs and Decision Tree
methods while 50 keywords were used for the other
methods. They showed that the micro-averaged per-
formance for the top 10 categories (the same ones we
used with the same splits) for each implemented
method were: Find-Similar 64.6%, Naive-Bayes
81.5%, Bayes-Nets 85.0%, Decision Tress 88.4% and
Linear-SVM 92.0%. Joachim [13] reported results for
five two-class methods: Rocchio’s method, Naive-
Bayes, k-NN, C4.5 decision trees and SVM (POLY
and RBF). Information-gain was used for selection
of the most informative features and the 1000 best
were used. The micro-averaged performance over the



ARTICLE IN PRESS

Method: Autoencoder with back-propagation
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Fig. 4. Accuracy results: varying the number of features with a fixed bottleneck.

Method:Autoencoder with back-propagation
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Method:Autoencoder with back-propagation
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10 categories were: Naive-Bayes 72%, Rocchio 79.9%,
C4.5 79.4% k-NN 82.3%, SVM(poly) 86.0% SVM(rbf)
86.4.
Although these results are not directly comparable with
ours, recall that the best results for the NN was 61.5%
with the top 20 keywords (Table 12) and 67.2% using
all the keywords (Appendix, Table 18). Thus, very
roughly, the loss between the one-class NN and the best
results on the other two-class approaches varies
between 5% and 18% for the various more ‘‘classical
approaches’’ and between 19% and 25% for two-class
SVM methods. One should bear in mind that these
comparisons are over a situation where there is an
excellent sampling of the second class. (See [25] for
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Table 18

Comparison of Neural Networks (Hadamard representation and ‘‘All’’ features), and one-class SVM (Binary representation)—F1 and accuracy with

optimal number of features

Neural Networks method 6(b) All keywords One-class SVM Linear five keywords One-class SVM sigmoid 50 keywords

F 1 ACC F1 ACC F 1 ACC

Earn 0.932 0.944 0.824 0.850 0.807 0.851

Acq 0.938 0.967 0.495 0.580 0.636 0.772

Money 0.610 0.914 0.317 0.795 0.381 0.836

Grain 0.476 0.967 0.249 0.725 0.317 0.822

Crude 0.552 0.913 0.354 0.849 0.361 0.839

Trade 0.556 0.949 0.456 0.908 0.471 0.922

Int 0.424 0.882 0.378 0.891 0.326 0.861

Ship 0.300 0.868 0.357 0.938 0.178 0.791

Wheat 0.610 0.888 0.519 0.959 0.373 0.937

Corn 0.175 0.854 0.345 0.945 0.184 0.860

Avg 0.557 0.908 0.429 0.844 0.403 0.849

Wt.avg 0.672 0.908 0.512 0.844 0.506 0.849
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further discussion on the comparison between one and
two class learning.)
(5)
 Regarding the Hadamard Product, consider the follow-
ing:
Let g be a document, E an interesting example.
Assume

Pðg;EÞ ¼ PðgÞPðEÞ

(i.e. the independence of document and interesting
example—a reasonable assumption) and assume that

Pðg;EjwÞ ¼ PðgjwÞPðEjwÞPðwÞ.
The second assumption shows that the probabilities of g

and E are not quite independent given w but have to be
uniformly adjusted by the probability of w. If the a priori
probability of a word is relatively uniform, then this is
equivalent to the independence of g and E given w.

Under these assumptions we have

Pðg;E;wÞ ¼ Pðg;EjwÞPðwÞ ¼ PðgjwÞPðEjwÞPðwÞPðwÞ.

Hence

Pðwjg;EÞ ¼ Pðg;E;wÞ=Pðg;EÞ ¼
PðgjwÞPðEjwÞPðwÞPðwÞ

Pðg;EÞ

¼
PðgjwÞPðEjwÞPðwÞPðwÞ

PðgÞPðEÞ

¼
PðwjgÞPðgÞPðwjEÞPðEÞ

PðgÞPðEÞ

¼ PðwjgÞPðwjEÞ

which is exactly our defined Hadamard product.
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