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Abstract

Basic learning algorithms and the neural network model are applied to the problem of mesh

adaptation for the finite-element method for solving time-dependent partial differential

equations. Time series prediction via the neural network methodology is used to predict the

areas of ‘‘interest’’ in order to obtain an effective mesh refinement at the appropriate times.

This allows for increased numerical accuracy with the same computational resources as

compared with more ‘‘traditional’’ methods.
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1. Introduction

The finite-element method (FEM) [1,11] is the most effective numerical techniques
for solving various problems arising from mathematical physics and engineering.
Actually, it is the most widely used numerical techniques for solving problems which
are described by partial differential equations (PDEs).
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The time-dependent PDEs arise in modeling numerous phenomena in science and
engineering, and are tend to be divided into two categories: hyperbolic and parabolic
[6]. The hyperbolic PDE is used for transient and harmonic wave propagation in
acoustics and electromagnetic, and for transverse motions of membranes; the basic
prototype of the hyperbolic PDE is the wave equations. The parabolic PDE is used
for unsteady heat transfer in solids, flow in porous media and diffusion problems; the
basic prototype parabolic PDE is the heat equations.
The main idea behind the finite-element method is to reduce a continuous physical

problem with infinitely many unknown field values to a finite number of unknowns
by discretizing the solution region into elements [11]. Then, the values of the field at
any point can be approximated by interpolation functions within every element in
terms of the field values at specified points called nodes. Nodes are located at the
element vertices where adjacent elements are connected. The approximation of the
solution on each element should be consistent with neighboring elements.
Several approaches can be used to transform the continuous physical formulation

of the problem to its finite-element discrete analogue. For PDEs, the most popular
method of their finite element formulation is the Galerkin method [1].
In time-dependent problems, e.g. hyperbolic equations, the areas of ‘‘interest’’, i.e.

the areas with high gradient, are propagated through the domain. Therefore, the
mesh choice should be dynamic and varying with time. For example, when solution
of hyperbolic problems involves a shock wave, which propagates through the mesh
the location of the shock vicinity keeps changing in time. Thus, one wants to have
the mesh more refined around the area of the shock vicinity and less refined
elsewhere. Another example is the problem of fluid flow in a cavity, where flow cells
are generated and undergo continuous changes in their shapes and size as time
proceeds [9].
This means that the mesh adaptation is a crucial part for the efficient computation

of the numerical method. In order to achieve an optimal mesh (one which the
solution error is low relative to the number of nodes in the mesh), the mesh choice
should be dynamic and varying with time.
In current usage, the method is to use indicators (e.g. gradients) from the solution

at current time to identify where the mesh should be modified (i.e. where it should be
refined and where it can be made coarser) at the next time stage. However, this
suffers from the obvious defect that one is always operating one step behind. In other
words, if the areas of interest are propagated, then one may be always refining
behind the most interesting phenomena.
In this paper, we present a new approach for solving the mesh adaptation

problem. Our approach looks at this as a special instance of a control problem and
uses the neural network to solve it in a similar way that such networks have been
used to predict time series (see [16,21,20]).
The neural network is a universal approximator [4,8,12,10,19] that learns from the

past to predict the future values. It receives, in some form, as input the ‘‘areas of
interest’’ at recent times and predicts the ‘‘areas of interest’’ at the next time stage.
Using this predictor we can forecast the position of the ‘‘action’’ and refine the mesh
accordingly.
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The methods and experiments developed in this work are for one and two
dimensional hyperbolic equations (wave equations), but seem naturally extendible to
higher dimensional problems and other time-dependent PDEs.
2. Time series neural networks

Neural networks (NNs) [7,3] are a biologically inspired model, which tries to
simulate the network of neurons in the human brain. The artificial neural networks
consist of simple calculation elements, called neurons, and weighted connections
between them called weights.
The most common NN model is the supervised-learning, feed-forward net-work.

Typically, the feed-forward network contains three types of processing units
(neurons), input units, output units and hidden units, organized in a hierarchy of
layers: input layer, hidden layers and output layer. The data from input layer or
hidden layers are multiplied by the weights associated with a next layer unit and
summed together before processing by the unit.
A neural network can be trained to perform complex functions by adjusting the

values of the connections (weights) between the elements (neurons) according to one
of several training algorithms. Back-propagation is the most popular training
algorithm in which the training data propagated forward through the network and
the output data are calculated. The error between the expected output and
the calculated output is computed. Then a minimization procedure is used to adjust
the weights between two connection layers starting backwards from the output
layer to input layer. There is a number of variations of minimization procedures
that are based on different optimization methods, such as gradient descent [7,3],
Quasi-Newton [18,3] and Levenberg–Marquardt [3,13,14] methods. The forward
and backward propagation are executed iteratively over the training set until a
stopping criterion is met. (For example, when the average squared error between
the network outputs and the desired outputs reaches an acceptable value. The
stopping criteria used in this paper is based on a test set; see the description in
Section 3.2.)
Time series is well suited for data where past values in the series may influence

future values. In this case, a future value is a nonlinear function of its past m values:

xðnÞ ¼ f ðxðn � 1Þ; xðn � 2Þ; . . . ;xðn � mÞÞ: ð1Þ

This means, that it is necessary to fit a function x through its past values in order
to extrapolate this function to the near future.
Since a three layer feed-forward network can approximate any reasonable

function after a suitable amount of training [4,12,10] it can be applied to this
problem, by submitting discrete values of this function to the network. The net is
then expected to learn the function rule by the training algorithm. The behavior of
the network is changed by modifying the values of the weights.
Therefore, we can use the back-propagation network as a nonlinear model that

can be trained to map past and future values of a time series. This method is called
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time series prediction with neural networks and is used in the forecasting of financial
markets [2] (e.g. to predict whether stock market rates will rise or fall).
3. Applying NNs to time-dependent PDEs

For many PDEs critical regions should be subject to local mesh refinement. The
critical regions are the regions for which the local gradient shows bigger changes. In
order to meet this problem, the FEM adaptation process makes a local refinement in
those areas, thus the ensuing mesh may be more gross in the other areas. In time-
dependent problems, the mesh refinement should be dynamic and depends on the
error estimation in each time stage.
In current usage, most of the error estimate methods take into account the

solution gradient; in this work we developed a new approach based on predicting the
future gradient value of the solution and we used this as the refinement criteria.
In dynamic systems such as hyperbolic equations, the areas of interest, i.e. the

areas with high gradient, are propagated through the domain. Therefore, for each
mesh element the future gradient value is influenced by the past gradient values of
the element and of its direct neighbors. In other words, the future gradient value can
be considered as a nonlinear function of its past values. This is a proper time series
problem and the time series neural networks can be used to predict the future
gradient values. Fig. 1 illustrates this concept.
The upper domain in Fig. 1 shows the mesh at time tn�1 and the lower one shows

the mesh at time tn (at this time stage some elements may be refined). The neural
network receives, as input, the gradient of element e and its neighbors e1; e2 and e3 at
time tn�1 and tn: (Should one of these elements be refined at time tn�1 then at time tn
Fig. 1. Using neural networks to forecast future FEM gradient values. Gradient values for the two

previous times and all neighboring elements are used as input to the network.
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Table 1

One dimension examples

Example 1

@2u

@t2
¼

@2u

@x2
; 0pxp10

uð0; tÞ ¼ 0 and uð10; tÞ ¼ 0

@u

@t
ðx; 0Þ ¼ 0 and uðx; 0Þ ¼

1� j1� xj 1pxp2

0 otherwise

�
Time:12, Time step:0.08, Threshold for refinement ¼ 0:08 (gradient)

Method Number of elements L2 error norm L1 error norm

Initial Final Max Average Max Average

NN modifier 10 70 0.15756 0.0869 0.1653 0.1056

Standard modifier 10 70 0.1826 0.1022 0.1914 0.1222

No adaptation 10 10 2.5332 1.0053 3.4708 1.0643

Improvement: L2 error norm ¼ 15%; L1 error norm ¼ 13:6%

Example 2

@2u

@t2
¼

@2u

@x2
; 0pxp25

uð0; tÞ ¼ 0 and uð25; tÞ ¼ 0

@u

@t
ðx; 0Þ ¼ 0 and uðx; 0Þ ¼

exp �ðx�5Þ2

2

� �
0pxp10

0 otherwise

(

Time:25, Time step:0.12, Threshold for refinement ¼ 0:2 (gradient)

Method Number of elements L2 error norm L1 error norm

Initial Final Max Average Max Average

NN modifier 15 98 0.4423 0.1928 0.5190 0.2342

Standard modifier 15 91 0.6671 0.2686 0.8230 0.3142

No adaptation 15 15 1.4622 0.6985 1.6288 0.6456

Improvement: L2 error norm ¼ 28%; L1 error norm ¼ 25%

Comparison between FEMs run with (i) The neural network predictor of the gradient measure.

(ii) ‘‘Standard’’ refinements using the gradient measure. (iii) No adaptation.
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one uses the average of all the children of the original (tn�1) element.) Its output is
the predicted gradient value of element e at time tnþ1:
(Should one of these elements be refined at time tn�1 then at time tn one uses the

average of all the children of the original (tn�1) element.)
Thus there are two steps to our methodology: (a) training the neural network to

predict the indicators (at least) one step in advance and (b) applying the indicators to
the refinement in the FEM solution.
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Fig. 2. The analytic solution of Example 2 of Table 1. Here, domain denotes the interval 0pxp25 where

the given PDE is defined, and uðx; tÞ denotes the PDE solution at time t of the point x.
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In our experiments we examine the numerical results of applying this procedure
using the FEM on different time-dependent PDE problems using different
parameters for the NN algorithm and comparing this with (i) FEM with no
adaptation and (ii) FEM using the ‘‘standard’’ adaptation via the current gradient
indicator.
3.1. Measures of solution quality

To measure the quality of FEM solution, we calculate both of the L2 and L1 error
norm per value in each time stage. (Here u is the analytic solution and uh is the
numerically computed solution.)

L2error=value ¼

P
nodesjuðnodeÞ � uhðnodeÞj

2P
nodesjuðnodeÞj

2
; ð2Þ

L1error=value ¼
maxnodesjuðnodeÞ � uhðnodeÞj

maxnodesjuðnodeÞj
: ð3Þ

The L2 error norm measures the error in the entire solution space (average error),
and the L1 measures the maximum error occurring in the solution.
The analytic solution is very important in order to measure the precise error in

the solution. When the analytic solution of a PDE is not available, we do one
calculation with a very small time step and a very fine constant mesh, and then
we use this solution as a reference to the analytic one. In all cases, we report at
the end of each experiment the average of L2 and L1 error per value over all the
time space.



ARTICLE IN PRESS

0 5 10 15 20 25
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

U
(t

)

0 5 10 15 20 25
-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

U
(t

)

0 5 10 15 20 25
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

U
(t

)

0 5 10 15 20 25
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

U
(t

)

Neural Network Predictor "Standard" Gradient Indicator
Time = 4.800. Elements  Number = 58 Time = 4.800, Elements Number = 57

Time = 9.480, Elements Number = 78 Time = 9.480, Elements Number = 77

Legend:
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Fig. 3. Results from the FEM on a one dimensional wave equation (see Example 2 in Table 1). The left

figures are refined with the NN predictor. The analytic solution is also indicated. The right figures are

refined with the ‘‘standard’’ gradient indicator. Compare the segments of the curves on the left (enclosed

rounded rectangles) with the corresponding ones on the right to see how the NN predictor focuses the

resources in the correct places.
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3.2. Neural network architecture and training

In this study, the MATLAB’s Neural Network Toolbox [5] was used for designing
and training the neural network; and the MATLAB’s Partial Differential Equation
Toolbox [15] was used for defining, and solving the two dimensional PDEs problems.
For one dimensional problems, we used a FEM solver which we developed especially
for our research needs. In the examples tested so far the results are fairly dramatic.
First, using the Levenberg–Marquardt training algorithm [3,17] the training was
both quite swift and exceptionally accurate. Second, the improvement in the FEM
numerical results (as compared with the ‘‘standard’’ gradient adaptive method)
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Fig. 4. The L2 error norm and the L1 error norm displayed over time of Example 2 of Table 1. Other one

dimensional examples show the same general behavior of the error norms over time; in particular, the NN

error results are never higher than the errors generated by a standard modifier.
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reached as high as 25% on some examples; and never fell significantly below the
standard method. (The variance in the improvement depends on the shape of the
wave; and is to be expected. That is, for some waves it is more important to predict
the gradient than others.)
We used two different networks, one for boundary elements and one for interior

elements. The architecture of networks was six input units for boundary elements
network, and eight input units for interior elements networks (corresponding to the
value of the gradient of the element and its two neighbors in the current and previous
times); and for both networks six hidden units (with hyperbolic tan-sigmoid transfer
function), and one output unit (with linear transfer function) that gave the prediction
of the output value. See Fig. 1.
In order to make the training more efficient: (a) we normalized the input

and output data between the values 0 and 1; and (b) we divided the training data
into two disjoint subsets: training set and testing set. The training set is used
for computing the gradient and updating the network weights and biases. The
testing on the validation set is monitored during the training process; as long as the
error decreases, training continues. When the error begins to increase, the net
begins to overfit the data and loses its ability to generalize; at this point the training
is stopped.
To generate training data: (a) we calculated the solution on the initial

non-dynamic mesh over all the given time space; (b) we chose a random
collection of time stages, and used all the elements at each of these time stages
together with their appropriate gradients as training examples. The training data
consisted of more than 800 examples (about 600 for the training set and 200 for the
testing set).
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Table 2

FEM mesh refining and coarsening examples

Example 3

@2u

@t2
¼

@2u

@x2
; 0pxp12

uð0; tÞ ¼ 0 and uð12; tÞ ¼ 0

@u

@t
ðx; 0Þ ¼ 0 and uðx; 0Þ ¼

expðxÞ sinðpxÞ 1pxp2;

0 otherwise;

�
Time:20, Time step:0.09, Threshold for refinement ¼ 2 (gradient)

Method Number of elements L2 error norm L1 error norm

Initial Final Max Average Max Average

NN modifier 30 90 0.4146 0.2678 0.5097 0.3028

Standard modifier 30 90 0.4468 0.2935 0.5891 0.3201

Improvement: L2 error norm ¼ 8:7%; L1 error norm ¼ 5:4%

Example 4

@2u

@t2
¼

@2u

@x2
; 0pxp12

uð0; tÞ ¼ 0 and uð12; tÞ ¼ 0

@u

@t
ðx; 0Þ ¼ 0 and uðx; 0Þ ¼

expðxÞ sinðpxÞ 1pxp2;

0 otherwise;

�
Time:20, Time step:0.09

Threshold for refinement ¼ 2 (gradient), Threshold for coarseness ¼ 0:3 (gradient)

Method Number of elements L2 error norm L1 error norm

Initial Final Max Average Max Average

NN modifier 30 90 0.7155 0.3710 0.5949 0.3478

Standard modifier 30 73 0.7061 0.4085 0.7330 0.3799

Improvement: L2 error norm ¼ 9:1%; L1 error norm ¼ 8:4%
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4. One dimensional wave equations

4.1. Mesh refining

We have run the NN modifier over a variety of initial conditions for the one
dimensional wave equation. In all cases, the NN predictor was extremely accurate.
Training took about 117 epochs to reach the test set stopping criteria for the interior
elements prediction network. (At that time both the training error and the testing
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error were very small—about 0.00024 for the training set.) Results for the boundary
elements were similar.
When applying this modifier to the FEM mesh, the numerical improvement over

the ‘‘standard’’ gradient modifier varied from no significant improvement to an
improvement of more than 25% (both in the L2 error norm and in the L1 error
norm).
For a sample example, where the initial condition of the wave is a Gaussian, see

Example 2 in Table 1. The analytic solution is well known for these types of
problems and it depends on the initial and boundary conditions. The wave splits into
two waves (with the same width but half the height) that travels to the left and to the
right with speed c ¼ 1:When such a traveling wave reaches the edge it turns over and
returns upside down (see Fig. 2). The NN modified solution and the ‘‘standard’’
gradient modifier are displayed in Fig. 3. Observing the areas indicated in the figure,
one can see that applying the NN modifier has caused the mesh to be modified so as
to increase the computational effectiveness. Looking at the refinement markings (in
red or dots on the x-axis); one can see that, as suggested by our theory, the NN is
keeping pace with the development of the solution, whereas the ‘‘standard’’ method
is always one-step behind, which at critical locations causes increased numerical
error.
Since these examples have analytic solutions, we can keep track of the actual

numerical errors of each of the methods. In Fig. 4 we track the errors (both in L2

error norm and in the L1 error norm).
The wave of the analytic solution reaches the edge at time t ¼ 15 (see Fig. 2) and it

starts to turn over and returns upside down. We can see the affect of this clearly in
Fig. 4. At time t ¼ 15 both error measures (L2 and L1) of both methods start to
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Fig. 5. The analytic solution for the wave equation of Examples 3 and 4 (see Table 2).
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Fig. 6. FEM mesh refining and coarsening results. The left figures are modified (refined and coarsened)

with the NN predictor. The analytic solution is also indicated. The right figures are modified with the

‘‘standard’’ gradient indicator. Compare the segments of the curves on the left (enclosed rounded

rectangles) with the corresponding ones on the right to see how the NN predictor focuses the resources in

the correct places.
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increase. Note that while the NN method is better at all times than the ‘‘standard’’
method; during the critical period 15ptp25 there is a very large improvement.

4.2. Mesh coarsening

We can use our NN modifier for refining and coarsening the FEM mesh at the
same time (when the gradient of an element is bigger than a given refinement
threshold we decide to refine the mesh, and when it is less than a given coarseness
threshold we decide to coarsen the mesh). In this section we present two sample
examples with the same wave equation in Table 2. In Example 3, we have used the
NN modifier for refining the FEM mesh and in Example 4 we have used it for both
refining and coarsening the FEM mesh simultaneously.
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Table 3

Two dimension examples

Example 5

@2u

@t2
¼

@2u

@x2
þ

@2u

@y2
; �1pxp1; �1pyp1

uð�1; y; tÞ ¼ 0 and uð1; y; tÞ ¼ 0 for � 1pyp1

uðx;�1; tÞ ¼ 0 and uðx;�1; tÞ ¼ 0 for � 1pxp1

@u

@t
ðx; y; 0Þ ¼ 0 and uðx; y; 0Þ ¼

15xðx þ 1Þyðy þ 1Þ �1pxp0; �1pyp0

0 otherwise

�
Time:3, Time step:0.05, Threshold for refinement ¼ 1 (gradient)

Method Number of elements Average L2 Error Average L1 Error

Initial Final

NN modifier 28 803 0.4057 0.4846

Standard modifier 28 803 0.4314 0.5029

Improvement: L2 error norm ¼ 6%; L1 error norm ¼ 3:6%

Example 6
@2u
@t2

¼ @2u
@x2

þ @2u
@y2

; �1pxp1;�1pyp1

uð�1; y; tÞ ¼ 0 and uð1; y; tÞ ¼ 0 for � 1pyp1

uðx;�1; tÞ ¼ 0 and uðx;�1; tÞ ¼ 0 for � 1pxp1
@u
@t
ðx; y; 0Þ ¼ 3 sinðpxÞ expðsinð p

2y
ÞÞ and uðx; y; 0Þ ¼ arctanðcosð p

2x
ÞÞ

Time:3, Time step:0.08, Threshold for refinement ¼ 2:2 (gradient)

Method Number of elements Average L2 Error Average L1 Error

Method Initial Final

NN modifier 28 246 0.2962 0.3359

Standard modifier 28 232 0.3256 0.3807

Improvement: L2 error norm ¼ 9%; L1 error norm ¼ 11%

Comparison between FEMs run with (i) The neural network predictor of the gradient measure. (ii)

‘‘Standard’’ refinements using the gradient measure.
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Fig. 5 presents the analytic solution of the given wave equation, Fig. 6
presents the NN modified solution and the ‘‘standard’’ gradient modifier for
Example 4.
In both examples we can see that the NN modifier results are an improvement over

the ‘‘standard’’ gradient modifier. In Example 3, we reach an improvement of 8.7%
in the L2 error norm and 5.4% in the L1 error norm (see Table 2). In Example 4, we
can see that the improvement rises from 8.7% to 9.1% (in the L2 error norm) and
from 5.4% to 8.4% (in the L1 error norm). (See Table 2.)
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Fig. 7. The L2 error norm and the L1 error norm displayed over time of Example 5 in Table 3 (a two

dimensional example).
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Comparing the graphs in Fig. 6, we can observe that the NN modifier has placed
the resources in the correct places and this explains the enhancement that we have in
the results.
5. Two dimensional wave equations

We have run our method over a variety of two dimensional wave equations. In all
cases, the NN modifier showed a clear improvement with rates varying from around
2% to 20%. The variance in the improvement depends on the initial conditions (the
shape of the wave and its velocity). In all cases the gradient prediction was extremely
accurate.
Two of these examples are presented in Table 3 where the improvement in the

FEM numerical results were 6% (Example 5) and 9% (Example 6) in the L2 norm,
and 3.6% (Example 5) and 11% (Example 6) in the L1 norm. (From Fig. 7 one can
also see that the error behavior of the NN modifier is better than the standard
method at all times.)
Notice in particular the graphs in Fig. 8. We can see that our method has caused

the mesh to be modified so as to increase the computational effectiveness. Looking at
the refinement markings (encircled near the area near (0,0)), we can see that the
‘‘standard’’ method trails behind our method. (Compare with the analytic graph as
well in the figure.)
Finally, we applied the NN modifier to a PDE which simulates throwing a stone

into the middle of a square lake. In this example, we took the boundary conditions
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Fig. 8. Results from FEM on two dimensional wave equation (see Example 5 in Table 3). The left figures

are refined with the NN predictor. The right figures are refined with the ‘‘standard’’ gradient indicator.
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on the square boundary to be u ¼ 0 and the initial conditions to be zero everywhere
except at one point in the middle where we took u ¼ 1 (which models the stone
hitting the lake at time t ¼ 0).
Throwing a stone into the middle of the lake generates a wave that propagates

outwards and reaches the lake boundary, then it reflects and turns over back to the
interior of the lake. After the initial wave front reaches the boundary a complex wave
pattern is formed due to the difference in geometry between these fronts (circles) and
the boundary (square). Fig. 9 shows the FEM numerical solution of the PDE in
different times. From Fig. 9 we can clearly see that the NN modifier refined the FEM
mesh according to the wave motion.
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Fig. 9. The FEM solution in different times of the PDE that simulates throwing a stone into the middle of

a square lake. The FEM mesh modifications over time show that the NN modifier refined the mesh

according to the wave motion.
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6. Summary

We have implemented a version of a NN modifier for the FEM mesh; designed to
adaptively change the mesh based on a prediction of the gradient. In experimental
work, we have shown that the NN can accurately predict the gradient and applying
this mesh results in a substantial numerical improvement.
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