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Modeling the Process of Rate Selection in Neuronal Activity
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We present the elements of a mathematical computational model that reflects the
experimental finding that the time-scale of a neuron is not fixed; but rather varies with the
history of its stimulus. Unlike most physiological models, there are no pre-determined rates
associated with transitions between states of the system nor are there pre-determined
constants associated with adaptation rates; instead, the model is a kind of ‘‘modulating
automata’’ where the rates emerge from the history of the system itself.

We focus in this paper on the temporal dynamics of a neuron and show how a simple
internal structure will give rise to complex temporal behavior. The internal structure modeled
here is an abstraction of a reasonably well-understood physiological structure. We also
suggest that this behavior can be used to transform a ‘‘rate’’ code into a ‘‘temporal one’’.

r 2002 Elsevier Science Ltd. All rights reserved.
Introduction

Physiological studies have established that
beyond the time envelope of a single action
potential, neurons can demonstrate a huge range
of activity time-scales, extending over several
orders of magnitudes, from tens of milliseconds
to many minutes which are manifested as
temporal regularities.
Recent evidence suggests that the source of

this richness stems from the cellular level (Lowen
et al., 1997, 1999; Tal et al., 2001; Toib et al.,
1998) consistent with the idea that there are
many forms of molecular interactions, each with
its own time-scale (Marom, 1998; Millhauser
et al., 1988).
Nonetheless, the neuronal cell manages to

select the appropriate time-scale for its current
*Author to whom correspondence should be addressed.
E-mail: manevitz@cs.haifa.ac.il

0022-5193/02/$35.00/0
functionality. What is this mechanism of selec-
tion? Can it be effectively modeled?
Current computational models (e.g. the basic

McCullough–Pitts, Perceptron, ‘‘Neural Net-
work’’ school) do not address this question.
More physiological models such as the basic
Hodgkin–Huxley (Hodgkin & Huxley, 1952)
model or more elaborated versions (e.g. Marom
& Abbott, 1994; McCormick et al., 1992) do
have parameters allowing the inclusion of a
limited number of fixed time-scales. This is
standard, since systems in general, and biological
systems in particular, are usually characterized
in terms of a limited set of states and transition
rates. The origin of these states and rates are
usually beyond the scope of such rate-based
models. Thus these models are descriptive, not
explanatory regarding these time-scales in the
sense that the scales are placed in the models by
the parameters and thus there is no attempt at an
r 2002 Elsevier Science Ltd. All rights reserved.
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explanation as to how they might emerge from
natural processing.
In this paper, we describe a computational

model which shows the following.

1. The emergence of different time-scales in an
adaptive fashion can be accounted for by the
assumption of simple interactions between com-
ponents of the neuron. We emphasize that these
interactions do not have pre-described rates in
the model. These components are based on an
abstraction of known physiological facts.
2. These emergent time-scales can be non-

monotonic (hence a fortiori nonlinear) functions
of the history of the cell.
3. This mechanism has potential computa-

tional advantages; relating to (i) detection of
periodic signals and (ii) conversion between
‘‘rate’’ and ‘‘temporal’’ neural codes (Gerstner,
1999).

Our model is deliberately both rather abstract
and simple. This implies that this phenomenon
of history-dependent non-montonic rate selec-
tion rather than being surprising, is to be
expected unless some further mechanism is
imposed to prevent it.

Description of Model

Cellular function is determined by biochemical
reactions which can be abstractly described by
the distribution between states and the rate of
change between these states.
Thus, a change in the behavior of a cell must

be the result of biochemical reactions that
catalyse or impede the rates of other reactions.
Accordingly, the model presented here con-

sists of basic components as an archetypical
abstraction of catalysing and impeding reac-
tions. Each of these components has its own rate
which controls its ability to react to input from
other components. Importantly, this rate is
modifiable by other components.
The inter-relationships between the compo-

nents can be represented by a directed graph;
where each node has an internal structure and
each directed connection has a magnitude.
Each node is a triple /n;m; qS where n is a

nonnegative integer; m is a nonnegative integer
bounded by n and q is either 0 or 1: Each
directed connection in the graph is labeled with
an integer. The integer on the connections
indicates the influence of a predecessor node on
a successor; a positive value increases the
successor’s n value while a negative value
decreases it.
Each node will also have an ‘‘integrating rule’’

which describes how the different influences of
all of its active predecessors are combined to a
total effect. This makes the entire structure a sort
of ‘‘modulating automaton’’.
The intuition is that n sets the rate of reaction;

i.e. by indicating the amount of time steps
required between responses, m is an internal
clock indicating how much time remains until
the next response is possible, and q indicates
whether the reaction is occurring or not. This
structure is represented graphically in Fig. 1.
Informally, the node must be ‘‘ready’’ for

reaction (i.e. m ¼ 0); and be ‘‘triggered’’ (at least
one of its predecessors is active, i.e. has
value q ¼ 1). The modification is then a func-
tional combination of the values on all the
connections from the active predecessors. In
general, we can have a complex interconnection
of such nodes; each affecting and being
affected by others in different signs and magni-
tudes. See Fig. 2.
However, if we assume that each node can

represent an abstraction of a myriad of reactions
at the biochemical level, then we can simplify the
above picture by considering only three such
nodes where only one node can be affected by
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Fig. 2. A typical arrangement of nodes. The magni-
tudes of connections are not indicated in the diagram.
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an external stimulus. (Three nodes are necessary
to allow for balanced effects.)
We call this structure a ‘‘triad’’. The simplest

such triad will have in each node a predecessor
to the other two nodes, one with connection
value þ1 and one with connection value �1: In
addition, an external stimulus affects one node
with connection value 0: Such a non-trivial
arrangement (which is the one we use henceforth
in this paper) is depicted in Fig. 3.8 Table 1 gives
the complete integrating rule for the modifica-
tion of any of the nodes.
8This arrangement reflects the intuition that the sum of
all connection values entering a node should be zero; any
substantial deviation from such a balance would result in
passing to a trivial case. For example, if all connections to a
node were þ1 then n can only increase which eventually
seems as if the node were disconnected from the graph. If
all connections were �1; then eventually it would act as a
simple one-step delay between predecessor and successor
nodes.
Results

SIMPLE PERIODIC INPUT

We first examine the response of the triad to
the simplest periodic stimuli. We use one
member of the triad to ‘‘receive’’ the input; and
we record the state of a different member as the
response, as in Fig. 3. The choice of which
member of the triad is chosen as ‘‘input’’ and as
‘‘output’’ does not affect the time-scales that are
evolved, but can have an affect on the complex-
ity of the perceived generated pattern .
Fig. 4 shows the response to these inputs.
Traces representing the response over time to

one stimulus per period are displayed for periods
1–9. In each case, the response settled down to
cyclic behavior after an initial transient period.
This is the case in all experiments with periodic
input; even with a more complex stimulus
pattern, the balanced triad always settles down
to cyclic behavior.
In each trace, the transient behavior and the

first complete cycle are indicated.
The time-scales of the system are manifested

via the length of the transient, the length of the
cycle, and the internal structure of the specific
spike pattern. Even a superficial examination of
this raw data shows that although the triad
system started in each case from the same initial
conditions with no pre-determined rates, the
time-scales vary substantially. That is, quite



Table 1
Rules of change for standard triad

Event Consequence

Stimulus Timing Timing

External Internal State (q) Wait (n) Remain (m) State (q) Wait (n) Remain (m)
Any Any 1=0 n ma0 0 n m� 1
Yes No 1=0 n 0 1 n n
Any + only 1=0 n 0 1 nþ 1 nþ 1
Any � only 1=0 n 0 1 n� 1 n� 1
Any + & � 1=0 n 0 1 n n
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Fig. 4. Time graph of spike response of triad under different simple periodic inputs.
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different time-scales are determined as a function
of the history of the triad.
Figure 5 shows the evolution of three of the

traces (periods 2, 9, 5) displaying the n values of
a specific element of the triad. Note the
separation of these time-scales over the different
periods; and that these are non-monotonic in
the stimulus period, a fortiori nonlinear. This
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nonmonotonicity can also be seen in the cycle
length, the average ISI response rate inside a
period after transience and the transient length
(see Fig. 4). Note that this non-monotonicity is
an intrinsic aspect of the system as a whole. For
example, if the output is measured from one of
the other two elements, the transience, and cycle
measurements are of course identical. Less
trivially, while the specific ISI pattern varies
substantially between nodes, the non-monotoni-
city of response is retained.
We investigated the stability of the response

by varying both the initial settings of the
individual nodes of the triad (i.e. the n; m and
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Fig. 5. The evolution of rates of neuronal responses
under different periodic inputs (periods 2, 9 and 5).
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Fig. 6. Different ISI responses based on different simple p
from rate codes to pulse or temporal codes.
q values) as well as the complexity of the cyclic
input pattern. The overall picture is not affected
by these parameters. The cycle length, while
having some variance, is quite stable. Moreover,
most variance is reflected in multiples of the
period. The variance of the internal ISI structure
is more complex. However, the output patterns
fall into a limited selection for a given input
frequency.
If we examine a given response cycle, we

see that it further has a structure (i.e. the
complexity of the spike pattern) besides
the cycle length and the average ISI response.
Note that the internal ISI structure varies
substantially between different input frequen-
cies. Figure 6 shows four of these structures
based on different inputs.

COMPLEX PERIODIC INPUTS

It is interesting to see what happens when a
triad is stimulated by a more complex periodic
code (i.e. as opposed to a simple one stimulus per
period). This might happen if the input was the
output of some other triad.
To test this, we stimulated the triad with all

possible periodic inputs with period of up to 8.
The full data set can be accessed at (http://
cs.haifa.ac.il/~manevitz/triad data).
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Overall, there is in fact very little variance in
the output ISI codes. A small sample of the table
of different stimuli with 3 stimulii in a period of
length 8 is given below
Note that: (1) all codes are of output period

32 or 64. (This is true for all stimuli with
period 8, regardless of the number of pulses
in the input as can be seen in the full data set.)
(2) Most of the period 64 codes are simple
padding with 8 s (the period of input) of a
period 32 code. (3) There are extremely few (6)
distinct ISI codes altogether for the entire
approximate 2nn8 set of possible stimuli
inputs. (Approximate because we should
not count stimuli which are actually of period
1, 2 or 4.)
Thus we can think of these codes as ‘‘attrac-

tors’’. The extremely small number of distinct
codes means that such encodings are relatively
robust to noise.
Nonetheless, in rare cases, as can be seen by

the entries marked nn in the table below, which
attractor a stimulus falls into can, in fact, depend
on the initial conditions of the triad. This can be
seen as over the long term, the entries marked nn

are the same cyclic input; the difference occurs
only in terms of where the triad starts in the
cycle. This is equivalent to starting the triad in a
different initial condition.
Stimulii Tran Per ISI

11100000 164 64 8 1 7 8 1 7 8 2 6

10110000 41 32 6 1 7 1 7 2 6 2

10011000 185 64 8 1 7 8 1 7 8 2 6 8

10001100 165 64 8 1 7 8 1 7 8 2 6 8

10000110 166 64 8 1 7 8 1 7 8 2 6 8

10101000 58 32 1 7 2 6 2 6 1 7

10100100* * 31 32 1 4 2 4 1 4 2 3 2 4

10100010 167 64 8 1 7 8 1 7 8 2 6 8

10010100* * 204 64 6 1 4 5 6 1 4 5 6 2

10010010* * 183 64 6 1 4 5 6 1 4 5 6 2

10001010 165 64 8 1 7 8 1 7 8 2 6 8

10000101 166 64 8 1 7 8 1 7 8 2 6 8

Note: * * is a rare example where initial conditions DO

where one starts in the cycle made a difference.
Conclusions, Discussion and Future Directions

In this paper, we have suggested an abstract
mechanism capable of explaining the occurrence
of multiple time-scales in neurons. These multi-
ple time-scales have been observed in in vivo

experiments; yet are not truly addressed in
current computational models of neurons where
the rates do not emerge, but are a part of the
‘‘hard-wiring’’, so-to-speak, of the model.
Our model shows that the simple idea of

multiple reactions inside a neuron, which inter-
act to impede or speed up other reactions can, in
principle, account for this phenomenon. This
shows that a non-rate-based model can evolve
appropriate rates as a result of interactions
between its components and its input. The
simplicity of this idea, means that rather being
surprising, history-dependent rate selection
should always occur unless there is an elabora-
tion of the mechanism to suppress it.
We note that processes of rate selection have

been observed in various neural systems in vivo
Teich et al., 1997, and in vitro Lowen et al., 1997
and in various levels of organizations from
molecular (Toib et al., 1998) to cellular (Tal
et al., 2001) to behavioral (Ebbinghaus, 1885;
Wixted & Ebbesen, 1997). Interestingly, while
this paper was under review, Fairhall et al.
8 2 6
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matter; over the long term the cyclic input is the same, but
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(2001) have demonstrated the rate selection
phenomenon in a specific motion-sensitive neu-
ron in the fly visual system and have analysed
how this selection process serves to optimize
the information encoded in the neural response.
Our model offers a basic insight into such
observations.
This model, which is based on basic physio-

logical considerations, has the following char-
acteristics:

1. It always relaxes to a periodic solution given
periodic input.
2. The nature of such a solution is dependent

on the input period in a non-monotonic (hence,
a fortiori, non-linear) fashion.
3. The solution does not vary much with

changes in the initial conditions of the model.
Note that these points have been observed in real
neurons (Tal et al., 2001; Teich et al., 1997)
Further we noted:
4. The solution is remarkably insensitive to the

internal structure of a periodic input. This means
that one can interpret the system in general as a
frequency detector; wherein it is sensitive to the
lowest frequency in the input.

In addition, we speculate that such a mechan-
ism might have computational consequences. In
particular: (1) it is possible that it could be used
to transform ‘‘rate’’ codes to ‘‘pulse’’ codes
(Gerstner, 1999). In recent years, there has been
much discussion (Softky, 1995; Shadlen &
Newsome, 1994, 1998), supported by physiolo-
gical data, indicating that both forms of
representation occur in the nervous system; a
fact that necessitates the existence of such
functionality. (2) Point (4) above implies that
the system can in fact function as an efficient
period detector. Whether the neural system uses
this capability is unknown.
In summary, we have shown that a system

wherein no pre-determined rates are imposed
can naturally adapt to its inputs by a process of
rate selection. At the end of this adaptation, the
system evolves into a system that is working with
a small fixed set of rate constants. That is, the
constants that are imposed in a Hodgkin–
Huxley style model are in fact generated by the
system itself as a function of its input history.
Partially supported by a U. Haifa–Technion Joint
Research Grant and the HIACS Research Center.
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