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ABSTRACT 

In many applications, the use of Bayesian probability theory is problematical. 
Information needed to feasibility calculate is unavailable. There are different method- 
ologies for dealing with this problem, e.g., maximal entropy and Dempster-Shafer 
Theory. If one can make independence assumptions, many of the problems disappear, 
and in fact, this is often the method of choice even when it is obviously incorrect. The 
notion of independence is a 0-1 concept, which implies that human guesses about its 
validity will not lead to robust systems. In this paper, we propose a fuzzy formulation of 
this concept. It should lend itself to probabilistic updating formulas by allowing heuristic 
estimation of the "degree of independence." We show how this can be applied to 
compute a new notion of conditional probability (we call this "extended conditional 
probability"). Given information, one typically has the choice of full conditioning 
(standard dependence) or ignoring the information (standard independence). We list 
some desiderata for the extension of this to allowing degree of conditioning. We then 
show how our formulation of degree of independence leads to a formula fulfilling these 
desiderata. After describing this formula, we show how this compares with other 
possible formulations of parameterized independence. In particular, we compare it to a 
linear interpolant, a higher power of a linear interpolant, and to a notion originally 
presented by Hummel and Manevitz [Tenth Int. Joint Conf. on Artificial Intelligence, 
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1987]. Interestingly, it turns out that a transformation of the Hummel-Manevitz method 
and our "fuzzy" method are close approximations of each other. Two examples 
illustrate how fuzzy independence and extended conditional probability might be 
applied. The first shows how linguistic probabilities result from treating fuzzy indepen- 
dence as a linguistic variable. The second is an industrial example of troubleshooting on 
the shop floor. 

1. INTRODUCTION 

Changing one's beliefs when new information becomes available is a 
common mode of human reasoning. It is observed in the deliberate 
gathering of pertinent evidence during medical diagnosis, or industrial 
troubleshooting. Less obvious, but equally as effective, beliefs are changed 
by strategically presented evidence in political persuasion, and promises of 
power, wealth, fame, and sexual prowess in marketing. One model of belief 
updating is based on probability theory, and, in particular, the use of Bayes 
Theorem. Conditional probabilities indicate the dependencies between 
new and existing evidence. Often these probabilities are unavailable or 
difficult to obtain. Mitigating the problem, independence may be assumed. 
Since independence is a 0-1 concept, when assumed incorrectly it leads to 
poor estimates of updated beliefs. Different methodologies have been 
developed to deal with this problem. For example, maximum entropy is a 
strategy complementing probability theory to model belief updating [7]. 
The ignorance produced by assuming independence is uniformly dis- 
tributed over the constrained distribution. Alternatively, Dempster-Shafer 
Theory maintains ignorance in the frame of discernment, and uncertainty 
in sets of hypotheses. As new evidence becomes available, it is combined 
with existing evidence using Dempster's Rule [4, 9]. Neither method 
directly addresses independence beyond its binary nature, and both use 
fairly costly updating methods. Assuming independence of evidence simpli- 
fies probability estimation, problem formulation, and computation. On the 
other hand, requiring dependency demands detailed probability estimates 
and more complicated formulation and computation. Updating methodolo- 
gies to work around the independence-assumption problem may ease the 
estimation problem, but at a higher cost in problem formulation and 
computation. In this paper, we present an approach that retains the 
benefits of the independence assumption for estimation, and includes 
dependency information in a less complex and more intuitive way using 
fuzzy independence. 

A notion beyond that of binary independence does not appear to be 
well represented in the literature. Fine [3] reviews conditional probability 
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and independence from several theoretical standpoints. However, he does 
not present any notion of independence beyond that of binary indepen- 
dence. Subjective probabilists embody dependency information in condi- 
tional probabilities [2, 11]. In fact, they axiomize conditional probability as 
a personal degree of belief grounded in decision theory. Also, they give 
guidelines for estimating conditional probabilities and, thereby, estimate 
dependencies. Pearl's work on Bayesian Networks [11] embeds the subjec- 
tive probabilistic approach in graphs. The notion of independence is 
central to the formulation; however, it remains binary in nature. The 
separate, but related, notion of relevance seems closer to the concept we 
are investigating, but it is not developed beyond a qualitative description. 
Hummel and Manevitz [5, 6] offer theoretical work directly addressing 
dependency beyond the concepts of 0-1 independence and conditional 
probability estimates. They approach the problem from a statistical stand- 
point updating information about the mean and covariance of probability 
distributions. They suggest an exponential formulation called a-depen- 
dence, and propose a method to estimate it. 

In this work, we use fuzzy set theory [12] to extend a widely accepted 
probabilistic interpretation of set-theoretic events within a sample space 
[3, 10]. Fuzzy set theory extends the standard concept of set membership 
from discrete {0,1} to continuous [0, 1]. It allows us to vary the significance 
of one event with respect to another by continuously varying its contrast to 
its background. We develop the degree of independence concept, and use 
it to extend conditional probability. We show that extended conditional 
probability satisfies reasonable properties for both unconditional and 
conditional independence. A special case of extended conditional probabil- 
ity is developed, and approximations are offered to simplify computations. 
Finally, we offer two applications, one to linguistic probability and the 
other to industrial troubleshooting. 

We conclude that the relaxation of independence in this way is a new 
concept that captures information that is known to exist, but is often 
ignored, in a direct and uncomplicated manner. Degree of independence is 
a vague and intuitive concept, and values are estimates; therefore, approxi- 
mations that allow simple estimation are appropriate. Extended condi- 
tional probability retains the simplicity of assuming independence, and it 
incorporates dependency estimates in an intuitive way at a relatively small 
cost. 

Section 2 presents conditional probability defined in terms of binary 
independence. In Section 3, properties are presented for the extension of 
conditional probability to include values between those designated by 
standard independence and full conditioning. The failure of a simple 
probabilistic formulation that satisfies the properties, and the success of a 
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fuzzy formulation, are presented in Section 4. Section 5 introduces a 
special case of extended conditional probability, and offers approximations 
that simplify estimation and computation. Applications to linguistic proba- 
bility and industrial troubleshooting are shown in Section 6. Sections 7 and 
8 offer discussion, conclusions, and topics for further research. 

2. CONDITIONAL PROBABILITY AND 
BINARY INDEPENDENCE 

Let A and B be two events in sample space lI. If P(A GB)=P(A). 
P(B), then events A and B are independent. Conditional probability is 
defined as P(AIB)=P(A AB)/P(B). When events A and B are indepen- 
dent, P(AIB)=P(A) [10]. 

If we define u(A, B) as the independence of events A and B, then 

1, if A and B are independent, 
u( A , B ) = 0, otherwise. (1) 

As defined, independence takes only two values, 0 or 1, depending upon 
whether events A and B are independent. This can be called binary 
independence. Subsequently, conditionaI probability can be expressed 

( P(AN_B) 
P(AIB) = I P(B) ' 

if u(A ,B)  =0,  

if u( A ,B)  = 1. 

3. EXTENDED CONDITIONAL PROBABILITY AND 
ITS PROPERTIES 

It can be observed that P(A)= P(A N f~)/P(fl). That means that when 
u(A,B)= 1, then P(AIB)=P(A n ~ ) / P ( f I ) ,  and when u(A,B)=O, then 
P(ADB)=P(ANB)/P(B). It seems reasonable to extend conditional 
probability to include values between P(AOB)/P(B)  and P(AA 
f~)/P(ll). Since these are the extremes of full conditioning and full 
independence, respectively, values for partial conditioning should be 
bounded by them. To include these values, we need to extend the concept 
of independence beyond that of binary independence; we allow values of 
independence to range between 0 and 1, inclusive. Informally, A and B 
can be 0.9 independent. That means that, given information about the 
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independence of A and B, a choice between full conditioning (standard 
dependence) and ignoring information (standard independence) does not 
have to be made. Using this amplified notion of independence, we extend 
conditional probability to P'(AIB), which we shall call extended conditional 
probability (ECP). P'(AIB) should have the following desirable properties: 

I. P'(AIB)=P(A), if u(A,B)= I. 
II. P'(AIB)=P(A nB)/P(B), if u(A,B)=O. 
III. P'(AIB) is bounded by P(A) and P(A NB)/P(B). 
IV-A. If P(A)<P(A AB)/P(B), then P'(AIB) is nonincreasing as the 

independence of A and B goes from 0 to 1. 
IV-B. If P(A)>P(A AB)/P(B), then P'(AIB) is nondecreasing as the 

independence of A and B goes from 0 to 1. 
IV-C. If P(A) = P(A NB)/P(B), then P'(AIB) =P(A) = P(A N 

B)/P(B) as the independence of A and B goes from 0 to 1. 

Properties I and II guarantee that, for the extremes of full conditioning 
and full independence, ECP reduces to the standard definition of condi- 
tional probability, and Property III guarantees that ECP is bounded by 
these extremes. Properties IV-A and IV-B describe the monotonicity of 
ECP as the independence of A and B goes from 0 to 1 depending on 
which case has a larger probability. Property IV-C says that if the full- 
conditioning and full-independence cases are equal, ECP will be that 
value, also, regardless of the independence of A and B. 

4. PROBABILISTIC AND FUZZY FORMULATIONS OF 
EXTENDED CONDITIONAL PROBABILITY 

A simple probabilistic formulation of ECP would be based on increasing 
the size of B as the independence of A and B goes from 0 to 1. As the 
independence of A and B approaches 1, B approaches 12. To expand B, 
elements may be added as full members; B may be expanded by any 
element in 1~ not already in the expanded B. Let C be some set such that 
B c C c 11; it should be the case that 

P(ANB) P(AAC)  P ( A  Af t )  P(ANB) > P ( A ) .  
P(B) > P(C) > P ( n )  , if P(B) 

A similar statement can be made for " <  ." However, given only that 
B c C c 11, the above statement is not always true. A counterexample will 
illustrate that this formulation is not bounded and does not satisfy Prop- 
erty III. Therefore, a simple probabilistic formulation is not possible. 
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Although more elaborate conditions may enable a probabilistic formula- 
tion, it loses a degree of simple, intuitive appeal. 

EXAMPLE 1. Let ~ = { t o  I . . . . .  to10}, A={to  1, w 2, w3}, B={6o~, w3, ~o4, 
tos}; then ANB={tOz,  tO3}. If P(wi)=O.1, 1 < i < 1 0 ,  then P(A)=0 .3 ,  
P(B)=0.4 ,  and P(A AB)=0.2 .  Calculating P(AIB)when A and B are 
fully independent u(A, B ) =  1, and fully dependent, u(A, B)=  0, we get 

(P( A) =0.3, 

P ( A I s )  = P(A riB) 

if u( A,B) = 1, 

if u(A,B) =0.  

Let C={wl ,  w2, w3, to4, tos} , satisfying the condition that B c C c D . ;  then 
it should be true that P(A AB)/P(B)>P(A AC)/P(C)>P(A), since 
P(A NB)/P(B) >P(A) .  However, P(A n C)/P(C) = 0.6, since A N C = 
{tol, tOz, tO3}, P(ANC)=0.3, and P(C)=0.5 .  This means that P(AN 
C)/P(C) is not between P(ANB)/P(B) and P(A). Property III is 
violated. 

It can be further observed that when A and B are independent, 

P ( A  N ~ )  P ( A A B ) + P ( A N B )  
P ( A ) -  P(I)) - P(B) +P(B) 

(2) 

since P(A N ~ ) = P ( A  NB)+P(A AB) and P ( ~ ) = P ( B ) + P ( B ) .  Using 
(1) and (2), we can redefine conditional probability as 

P( A]B) = P( A NB) +u( A,B)P(  A NB) 
P(B) +u(A,B)P(B)  

When A and B are dependent u(A,B)= 0, only the elements in B are 
relevant, limiting the probability of A. However, when A and B are 
independent, u(A,B)=I, B is not relevant, and does not limit the 
probability of A. Elements not in B are considered. 

Let us now define u'(A, B) as the degree of independence of events A 
and B. u'(A,B)~[O, 1], u'(A,B)=Owhen u(A,B)=O, u'(A,B)= 1 when 
u(A,B)-~ 1, and u'(A,B) is monotonically nondecreasing as A and B 
become more independent. The definition is based on the fuzzy extension 
of binary independence to include the values between 0 and 1. 
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Extended conditional probability can now be defined as 

P'( AIB) = P( A NB) +u'( A , B ) P (  A NB) 
P ( B ) + u ' ( A , B ) P ( B )  

(3) 

by replacing u(A, B) with u'(A, B). Using u'(A, B) to weight the proba- 
bility of elements of fl  not in B is a new concept that avoids the prob- 
lem of adding elements with full membership only. [If E is any event of 
which E is a fuzzy subset, a fuzzy event [13], and the membership of all 
elements x of E is uniform, /xg(x)= c, Vx where c ~ [0,1], then P( /~)= 
Ex ~ E i~g(x)P(x) = tz~(x) Ex ~ E P(x) = tz~(x)P(E).] That means that 
u'(A, B)P(A AB) is equal to the probability of a fuzzy subset of A AB, 
where u'(A, B) is the uniform membership of all elements. As u'(A, B) 
approaches 1, P'(AIB) approaches P(A), and as u'(A,B)  approaches 
O, P'(AIB) approaches P(AAB) /P(B) .  The concept is illustrated in 
Figure 1. 

The definition can be interpreted t o  mean that when u'(A,B)=O, 
B stands out against its background B, representing a significant factor 
with respect to A capable of altering P'(AIB) when it changes. When 
u'(A, B)= 1, B blends into the background B becoming 1), insignificant 
with respect to A, and incapable of effecting change. When 0 < u'(A, B) < 
1, B possesses a degree of significance with respect to A; the closer to 0, 
the more significant. When B changes, P'(AIB) is altered to a degree; it is 
dampened by a partial dependence on B. 

f~ 

(a) 

1 . 0  - • ,iAna BI 
I I 
I I 

(b) 

Fig. 1. (a) Probability space 1~ containing events A and B. (b) Membership view of 
events A and B in probability space II. The hatched region shows the fuzzy subset of B 
with uniform degree of membership u'(A, B). 



144 M . E .  HOFFMAN ET AL. 

Theorem 1 shows that the fuzzy formulation of ECP expressed by (3) 
satisfies the properties I through IV-C above, making it a valid formula- 
tion. 

THEOREM 1. Extended conditional probability as expressed in (3) satisfies 
properties I through IV-C. 

Proof. (1) Properties I and II are easily proven by substituting the 
appropriate value, 0 or 1, for u'(A, B). 

(2) When P(A)<P(A NB)/P(B), then the ratio P(AAB) /P(B)< 
P(A AB)/P(B). As u'(A,B) increases from 0 to 1, the ratio contributes 
an increasingly larger amount to (3), causing P ' (A I B) to be monotonically 
nonincreasing. Property IV-A is satisfied. A similar argument proves Prop- 
erty IV-B where the ratio is reversed, and P'(AIB) is monotonically 
nondecreasing. When P(A) = P(A n B)/P(B), the ratio P( ,4 N B ) /  
P(B)=P(AAB)/P(B) .  Since the ratio always contributes equally to 
the numerator and denominator, P'(AIB) remains constant. Property 
IV-C is satisfied. 

(3) Property III is implied by Properties IV-A and IV-B. 

The preceding discussion and theorem pertained to the extension of 
conditional probability P(AIB)based on the unconditional independence 
of A and B. Unconditional independence and conditional independence 
are not the same; one may exist without the other [6, 11]. However, the 
conditional probability P(AIB, C) can likewise be extended. In this case, 
conditional independence is the independence of A and B given C. If we 
again use u(A, B) to, in this case, express the conditional independence of 
A and B, conditional probability P(AIB, C) can be expressed as 

P(AIB,C) = 

' P( AIC), if u( A ,B)  = l, 
P ( A n B n C )  

P ( B n C )  , i fu (A ,B)=O.  

Similar to the previous observation concerning P(A), it can be observed 
that 

P(AIC) = P(A n c n,o.) _ P(A n C n  ( B u B ) )  
P (C  fl 9,) P(Cn(Bu )) 

P ( A  ABnC) + P ( A  nBnC) 
e(BnC) +e( nC) 
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This means that conditional independence can be redefined using u(A, B): 

P( AIB,C) = P( A N B A C )  +u( A ,B )P(  A N B N C )  
P( BAC)  +u( A ,B)P(  BNC) 

Using degree of independence u'(A, B) in place of binary independence, 
we can now define extended conditional probability under conditional 
independence: 

P'( AIB,C) = P( A N B N C )  +u'( A ,B)P(  A N B N C )  
P( BNC) +u'( A ,B )P(  BAC)  

(4) 

We see that (3) and (4) have the same form. As a result, (4), expressing 
extended conditional probability under conditional independence, satisfies 
Properties I through IV-C. 

THEOREM 2. Extended conditional probability as expressed in (4) satisfies 
properties I through IV-C. 

The proof of Theorem 2 is similar to that of Theorem 1. 

5. ABSOLUTE EXTENDED CONDITIONAL PROBABILITY 
AND ITS APPROXIMATIONS 

A special case of conditional probability P(AIB) occurs when B ___A. In 
this case, A NB =B, and when A and B are not independent, P(AIB) = 1. 
However, if A and B are independent, it still holds that P(AIB)=P(A). 
Under these conditions, we define PA(AIB) as absolute conditional proba- 
bility. Employing the standard definition of independence, absolute condi- 
tional probability assumes the values 

1, if u( A ,B)  =O, 
PA( AIB)= P( A), if u( A , B ) =  l. 

If, instead, we use degree of independence, then absolute extended condi- 
tional probability (AECP) under unconditional independence, as derived 
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from (3), is 
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Pj( AIB) = P( B) +u'( A , B ) P (  A NB) 
P( B) +u'( A , B ) P (  B) (5) 

AECP requires knowing P(B) and P(A n B). More extensive probabili- 
ties are required when dealing with conditional independence. Therefore, 
approximations based on limited and accessible information, such as the a 
priori probability P(A), would be helpful. Here we present two parameter- 
ized formulas to approximate the form of AECP, where m is a scaling 
parameter. 

1. Exponential Degree of Independence (EDI) (based on a generaliza- 
tion of a formula presented by Hummel and Manevitz [5]) 

P~( AIB) = P ( A )  "'(A'B)m (6) 

for unconditional independence, and 

P~( AIB, C) = P(AIC) ~'(A,B) m 

for conditional independence. 
2. Linear Degree of Independence (LDI) 

P)( AIB) = 1 - u'( A, B) m [1 - P (  A)] (7) 

for unconditional independence, and 

P~( AIB,C) = 1 - u ' (  A , B ) m [ 1 - P (  A]C)] 

for conditional independence. 

When m =0.5, EDI fairly closely approximates AECP. When m = 1, 
LDI does not closely approximate AECP; however, it does have the simple 
intuitive appeal of a linear relationship. Figure 2 compares the AECP, (5), 
with the two approximations, (6) and (7), based on P(A) = 0.3, P(B) = 0.2, 
P(A AB)=0.1,  and P(B)=0.8.  
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Pr(AIB) vs. Degree of Independence 
1.2 

a b c d e 

m. 0.8 " ,  ', 

~ 0 . 6  

0.4 

0.2 I I I I I I I I I I I I I I I I I I I I I 

0.000 0.2oo 0.40o 0.600 0.800 1.000 
degree of  independence 

- -  (a) EDI (m=0.5) .... (b) AECP - -  (c) LDI (m=0.5) 

- -  (d) EDI (m=l)  (e) LDI (re=l) 

Fig. 2. A comparison of absolute extended conditional probability and approximations. 
P(A)=0.3, P(B)=0.2, P(A n/~)=0.1, and P(B)=0.8. 

6. APPLICATIONS OF EXTENDED CONDITIONAL 
PROBABILITY 

6.1. LINGUISTIC INDEPENDENCE 

Extended conditional probability takes a single point numeric value 
based on a precisely designated value for degree of independence. For 
example, the degree of independence of A and B may be determined to 
be 0.3, i.e., u ' ( A ,  B ) =  0.3. However, independence is not a precise con- 
cept; it has "a vague and intuitive sense" [8]. It is more reasonable to 
express degree of independence as about 0.3 or sort of  independent, 
capturing the vagueness and intuitivity. If, instead of a single point nu- 
meric value, degree of independence is a linguistic variable taking a 
linguistic value, such as more_or_less_independent, then degree of 
independence is defined by a fuzzy set over [0,1]. For example, 
more_or_less_independent may be defined as in Figure 3. Using degree of 
independence as a linguistic variable, ECP becomes a linguistic probability 
[14]. 

EXAMPLE 2. Let P (A)=0 .3 ,  P (B)=0 .2 ,  P ( A A B ) = 0 . 1 ,  and P ( B ) =  
0.8. Also, let degree of independence be a linguistic variable with the 
linguistic value independent. For simplicity, independent is defined dis- 
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1 

o 8  

0.4 

0.2 

0 I I I 

0 0.25 0 5  0.75 1 

degree of i ~  

Fig. 3. The  linguistic value more  or  l e s s_ independen t  for the linguistic variable 
degree of independence. 

cretely as 5 '(A, B) = 0.25/0.7 + 0.5/0.8 + 0.75/0.9 + 1.0/l.0, rather than 
as a continuous distribution. Using (5), we can calculate the linguistic 
probability/5~(AIB). The degree of membership of each probability calcu- 
lated is the membership of the corresponding degree of independence in 
independent since the other probabilities are crisp numeric values; i.e., 
they have a degree of membership equal to 1. When the degree of 
independence is 0.7, u'(A, B ) =  0.7, the AECP is calculated as 

P~(A[B) = 0.2+ (0.7)(0.1) 
0.2 + (0.7)(0.8) = 0.36, 

where the degree of membership of the result is 0.25, the membership of 
degree of independence 0.7 in independent. The AECP is calculated 
similarly for the other members of independent. The resulting fuzzy AECP 
is /5~(AIB) = 0.25/0.36 + 0.5/0.33 + 0.75/0.32 + 1.0/0.30. 

The calculation can also be done using linguistic probabilities for any or 
all of the other probabilities_ For example, P(A) = 0.3 may be replaced by 
the linguistic probability "P(A) is improbable," where improbable is a 
linguistic value o f /5 (A)  represented by a fuzzy set over [0,1]. Calculations 
are performed using values from the cross product of the linguistic values. 
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The membership in the resulting ECP is the minimum of the membership 
of the values used in the computation. If the same probability results more 
than once with distinct memberships, the maximum membership is se- 
lected. 

6.2. AN INDUSTRIAL EXAMPLE OF BELIEF UPDATING 

Numeric- and linguistic-valued ECP may be used in probabilistic updat- 
ing formulas based on heuristic estimates of degree of independence. A 
widely used method for probabilistic updating is based on Bayes Theorem. 
Given the probabilities P(H), the a priori probability of hypothesis H, 
P(E), the a priori probability of evidence E, and P(EIH), the conditional 
probability of evidence E conditioned on hypothesis H, we can calculate 
the a posteriori probability P(HIE) of hypothesis H given evidence E: 

P( HIE) = P( EIH)P( H) 
P(E) (8) 

More realistically, we may want to determine the probability of a hypothe- 
sis based on more than one piece of evidence. In a diagnostic process, we 
attempt to confirm or eliminate hypotheses by gathering evidence that is 
combined with existing evidence. If the probability of the hypothesis drops 
to zero, or below a threshold, it is eliminated. Likewise, if the probability 
increases to unity, or above some upper threshold, then the hypothesis is 
accepted. 

A version of (8) which incorporates two sets of evidence, E~ and E:,  is 

P( H]E1,E2) = P( E1, E2IH)P( H) 
P( E1,E2) 

This can be easily transformed into 

P( HIE,,E2) = P( E2IE,,H)P( E~IH)P( H) 
P( E~, E 2 ) (9) 

If we assume the conditional independence of E 1 and E2, either because 
we believe them to be truly independent, or to apply the principle of 
maximum entropy where ignorance is evenly distributed [1, 7], then (9) can 
be reduced to 

P(HIE~ E2)=  P(E2]H)P(EI[H)P( H) 
' p(E1,E2) 
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Unfortunately, standard independence is a 0-1 concept, leaving full condi- 
tioning or full independence as the only options. Convergence to a true 
probability occurs only by adjustment after making erroneous guesses, and 
ignoring any information about the degree of independence. Incorporating 
ECP as it pertains to conditional independence, we can modify (9) to 

p( HtEl ' E2 ) = P'( E2[H)P( EIlH)P (H) 
P( E1,E2) 

(10) 

Depending upon what probabilities are known, one of the previously 
developed methods can be used to determine P'(E2IH). A similar ap- 
proach has been presented by Hummel and Manevitz [5, 6]. 

These concepts are illustrated by an industrial example regarding shop 
floor troubleshooting. In this example, we will demonstrate how degree of 
independence and extended conditional probability can utilize information 
to improve the process of troubleshooting (diagnosing) a problem with a 
product during the manufacturing process. 1 In the example, we will be 
selecting between hypotheses H 1 and H 2 based on combinations of 
evidence El, E2, and E 3. A brief description of the product and the 
problems will help to clarify the example. 

The product being diagnosed is a pressure instrument which operates 
using a piston in a bore. As the pressure increases, the piston moves in the 
bore proportional to the amount of pressure applied. Resistance to the 
pressure is supplied by a spring that can vary in linear rate to cover 
different pressure ranges; for example, one spring may provide a maximum 
pressure of 15 psi, while another may provide a maximum pressure of 30 
psi. The linear motion of the piston in the bore is translated to rotational 
motion, which indicates the displacement of the piston in the bore by the 
amount of rotary motion as indicated by a pointer against a graduated dial. 
The link between the piston displacement and the rotary motion is 
provided by magnetic attraction; a magnet on the piston attracts a pole of 
a diagonally polarized rotary magnet. This configuration indirectly mea- 
sures the pressure applied to the piston. The dial graduations indicate 
the applied pressure, and are determined by a calibration process. (See 
Figure 4). 

~Although this illustration is taken from actual cases, and attempts to maintain a 
level of reality, it is merely an illustration to demonstrate how degree of independence, 
and extended conditional probability, may be applied. 
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Fig. 4. Illustration of the pressure instrument. 
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Within the configuration, several problems may arise; we will illustrate 
two here. Because the component parts are manufactured, they fall within 
a prescribed tolerance. That means that the spring used may vary in rate 
and length from nominal values. Also, the piston which contains a pocket 
to capture the spring, and the mating pocket at the stationary end of the 
bore, may vary in depth. To adjust for these variations within the manufac- 
turing process, stacking shims are used under the spring in the piston 
pocket. Two problems may arise that cause the calibration of the products 
to be difficult or impossible. First, the spring rate may be incorrect for the 
prescribed pressure range of the product, H~, or, second, the amount of 
stacking shims may be incorrect, H 2, overcompensating or undercompen- 
sating for manufacturing variations. 

A troubleshooter will gather evidence from the behavior of the product 
during calibration. Three possible pieces of evidence are listed here. First, 
the pointer does not begin to register movement until well after the 
pressure indicated by the first graduation on the dial is applied (El). 
Second, the pointer stops before, or at, the last graduation, not allowing a 
prescribed amount of pointer movement (overtravel) beyond the last 
graduation (E2). Third, the pointer does not smoothly travel across the dial 
as pressure is steadily applied to the piston (the pointer is jumpy) (E3). 
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By examining the configuration, it can be seen that E~ and E 2 a re  fairly 
dependent, meaning that although they may occur independently, they 
tend to occur together, whereas E 1 and E 2 are almost completely indepen- 
dent of E 3. These assessments are based on the experience of trou- 
bleshooters with these products. Also, the reasons for these judgments 
involve more than the two hypotheses considered here; however, for 
simplicity, we will continue to restrict ourselves to H l and H 2. From the 
experience of the troubleshooters, the following assessments have been 
made about the degree of independence of E 1, E 2, and E3: u'(E2, E 1) = 0.1 
and u'(E3, E l ) =  0.9. It should be noted that the degree of independence is 
not necessarily symmetrical, u'(E~,E 2) may not equal u'(E2,E l) [5]; 
however, this consideration will be ignored in this example. 

We will use a variation of (10) that measures the likelihood L of H 1 
versus H 2 based on the evidence: 

L = P(HllE"E2) - P'(EzlH')P(EIlH1)P(H1) 
P(H21E~,E2) P'(E2]H2)P(E~IH2)P(H2) " 

(11) 

Notice that P(E 1, E:)  appears in both the numerator and denominator, 
canceling in (11). In this form, if H 1 is more likely (has a higher probabil- 
ity) than H 2, L is greater than 1. The opposite is true if L is less than 1, 
and they are indistinguishable if L equals 1. Economic or risk factors are 
not included in L. To use (11), we will also need the probabilities for the 
right side; here again we will rely on the judgment of experienced trou- 
bleshooters: 

P(EIlH1) =0.6,  

P(E2]H,) =0.7,  

P( E31H ,) = 0.05, 

P(EIlH2) = 0.8, 

P(E21H2) = 0.5, 

P(E31H2) =0.1,  

e(/-/,) =0.4, 
P(H2) =0.6. 

Using (11) and the EDI approximation with m = 1 to calculate the likeli- 
hood of H 1 versus H 2 based on E 1 and E2,  w e  obtain the following result: 

L = P(HllEI' E2) = (0"7)°'1(0"6)(0"4) = 0.51. 
P(H21E,, E2) (0.5)°'1(0.8)(0.6) 

If standard independence is assumed instead of degree of independence, 
ignoring the known dependency between E 1 and E2, then L = 0.71. When 
full conditioning is assumed, L =0.50. Full conditioning, u'(E2,E1)=O, 
means that E 2 adds no new information. This shows that including the 
information concerning the dependency of E 1 and E 2 does change the 
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likelihood, in fact, showing greater confirmation for H 2. Similarly, we can 
calculate the likelihood of H~ versus H 2 based on E~ and E3: 

Z = P(HIIEI '  E3) = (0"05)09(0"6)(0"4) = 0.33. 
P(H2IE1, E3) (0.1)°9(0.8)(0.6)  

Assuming standard independence, L = 0.25, and assuming full condition- 
ing, L = 0.50. As expected, the likelihood based on a degree of indepen- 
dence of 0.9 is closer to that of standard independence. 

As indicated earlier, independence is a vague and intuitive concept. It 
would seem likely that an experienced troubleshooter might have difficulty 
giving a precise numeric value for the degree of independence of evidence 
E l and E 2. She may be more comfortable providing a vague assessment 
like highly dependent or slightly independent. If this is the case, we can 
calculate the likelihood ratio, which will result in a fuzzy set, based on 
degree of independence being a linguistic variable. If we, for convenience, 
use a discretized fuzzy set to represent the linguistic value highly depen- 
dent, it may take the following value: 1.0/0.0 + 0.67/0.1 + 0.33/0.2. The 
calculation would again be carried out using (11)with the EDI approxima- 
tion with m = 1, but instead of a numeric value for degree of indepen- 
dence, the linguistic value fi'(E2,E 1) is used. L is the fuzzy likelihood 
ratio: 

L 15(HI[E1'Ez) = (0"7)a'~E2'E')(0"6)(0"4) 

tS(H21E,, E2) (0.5) a'~E2'E0(0.8) (0.6) " 

The calculation is performed in the same manner as when a numeric 
degree of independence is used; however, all possible combinations of 
degree of independence are calculated. For this example, the degree of 
membership is the minimum membership of the degrees of independence. 
For example, if u'(E2, E 1) = 0.1 in the numerator and u'(E 2, E l ) =  0.2 in 
the denominator, then L = 0.55, and the membership of L in L is 0.33, 
the minimum of 0.67 and 0.33, the membership of 0.1 and 0.2 in fi'(E2, El), 
respectively. Performing the calculation for all combinations of fi'(E 2, E I), 
and taking the maximum when duplicates occur, 

/~ = 0.33/0.47 + 0.67/0.48 + 1.0/0.50 + 0.67/0.52 

+ 0.33/0.53 + 0.67/0.54 + 0.33/0.55 + 0.33/0.57. 

The result indicates that the likelihood ratio ranges from 0.47 to 0.57 with 
varying degrees of membership, with 0.50 having the maximum member- 
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ship of 1.0. Although this result may not change the decision that H 2 is the 
correct decision based on the evidence, it does give the more realistic 
representation based on the vagueness of the information. It provides 
information about the distribution that may be significant, especially when 
the ratio is near 1. 

7. DISCUSSION 

In this paper, we investigated the notions of fuzzy independence (degree 
of independence) and extended conditional probability. In presenting the 
results in this paper, we have made some assumptions. Most fundamen- 
tally, we assumed that independence can be usefully estimated. We 
believe the assumption to be correct for two reasons. First, doctors (and 
others diagnosing problems) are able to make estimates within environ- 
ments where dependencies most certainly exist. Putting our faith in their 
ability to make correct diagnoses is an implicit acknowledgment that these 
dependencies are included in their estimates, and that they are correct. It 
should be obvious that rigidly assuming independence would often lead to 
disastrous results. Second, subjective probabilists make the same assump- 
tion about the ability of individuals to make estimates of conditional 
probabilities [2, 11]. They claim that independence estimates are contained 
in the conditional probability estimates. This implies that dependencies are 
themselves susceptible to estimation. Beyond the validity of the assump- 
tions, guidelines or methods for degree-of-independence estimation need 
to be studied. 

We developed absolute extended conditional probability in Section 5 
based on the condition that Bc_A. In this case, the values of P'(AIB) 
range between P(A) and 1. The assumption is that as the dependency 
increases, the probability approaches 1. However, the opposite may be the 
case; as the dependency increases, the probability may approach 0. Here 
A A B = Q; the events are disjoint. A development similar to absolute 
extended conditional probability can be made leading to approximations, 
also. Because it is a separate development, a function that covers both 
cases may be discontinuous. Hummel and Manevitz [5] presented a contin- 
uous function for their a-dependence that treats the positive correlation, 
our absolute extended conditional probability, exponentially such that 
0 < a < 1. Our EDI approximation is based on this. A negative correlation 
is indicated by a > 1. To represent full negative dependency, a = ~. We 
would prefer a representation method consistent with positive dependency, 
ranging from 0 to 1, rather than from 0 to ~. 

Both the cardinality of B and the probability of B may vary under the 
condition that B cA.  B may approach A in both cardinality and probabil- 
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ity, or may approach the null set and zero, respectively. In each case, the 
form of P'(AIB) may vary. We need to study some questions concerning 
the variation in greater detail. Are the cases where B approaches A, or 
the null set, significant? If so, how should they be approximated? If not, 
what is a significant event B with respect to A? Is there some average that 
suffices for all estimates ignoring variations in B? 

8. CONCLUSION 

Our formulation of fuzzy independence and extended conditional prob- 
ability is a new approach based on fuzzy set theory. It establishes the 
significance, or relevance, of new evidence based on its distinguishability 
from the background--its ability to change beliefs based on existing 
evidence. It satisfies properties that capture the nature of nonbinary 
independence. These properties were determined from observations about 
the nature of conditional probability based on binary independence, and 
reasonable assumptions about its behavior when independence goes be- 
yond a 0-1 concept. Since full independence and full conditioning (depen- 
dence) represent the extremes of independence, it is natural that any 
notion of partial independence varies between them. Also, that a corre- 
spondence exists, when partial dependencies are observed; that ones 
deemed more independent tend toward full independence, and ones 
deemed more dependent tend toward full conditioning. 

Independence is a vague and intuitive concept. Methods exist to esti- 
mate mathematically its nature; however, data is required for the analysis. 
It may be difficult to obtain a large enough, or representative, sample for 
proper analysis. In more complex cases, ones that tend to occur in real 
applications, the number of dependencies may become very large, mitigat- 
ing against effective analyses. Subjective probabilists prefer estimates 
(personal probabilities) of conditional probabilities that contain estimates 
of dependence. Constrained by binary independence, they must provide 
estimates for all conditional probabilities required in the calculation, or 
assume independence, simplifying estimation and computation but ignor- 
ing partial dependencies. Our formulation of extended conditional proba- 
bility recognizes degree of independence as a significant concept, admit- 
ting estimation, and incorporating it into its calculation. Information that 
has previously been lost of difficult to estimate can now be effectively 
used. Since degree of independence is approximate in nature, approxima- 
tions that allow efficient estimation are appropriate. 

Extended conditional probability is an alternative that compares favor- 
ably to conditional probability limited by binary independence; whereas 
assuming independence simplifies estimation and computation, it ignores 
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valuable information about dependencies that may lead to incorrect re- 
suits. For example, assuming that P(E21E1, H ) = P ( E 2 1 H )  by assuming 
conditional independence simplifies the estimate to conditioning on H 
only; however, the potentially significant effect of partial dependency on 
E 1 is lost. On the other hand, by including full conditioning, the effect of 
E1 and H on E 2 is much more difficult to estimate. Extended conditional 
probability keeps the estimation simple; estimating the degree of indepen- 
dence of E 1 and E2, and applying it to P(E2LH).  Dependency information 
is not lost, and the estimates are more robust. 

To summarize, we believe fuzzy independence and extended conditional 
probability are significant concepts, and will lead to the development of 
useful tools and stimulate further theoretical development in belief updat- 
ing. 
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