
Microcomputers in Civil Engineering12 (1997) 233–250

Finite-Element Mesh Generation Using
Self-Organizing Neural Networks

Larry Manevitz∗, Malik Yousef

Department of Mathematics and Computer Science, University of Haifa, Haifa, Israel

&

Dan Givoli

Faculty of Aerospace Engineering, Technion-Israel Institute of Technology, Haifa, Israel

Abstract: Neural networks are applied to the problem of
mesh placement for the finite-element method.When the finite-
element method is used to numerically solve a partial dif-
ferential equation with boundary conditions over a domain,
the domain must be divided into “elements.” The precise
placement of the nodes of the elements has a major affect
on the accuracy of the numeric method. In this paper the
self-organizing algorithm of Kohonen is adapted to solve
the problem of automatically assigning(in a near-optimal
way) coordinates from a two-dimensional domain to a given
topologic grid(or mesh) of nodes in order to apply the finite-
element method effectively when solving a partial differential
equation with boundary conditions over that domain.

One novelty of the method is the interweaving of versions
of the Kohonen algorithm in different dimensions simultane-
ously in order to handle the boundary of the domain properly.

Our method allows for the use of arbitrary types of two-
dimensional elements(in particular, quadrilaterals or mixed
shapes as opposed to just triangles) and for varying desired
densities over the domain. (Thus more elements can be placed
automatically near “areas of interest.”)

The methods and experiments developed here are for two-
dimensional domains but seem naturally extendible to higher-
dimensional problems. The method uses a mixture of both
one- and two-dimensional versions of the Kohonen algo-

∗ To whom correspondence should be addressed.

rithm, with an improvement suggested by Tabakman and Ex-
man, and further adapted to the particular problem here.
Experimental results comparing this algorithm with a well-
known two-dimensional grid-generating system(PLTMG)
are presented.

1 BACKGROUND OF THE APPLICATION

The finite-element method (FEM) is a computationally inten-
sive method for solving partial differential equations. Effec-
tive use of the method requires setting up the computational
framework in an appropriate manner, which typically requires
expertise.

In more detail, when applying the FEM to a given do-
main, one has to divide the domain into a finite number of
nonoverlapping subdomains (elements). (In two dimensions,
the elements are usually triangles or quadrilaterals.) One also
has to define a finite number of nodes, which are the vertices
of the elements, and possibly other points as well. The col-
lections of elements and nodes (and the connections among
them) constitutes the finite-element mesh, whose quality is
an essential ingredient in achieving accurate and reliable nu-
meric results for all finite-element codes. The computational
cost of generating the mesh may be much lower, comparable,
or in some cases higher than the cost associated with the nu-
meric solver of the partial differential equations, depending

© 1997Microcomputers in Civil Engineering. Published by Blackwell Publishers, 350 Main Street, Malden, MA 02148, USA,
and 108 Cowley Road, Oxford OX4 1JF, UK.

234 L. Manevitz, M. Yousef & D. Givoli

on the application and the specific numeric scheme at hand.
See, for example, ref. 2 for details.

To achieve a high-quality mesh, one has to (1) decide on
the appropriate size and topology of the mesh, (2) decide how
it should be placed on the domain, and (3) afterwards make
decisions regarding the organization of the data on the mesh
that have an affect on the ease of computation. Each of these
areas requires expertise.

In this paper we apply the methods of neural networks,
in particular, self-organizing neural networks, to the automa-
tion of the second of these problems, i.e., given the number
of nodes and the mesh’s topology, deciding how to place the
mesh on the domain in such a way as to optimize the produc-
tivity of the finite-element method. (For work concerning the
third point, i.e. efficient numbering of the nodes, see ref. 5.)

The density of the mesh affects the accuracy of the finite-
element results. A finer mesh would give more accurate solu-
tions but also would necessitate a larger computational effort.
Thus the actual density of the mesh used in a certain compu-
tation is a compromise between accuracy and cost. The main
parameter that controls the density of the mesh is called the
mesh parameter; this is roughly the size of the largest ele-
ment in the mesh. Of course, the density of the mesh should
not necessarily be uniform. The mesh may be finer in some
regions and coarser in others.

The problem of generating and placing a mesh, say, in two
dimensions, is not merely a problem of dividing a given area
into nonoverlapping triangles and/or quadrilaterals of a given
maximum size. This is so because finite-element meshes must
have certain properties in order to be acceptable for compu-
tation. The following guidelines are considered standard. In
stating them, we refer to the two-dimensional case for sim-
plicity.

1. The mesh should be finer in regions where the solu-
tion is believed to be changing rapidly or to have large
gradients. Thus smaller elements should be used near
singularity points such as reentrant corners or cracks,
near holes, near small features of the boundary, near the
location of rapidly changing boundary data, at and near
inhomogeneities, etc.

2. All elements should be well proportioned. The aspect
ratio of the element (namely, the ratio between its largest
and smallest dimensions) should be close to unity.
Square elements are the best quadrilaterals, but even
an aspect ratio of 1.5 or 2 is acceptable.

3. All interior angles of the element must be significantly
smaller than 180 degrees. For example, a quadrilateral
with three of its vertices lying on a nearly straight line
is usually unacceptable.

4. Transition from large elements to small elements must
be made gradually. The ratio between the sizes of two
neighboring elements may be 1.5 or 2 but should not
be much greater than this.

In the early days of the FEM (in the sixties and early sev-
enties), finite-element meshes were produced manually. This
was a tedious task that also easily admitted errors in the data
description. As the method was applied to successively larger
problems, time for mesh preparation also became prohibitive.
These difficulties have been alleviated by the development of
automatic mesh-generation algorithms.

Currently, there are several schemes in use for automatic
mesh generation. One major class of schemes is based on
conformal mapping. See, for example, refs. 8, 11, and 14.
Here, a regular mesh in a simple domain (e.g., a rectangle)
is mapped into the actual domain under consideration using
numeric conformal mapping. This procedure can produce
high-quality meshes but is sometimes expensive. The high
computational cost of this method is due to the fact that it re-
quires the solution of Laplace’s equation (or some equivalent
computational effort) to generate the mesh prior to the solu-
tion of the partial differential equation under consideration.

Other two-dimensional schemes are triangulation schemes,
which produce, by some construction, meshes made of trian-
gles. See, for example, refs. 1 and 12 through 15.

Although it is well known that quadrilaterals usually per-
form better than triangular elements of the same order,7 it is
much easier in general to generate an acceptable triangulation
than an acceptable mesh composed of quadrilaterals. Three-
dimensional mesh generation is yet much more complicated.
Because of this, for the three-dimensional case, tetrahedral
schemes completely dominate, although it is known that they
are not always a good choice for elements, in terms of accu-
racy.

A review and discussion of various mesh generation meth-
ods can be found in two recent books.4,9

2 METHODS OF THIS PAPER

Our approach has been to split this rather complicated global
optimization problem into several parts. On the one hand,
there are the decisions regarding the size of the mesh, the
kinds of elements, and the appropriate densities in different
regions of the domain, while on the other hand, one has to
realize the mesh by specific assignments of geometric coor-
dinates to the nodes. We anticipate the first part being accom-
plished by an expert system(s) that will, based on geometric
and physical considerations, decide on the regions of interest
and desired density distribution of the elements; the second
part (which is the work presented here) is realized by self-
organizing neural networks.10

A self-organizing neural network, as described, for exam-
ple, by Kohonen,10 is a system of neurons linked by a topol-
ogy. Such a network can then learn to adjust its weight param-
eters, based on the input, in such a way as to automatically
create a map of responsive neurons that topologically resem-
bles the input data. The map so generated should in principle

Finite-Element Mesh Generation Using Self-Organizing Neural Networks 235

automatically favor most of the heuristic rules stated above,
and so the map can be taken as the placement of the mesh.

The methods presented here are independent of the specific
topology chosen for the mesh. While the meshes we have used
in our experiments have been chosen to consist of quadri-
laterals, in principle, our methods will work for any mesh,
even mixed triangular and quadrilateral ones. (As stated ear-
lier, while it is known that quadrilateral meshes generally
give better results than triangular ones,7 the accepted meth-
ods of placing the mesh are more developed in the case of
triangles.14)

To evaluate our methods, we compared our results with
a fully developed automatic mesh generator (for triangles)
PLTMG1 by comparing the results in solving a series of
boundary value problems over a two-dimensional domain.

The appropriate placement of the mesh has as a heuris-
tic component the choice of thedensity functionthat ex-
presses which part of the domain should be approximated
more closely than others (typically the density is higher near
corners or other interesting geometric phenomena where the
linear approximation inside an element is intrinsically worse).
Note that the best density choice may actually depend on the
solution to the differential equation. Nonetheless, in many
cases qualitative information is available prior to the solution
of the equation (e.g., from the boundary conditions) so that
it is not unreasonable for a system to generate an appropriate
density function based on the statement of the partial differen-
tial equation problem and boundary conditions. For example,
it is expected that the solution exhibits high gradients near a
sharp corner in the boundary. In such cases, a density func-
tion may be chosen to exploit this information. If nothing is
known a priori about the solution, a density function may still
be chosen in an adaptive a posteriori fashion. For example, the
problem may be solved preliminarily with a uniform-density
mesh (perhaps with relatively few nodes), and then a density
function may be constructed based on the gradients of this
solution prior to resolving it. (In our examples we chose the
density function by hand, with the knowledge of the available
exact solutions.)

Mesh quality can be judged by eye in the two-dimensional
case. However, we also found it necessary to define an ana-
lytic measure of the quality. Below we describe this measure
of mesh quality; essentially it is a mathematical realization of
the preceding heuristic rules on the way a mesh should vary to
obtain good numeric results. Currently, we use visual quality
to decide when to cease improving the mesh, but this can be
replaced by examining the changes in mesh quality function.
An analogue of this quality measure can be developed for
higher-dimensional meshes.

As stated, the essence of our implementation is the Koho-
nen self-organizing neural network algorithm.10 This algo-
rithm allows a network to choose its weights in such a way as
to fix its topological elements inweight spacein such a way
as to mimic as closely as possible the arrangement of sam-

ple input data. In other words, the neural network becomes
a representative map of the sample data information. This
is exploited by us, in order to arrange for the placement of
the finite-element mesh, by identifying the mesh nodes with
neural nodes and identifying the weight space with the phys-
ical space of the domain, thereby causing the network to be
an approximation of the density function. This happens by
randomly choosing sample points of the domain as input to
the self-organizing neural network in direct correspondence
to the density function (see below for further details).

Thus the “coordinization” of the mesh is carried out au-
tomatically by the Kohonen algorithm, with the only input
necessary being sample points of the domain chosen ran-
domly to reflect the desired density function. The mesh then
“self-organizes” to make the best possible representation of
the domain by the mesh elements.

It turns out that such a straightforward procedure has some
difficulties in our context, which required some sophistica-
tions and modifications when adapting the algorithm. That
is,

1. A finite-element mesh has to fit exactly inside the do-
main and reach the boundaries.

2. Computational requirements are somewhat high.
3. Nonconvex domains require special techniques.

Our implementation dealt with these problems with the
following techniques:

1. The algorithm actually uses an interweaving of sev-
eral Kohonen algorithms. There is an interweaving of a
two-dimensional Kohonen algorithm on the mesh with
a one-dimensional Kohonen algorithm on each con-
nected component of the boundary. More will be stated
in the sequel, but note that this suggests the correct
generalization to higher dimensions.

2. We used an adaptation to the Kohonen algorithm sug-
gested by Tzvi and Iaakov16 that resulted in an increase
in speed of around 75% without degradation of perfor-
mance.

3. A special modification to the algorithm was made to
handle nonconvex domains properly. This algorithm is
not as advanced as the convex one, but results are al-
ready comparable with the PLTMG standard.

3 THE NEURAL NETWORK ALGORITHMS

3.1 The basic Kohonen algorithm and the Tzvi-Iaacov
speedup

Complete details of the Kohonen algorithm can be found in
ref. 10 or ref. 6. As stated earlier, the Kohonen algorithm is
designed to allow a given set of neurons organized with a
topology to “self-organize” itself in such a way as to make

236 L. Manevitz, M. Yousef & D. Givoli

(1) each neuron equiprobabilistically likely to respond to an
impulse in the data set and (2) the topology preserved in the
sense that nearby neurons will respond to nearby impulses.

In our context, this algorithm works as follows:

1. A particular topology of nodes (or neurons) is chosen.
Each node is associated with a location in a space (e.g.,
by cartesian coordinates). In neural network terminol-
ogy, the weight space of the neuron is associated with
the cartesian coordinates.

2. Input is a sequence of points in the space, chosen ran-
domly according to the desired distribution.

3. For each input, a point in the topology is selected by
a form of “winner-takes-all” competition [for example,
(roughly speaking) the closest (in the current coordi-
nates of the nodes)].

4. The location of the chosen node is adjusted, as is the
coordinates of all nodes within a certain neighborhood
of this chosen node. The adjustment is a movement of
the chosen node toward the input point. The amount of
the movement is determined by a parameterα that de-
creases dynamically as the algorithm proceeds in time
(see Figure 1 and Figure 2).

If the input points form a faithful representation of the do-
main, then the nodes eventually form a map approximating
the given domain. Note, however, that because of the proba-
bilistic nature of this scheme, meshes generated for symmet-
ric regions will not be perfectly symmetric.

This general algorithm is independent of the dimensional-
ity. What is needed is a representation of the nodes in a space
and an appropriate generator of input points.

Tzvi and Iaakov16 suggested an adaptation of this basic al-
gorithm that speeds things up substantially. Essentially (see
refs. 16 and 17 for details), the network is broken into subre-
gions, and each region is represented by one member, roughly
from the center of the subregion. Then the winner-takes-all
competition proceeds first by competition only among the
representatives and then among the members of the chosen
region (see Figure 3).

We found that the use of one level of this adaptation re-
sulted in a 75% improvement in the speed of the Kohonen
algorithm without any change in quality of results. (In prin-
ciple, this algorithm can work with several levels of repre-
sentation, but we did not need this.)

3.2 Adaptation to our problem

3.2.1 Density functions
In principle, then, one needs only the choice of a network and
a density function. For example, a uniform density function is
easily generated by first enclosing the body inside a circum-
scribing rectangle and choosing anx andy coordinate by one
of the standard random number generators (we usedrandom

from the standardC library package) and then rejecting any
points that fall outside the body itself.

One then simply uses the randomly chosen points in the
region as input to the Kohonen algorithm network. In the
same way, any computable density function on the domain
can be input to the Kohonen network.

We implemented nonuniform densities by taking the com-
position of squares of uniform ones centered at various “hot
spots.” In our system, a user indicates areas of interest with a
pointing device (a graphic mouse), and then the appropriate
density functions are generated automatically as the square
of the uniform density function on [0, 1] with (0, 0) identified
with the hot spot (see Figure 4). We point out that any other
method of generating the density function is acceptable. Note
that often in solving partial differential equations with bound-
ary conditions, if the submitted data (e.g., boundary condi-
tion, geometry, loadf , etc.) exhibit some nonsmooth behav-
ior, as in the case of cracks, corners, or concentrated loads, this
gives a hint as to what the density function should look like.
In an elliptic partial differential equation, these are the only
cases where a nonuniform density is needed, and so we have
a good idea in advance of solution where the hot spots are. On
the other hand, for hyperbolic partial differential equations,
the solution may be nonsmooth even if all the data are smooth,
as in the appearance of shocks in fluid-flow problems. In such
cases, it is more complicated to predict in advance where the
hot spots are, but one can resort to adaptive methods (e.g.,
solving first with a sparser uniform mesh and then resolving
with a new mesh relating to the less accurate solution).

3.2.2 Measures of mesh quality
To test the current version of the algorithm, we used two mea-
sures of success. First, we used the following as our mea-
sure of the quality of a mesh, reflecting the heuristic rules
given in Section 1 (here for a given elementae refers to the
largest side of the quadrilateral andbe refers to the smallest:
Ee

1 = 1− be/ae giving a measure of the aspect ratio,Ee
2 =

max4
i=1 |1 − 2

π
anglei | measuring how close all the quadri-

lateral angles are to 90 degrees, andEe
3 = maxneighbors|1−

minNe

n=1{ae/ae
n,a

e
n/ae}| measuring how similar an element is

to its neighboring ones.) Then, allowing different positive
weightswi to the different measures, we have

Quality(mesh)=
∑

elements

w1Ee
1 + w2Ee

2 + w3Ee
3

(In the work presented here, lacking any further information,
all thewi values are 1.)

This function allows one to measure how various changes
in the algorithm result in improvements in the mesh. (The
smaller the value, the better is the mesh.) This allows one
to measure quantitatively how the mesh changes as the al-
gorithm proceeds. Because of the stochastic nature of the
algorithm, in principle, random effects can cause this not to
be monotone (i.e., the net can get worse); over many itera-

Finite-Element Mesh Generation Using Self-Organizing Neural Networks 237

Winning Point NeighborInput Data

Input Point

Fig. 1. An input point is chosen according to the chosen density function. A winning node is chosen, and then the positions of the winner
and its neighbors are adjusted toward the input point.

Iteration 0; Initial
Setup

Iteration 500; Quality =
288.10

Iteration 2000; Quality =
237.78

Iteration 4500; Quality =
226.00

Iteration 6000 Quality =
222.81

Iteration 12000 Quality =
207.79

Iteration 30000 Quality =
202.46

Fig. 2.A sequence of snapshots of a mesh.

Fig. 3.The organization of the Tzvi-Iaakov speedup.

tions it eventually always decreases, and this is born out by
our experiments. In a fully automated system, this measure

could be used as an indication of when to halt the algorithm;
in our experiments, the halting was always done manually.

238 L. Manevitz, M. Yousef & D. Givoli

Fig. 4.A domain with the initial mesh and two high-concentration “hot spots” designated byD.

(For each experiment, we indicate the number of iterations.)
In order to compare the quality of the resulting mesh ex-

ternally, we decided to send the output of our algorithm di-
rectly to an FEM partial differential equation solver and to
compare the solutions of various partial differential equations
with boundary conditions with those run on a popular profes-
sional mesh generator PLTMG.1 It is not possible to compare
the meshes directly because PLTMG generates triangles and
our examples used quadrilaterals.

Actually, PLTMG also includes an FEM partial differential
equation solver, but to keep the comparison fair, we only used
PLTMG as a mesh generator and gave its mesh as an input to
the same FEM solver.

Accordingly, we compared the quality of solutions of par-
tial differential equations with boundary conditions as solved
using the different meshes. We used equations with analytic
solutions so we could measure the precise error in the solu-
tions. Our examples were of the formuxx+uyy+ f (x, y) = 0.
(The boundary conditions were given by evaluating the solu-
tion at the boundary points.) In all cases, we report both the
average error per node and the error per value of the solu-
tion function. (Hereu is the analytic solution anduh is the
numerically computed solution.)

Error/node=
∑

nodes|u(node)− uh(node)|
#(nodes)

Error/value=
∑

nodes|u(node)− uh(node)|∑
nodes|u(node)|

3.2.3 Covering the domain
For our application, it is important that eventually the network
completely cover the domain, i.e., that boundary points of the
network fall on boundaries of the domain. The basic Kohonen
map does not typically fulfill this constraint. For example, for
the body in Fig. 5, the result is as in Fig. 6.

This constraint resulted in the implementation of some
heuristic rules and the interweaving of several Kohonen al-
gorithms together, which we now proceed to describe. For

Fig. 5.A sample body.

Fig. 6. The result of a basic Kohonen map on Fig. 5. Notice that
the boundary is not reached.

example, it is possible to guarantee reaching the boundary
by simple numeric roundingprovided sufficiently frequent
sample points occur on the boundary. However, it is highly
unlikely for such points to be chosen randomly. In an earlier
version, we did this heuristically simply by choosing roughly
one of every seven points to be on the boundary (after an initial
period where the points where chosen uniformly throughout
the domain). This, however, leads to a distortion of the distri-
bution about the boundary that can be seen visually in Fig. 7.

3.2.4 Dimension1 Kohonen and interweaving
In order to compensate for this affect, a secondary one-dimen-
sional Kohonen network is used to adjust the boundary; the
two Kohonen algorithms are then interwoven in parallel.

However, this interweaving is a little bit complicated. First,
note that the boundary is a one-dimensional simplex in our ex-
amples. (In principle, there might be more than one such sim-

Finite-Element Mesh Generation Using Self-Organizing Neural Networks 239

Fig. 7. The result of a Kohonen map obtained by forcing points to
be on the boundary of Fig. 5. Notice the distortion about the

boundary.

Table 1
Tables of values ofα andα′

Iterations Value ofα

1–9 0.8
10–999 0.3

1000–1999 0.2
2000–3000 0.1
3001–7000 0.05
7001–8000 0.08

8001–10,000 0.01
Over 10,000 0.001

Iterations Value ofα′

3000–3999 0.45
4000–4999 0.35
5000–6000 0.25

6001–10,000 0.10
10,001–11,000 0.11
11,001–13,000 0.03

Over 10,000 0.007

plex, i.e., one for each connected component of the boundary.
This is handled simply by using several of these algorithms
in parallel.)

In order to distribute the points appropriately on the bound-
ary (but after the net has reached the boundary), we apply a
Kohonen algorithm to this one-dimensional simplex. That is,
we start with a separate Kohonen adjustment parameterα′

and a neighborhoodin the boundary simplex. In practice, the
boundary radius was taken to be 1, and then it was decreased
to 0 (i.e., only the chosen node is moved). (See Table 1 for
the changes of these parameters as a function of the number
of iterations.)

Thus, for this algorithm, one choses randomly points on the
boundary and applies this one-dimensional version to the one-
dimensional simplex. However, in parallel, one continues to
update the two-dimensional simplex.

In addition, once a point is on the boundary, we do not
allow it to leave the boundary (as might occur from the two-
dimensional algorithm); in effect, the two-dimensional algo-

Fig. 8.The result of the interwoven Kohonen map on Figure 5.

Optimal Mesh; Quality = 0

Fig. 9.An optimal mesh on a square domain.

rithm now acts only on the interior of the original net.
Note that the preceding requires a balancing of the effects.

We do this∗ by

1. Running a “pure” Kohonen algorithm on the domain
for around 1500 iterations. Boundaries are typically not
reached during this stage.

2. Between 1500 to 3000 iterations running a “distorted”
Kohonen algorithm by choosing one of every seven
sample points to be on the boundary of the domain.
(Actually, the algorithm would alternate chosing 30 in-
terior points and then 5 boundary points.)

3. Between 3000 to 5000 iterations running both the one-
dimensional and the two-dimensional Kohonen maps,
again with a ratio of one out of every seven points cho-
sen on the boundary.

4. Over 5000 iterations running both the one-dimensional
and the two-dimensional Kohonen maps. However, at
this point, points on the boundary can no longer be
moved into the interior. This effectively means that the
two-dimensional Kohonen map is now running only on
the original mesh minus its boundary.

5. The one-dimensional Kohonen parameterα′ is adapted
independently of the two-dimensional Kohonen param-
eterα. See Table 1 for the values per iteration actually
used for these parameters.

Figure 2 shows a sequence of “snapshots” over different
numbers of iterations of the development of a mesh.

Figure 8 shows the result on the example in Fig. 5 with the
interwoven algorithm.

In terms of our quality function, the interwoven algorithm
produces a mesh with value 165.050814; the previous basic

∗ Both the specific choices of numbers of iterations and “cooling
schedules” forα andα′ were found by experimentation and so are
strictly valid only for the examples in this paper. However, they give
rough guidelines for other instances.

240 L. Manevitz, M. Yousef & D. Givoli

2-D Kohonen only; Quality =

154.624; 55000 Iterations

1-D and 2-D Kohonen; Quality =

115.794; 55000 Iterations

Fig. 10.Comparison of neural net–generated meshes, two-dimensional and interwoven one- and two-dimensional versions.

Table 2
Table of errors arising when applying the FEM on an optimal mesh

Rectangular domain optimal(169nodes, 144elements)

u(x, y) f (x, y) Error/node Error/value
x3 + y3 −6x − 6y 2.463314E-04 8.301765E-06

sinx + siny sinx + siny 1.314296E-04 1.103902E-04

Table 3
Table of errors arising on applying FEM to neural network–generated meshes

Rectangular domain(169nodes, 144elements)

Error/node Error/value

u(x, y) f (x, y) 2-D only 1-D and2-D 2-D only 1-D and2-D

x3 + y3 −6x − 6y 2.688617E-03 7.635503E-04 8.900321E-05 2.522708E-05

sinx + siny sinx + siny 2.832740E-04 2.279894E-04 2.082413E-04 1.954924E-04

Kohonen map produces a mesh with the worse-quality value
171.255656.

It is interesting to compare these results on the square with
a uniform density where the optimal setting is known. That
is, a square with 169 nodes will optimally look like Figure 9.

In contrast, Fig. 10 shows the meshes generated by the
“simple” two-dimensional Kohonen algorithm and by the in-
terwoven one.

One also can compare the results of solving boundary value
problems on these different meshes. Table 2 gives the results
for two choices of partial differential equation boundary value
problems for the optimal mesh, while Table 3 gives the corre-
sponding results generated by the “simple” two-dimensional
algorithm and by the interwoven one.

In Figs. 11–12 we display the comparison on other bodies

listing as well their results for the solutions of various partial
differential equations. In all cases, the interwoven algorithm
is superior to the two-dimensional algorithm.

3.2.5 Nonconvex domains
Nonconvex domains have special problems. A direct use of
the Kohonen algorithm would cause elements and even nodes
to migrate over the boundary lines (see Fig. 13).

To avoid this, what is needed is a different metric appropri-
ate to the body that causes nodes and elements to stay within
the body. One can conceive of such a metric being formed by
a composition with the usual metric and a conformal map-
ping. However, as an experiment, we proceeded with a more
primitive algorithm. We simply discarded any sample points
that resulted in an “illegal” motion of the nodes (see Fig. 14).

Finite-Element Mesh Generation Using Self-Organizing Neural Networks 241

2-D Kohonen only; Quality =

306.184802; 130000 Iterations

1-D and 2-D Kohonen; Quality =

276.57321; 75000 Iterations

7-Sided Domain (225 nodes, 196 elements)
Error/Node Error/Value

u(x, y) f (x, y) 2-D Only 1-D and 2-D 2-D Only 1-D and 2-D
x3 + y3 −6x − 6y 6.510040E-03 4.647640E-03 2.351759E-04 1.692611E-04

sinx + siny sinx + siny 5.208200E-04 3.152173E-04 4.088745E-04 2.44686E-04

Fig. 11.Comparison of neural net–generated meshes, two-dimensional and interwoven one- and two-dimensional versions.

2-D Kohonen only; Quality =

285.656287; 100900 Iterations

1-D & 2-D Kohonen; Quality =

277.085397; 100900 Iterations

Non-Convex Domain (225 nodes, 196 elements)
Error/Node Error/Value

u(x, y) f (x, y) 2-D Only 1-D and 2-D 2-D Only 1-D and 2-D
x3 + y3 −6x − 6y 2.226507E-03 9.525689E-04 1.224070E-04 5.225864E-05

sinx + siny sinx + siny 2.199551E-04 1.035267E-04 1.434086E-04 6.756158E-05

Fig. 12.Comparison of neural net generated meshes, two-dimensional and interwoven one- and two-dimensional versions.

This solves the problem of crossing the boundary but at the
expense of (1) an increase in computation time and (2) dis-
tortion of the density function. Because of (2), we were not
expecting particularly good results. In our experiments, how-
ever, while the results on the nonconvex domain are definitely

inferior to those on the convex domains, nonetheless, the re-
sults are comparable with the results given by PLTMG. This
indicates the robustness of our method and the superiority of
working with quadrilaterals over triangles.

Nonetheless, it is clear that this algorithm can and should

242 L. Manevitz, M. Yousef & D. Givoli

Fig. 13. A direct use of Kohonen maps over a nonconvex domain.
Note that elements have crossed the boundary lines.

Fig. 14. The result of discarding sampled points that cause
“illegal” motion (see text).

be improved. For example, we could not expect it to work in
a figure with a “bottleneck.”

4 DESCRIPTIONS, TABLES OF TESTS, AND
DISCUSSION

In order to compare the quality of the resulting mesh exter-
nally, we decided to send the output of our algorithm directly
to an FEM partial differential equation solver and to com-
pare the solutions of various partial differential equations
with boundary conditions with those run on a popular pro-
fessional mesh generator PLTMG. It is not possible to com-
pare the meshes directly because PLTMG generates triangles
and our examples used quadrilaterals. In all cases we tried
to compare PLTMG and neural network (NN) meshes with a
similar number of nodes.∗

∗ Note that part of the advantage of the method of this paper is in fact
its ability to use quadrilaterals. If one takes the resulting quadrilateral
mesh and simply bisects each quadrilateral to produce a triangular
mesh, the quality can vary substantially depending on the specific
mesh. For example, when, at the suggestion of the referee, we did
this for the first partial differential equation of Fig. 17, the results
(error/node 2.788065E-03; error/value 9.211537E-05), while (as ex-

Actually, PLTMG also includes an FEM partial differential
equation solver; however, to keep the comparison fair, we
only used PLTMG as a mesh generator and gave its mesh as
an input to the same FEM solver.

That is, we took the following:

• A set of domains, all either convex or “near-convex” and
nonconvex.
• Three different boundary value problems on these do-

mains. Exact solutions are known for these problems. Thus
we could calculate the actual error at each node.
• Different densities. For the problem with the exponential

solution, it is desired to have a nonuniform density. For
each of the domains we solved this problem with both
uniform and nonuniform density using the NN.

For each generated mesh and problem we input it into a
FEM solver and then computed the quality of the solution
using our measures for error/node and error/value.

We solved problems of the formuxx+uyy+ f (x, y) = 0. In
each case we choseu(x, y) and then found the corresponding
boundary conditions and functionf (x, y) such thatu(x, y)
is the exact solution of the problem. In this manner, we easily
synthesized exact solutions and were thus able to measure
the error directly.

Figures 15 to 26 present the results of experiments. There
are three figures for each of the four combinations of uni-
form/nonuniform density and convex/nonconvex domains.

In order to summarize these, we have prepared two tables
(see Tables 4 and 5). Table 4 lists for each experiment and
for each of the two measures which method, PLTMG or NN,
gave a better result. Table 5 replaces “better” by “=” for cases
where the difference was less than an order of magnitude.
Looking over the results, we note the following points:

• PLTMG and NN produce results of roughly comparable
quality, with NN superior overall.
• NN has an advantage where one wants to have nonuni-

form density functions. This can be seen clearly, for in-
stance, in the examples of convex nonuniform density,
where PLTMG was better in error/node but worse in er-
ror/value. This means that NN placed its resources where
needed. This also can be seen visually; the network placed

pected) worse than the NN, were still better than PLTMG. However,
this is probably a consequence of the symmetry of the mesh. In gen-
eral, if a quadrilateral element is far from being optimal, then the
resulting triangular elements can be poor, even close to degenerate
elements. It is also possible to apply our method to a given trian-
gular mesh directly, i.e., to apply the neural network algorithm to a
topology of triangles. While we have not done this systematically,
a simple experiment using our method for a triangular mesh for the
same partial differential equation did indeed give the improved re-
sults (error/node 1.745574E-03; error/value 5.829219E-05) while,
as expected, still falling between PLTMG and the NN.

Finite-Element Mesh Generation Using Self-Organizing Neural Networks 243

Table 4
Best results

Figure Density Convex Best E/N Best E/V

Fig. 15 u c P/P P/P
Fig. 16 u c N/P N/P
Fig. 17 u c N/N N/N
Fig. 18 u n N/P N/P
Fig. 19 u n P/N P/N
Fig. 20 u n P/P P/P
Fig. 21 n c P N
Fig. 22 n c P N
Fig. 23 n c P N
Fig. 24 n n N N
Fig. 25 n n N N
Fig. 26 n n N N

Note: This table shows which mesh generator, P (PLTMG) or
N (neural network), gave better results based on both the er-
ror/node and error/value. Densities are either uniform “u” or
not “n”; experiments were either convex “c” or nonconvex “n.”

by NN is concentrated around the maximal point ofu(x, y)
and is roughly symmetric. This was even the case in non-
convex domains.
• If chosen properly, NN produces better results with a non-

uniform density function than without one. Even with uni-
form density, it competes successfully with PLTMG.
• The interwoven algorithm combining one-dimensional and

two-dimensional Kohonen maps is definitely superior to
using a two-dimensional Kohonen map.
• NN produces reasonable answers even on nonconvex do-

mains, but the algorithm cannot compete with the profes-
sional ones on all domains.

5 FUTURE WORK AND CONCLUSIONS

These results are quite encouraging because there are many
techniques included in PLTMG that are not yet included in
NN. In particular, PLTMG’s network is determined dynami-
cally, whereas NN’s is a fixed topology. (This is why the exact
number of nodes in PLTMG cannot be controlled exactly.)
This results necessarily in some poor elements.

• A future goal is to add some ability to adjust the topol-
ogy (i.e., by removing elements). It is possible that the
algorithm presented in ref. 3 may be adapted to this case.
• In another approach to the same problem of poor elements,

it should be possible to “tweak” the mesh generated by the
algorithm, e.g., by an expert system to modify the worst
elements as indicated by the quality function.
• An immediate extension of this work will be to allow non-

simply connected domains. (All the current examples were
simply connected, i.e., without “holes” in the domain, e.g.,

Table 5
Order of magnitudes distinguishability

Figure Density Convex Best E/N Best E/V

Fig. 15 u c =/= =/=
Fig. 16 u c =/= =/=
Fig. 17 u c N/= N/=
Fig. 18 u n N/= =/=
Fig. 19 u n =/= =/N
Fig. 20 u n P/P =/=
Fig. 21 n c = =
Fig. 22 n c = =
Fig. 23 n c = =
Fig. 24 n n N N
Fig. 25 n n N N
Fig. 26 n n N =

Note: This table shows which generator is better only when
one was an order of magnitude better, otherwise designating
the entry as=. Two entries in a position refer to two different
boundary value problems as described in the appropriate figure.
Densities are either uniform “u” or not “n”; experiments were
either convex “c” or nonconvex “n”.

an annulus.) The main difference is that the boundary of
a non-simply connected domain need not be connected;
i.e., there may be several separate boundaries. The algo-
rithm will handle this by having several one-dimensional
Kohonen maps (instead of just one), one for each bound-
ary, all simultaneously interwoven with the remaining two-
dimensional map.
• Perhaps most important, it seems that the algorithm pre-

sented here is quite adaptable to higher dimensions. We
anticipate a three-dimensional version working as follows:

1. Place a three-dimensional simplex, e.g., boxes, in
the center of the domain.

2. Run a three-dimensional version of the Kohonen
algorithm until the simplex reaches the two-dimen-
sional boundaries.

3. Then interweave two-dimensional versions of the
Kohonen algorithm with the three-dimensional one
until the one-dimensional boundaries are reached.

4. Then interweave one-dimensional versions of the
Kohonen algorithm on each of these one-dimen-
sional boundaries together with the two-dimensional
and the three-dimensional algorithms.

Of course, choosing the correct mix of parameters for this
three-dimensional case requires substantial experimenta-
tion.

We hope to report on progress in at least some of these
directions in a future publication.

244 L. Manevitz, M. Yousef & D. Givoli

PLTMG 262 nodes NN 225 nodes; 75000 Iterations

7-Sided Convex Domain PLTMG (262 nodes, 465 elements) NN (225 nodes, 196 elements)
Error/Node Error/Value

u(x, y) f (x, y) PLTMG NN PLTMG NN
x3 + y3 −6x − 6y 3.627359E-03 4.647640E-03 1.338744E-04 1.682611E-04

sinx + siny sinx + siny 2.491710E-04 3.152173E-04 1.89917E-04 2.44686E-04

Fig. 15.Results on a convex, uniform-density domain.

PLTMG 172 nodes NN 196 nodes; 75000 Iterations

7-Sided Convex Domain PLTMG (172 nodes, 296 elements) NN (196 nodes, 169 elements)
Error/Node Error/Value

u(x, y) f (x, y) PLTMG NN PLTMG NN
x3 + y3 −6x − 6y 6.636000E-03 4.697969E-03 2.408920E-04 1.739052E-04

sinx + siny sinx + siny 3.316738E-04 3.673607E-04 2.566378E-04 2.812432E-04

Fig. 16.Results on a convex, uniform-density domain.

Finite-Element Mesh Generation Using Self-Organizing Neural Networks 245

PLTMG 139 nodes NN 169 nodes; 55000 Iterations

Rectangular Domain PLTMG (139 nodes, 232 elements) NN (169 nodes, 144 elements)
Error/Node Error/Value

u(x, y) f (x, y) PLTMG NN PLTMG NN
x3 + y3 −6x − 6y 6.427036E-03 7.635503E-04 2.082413E-04 2.522708E-05

sinx + siny sinx + siny 3.085165E-04 2.279894E-04 2.68856E-04 1.954924E-04

Fig. 17.Results on a convex, uniform-density domain.

PLTMG 249 nodes NN 225 nodes; 100900 Iterations

7-Sided Nonconvex Domain PLTMG (249 nodes, 437 elements) NN (225 nodes, 196 elements)
Error/Node Error/Value

u(x, y) f (x, y) PLTMG NN PLTMG NN
x3 + y3 −6x − 6y 1.391667E-03 9.525689E-04 7.660676E-05 5.225864E-05

sinx + siny sinx + siny 1.029398E-04 1.035267E-04 6.647789E-05 6.756158E-05

Fig. 18.Results on a nonconvex, uniform-density domain.

246 L. Manevitz, M. Yousef & D. Givoli

PLTMG 149 nodes NN 144 nodes; 65000 Iterations

8-Sided Nonconvex Domain PLTMG (149 nodes, 253 elements) NN (144 nodes, 121 elements)
Error/Node Error/Value

u(x, y) f (x, y) PLTMG NN PLTMG NN
x3 + y3 −6x − 6y 2.430987E-03 4.875042E-03 1.129517E-04 2.357007E-04

sinx + siny sinx + siny 1.399732E-04 1.00659E-04 1.036508E-04 7.295429E-05

Fig. 19.Results on a nonconvex, uniform-density domain.

PLTMG 234 nodes NN 256 nodes; 26100 Iterations

7-Sided Nonconvex Domain PLTMG (234 nodes, 385 elements) NN (256 nodes, 225 elements)
Error/Node Error/Value

u(x, y) f (x, y) PLTMG NN PLTMG NN
x3 + y3 −6x − 6y 3.402227E-03 2.0193883E-02 1.088599E-04 6.839368E-04

sinx + siny sinx + siny 2.186795E-04 2.479673E-03 1.964496E-04 2.220415E-04

Fig. 20.Results on a nonconvex, uniform-density domain.

Finite-Element Mesh Generation Using Self-Organizing Neural Networks 247

PLTMG 127 nodes NN 121 nodes; "Hot-spot" (2,2)

near center; 55000 Iterations

Rectangular Domain PLTMG (127 nodes, 212 elements) NN (121 nodes, 100 elements)
Error/Node Error/Value

u(x, y) f (x, y) PLTMG NN PLTMG NN
e−(x−2)2e−(y−2)2 −uxx − uyy 6.244993E-02 6.780960E-02 1.226566E-01 1.202126E-01

Fig. 21.Results on a convex, non-uniform-density domain.

PLTMG 270 nodes NN 225 nodes; "Hot-spot" (2,2)

near center; 90000 Iterations

Rectangular Domain PLTMG (270 nodes, 478 elements) NN (225 nodes, 196 elements)
Error/Node Error/Value

u(x, y) f (x, y) PLTMG NN PLTMG NN
e−(x−2)2e−(y−2)2 −uxx − uyy 6.841879E-02 7.193961E-02 1.311398E-01 1.256772E-01

Fig. 22.Results on a convex, non-uniform-density domain.

248 L. Manevitz, M. Yousef & D. Givoli

PLTMG 206 nodes NN 196 nodes; "Hot-spot" (2,2)

near center; 80000 Iterations

8-Sided Convex Domain PLTMG (206 nodes, 362 elements) NN (196 nodes, 169 elements)
Error/Node Error/Value

u(x, y) f (x, y) PLTMG NN PLTMG NN
e−(x−2)2e−(y−2)2 −uxx − uyy 6.079690E-02 6.220065E-02 1.059934E-01 1.004030E-01

Fig. 23.Results on a convex, non-uniform-density domain.

PLTMG 249 nodes NN 225 nodes; Quality =

278.713715; "Hot-spot" (2,2) near

center; 46650 Iterations

7-Sided Non-Convex Domain PLTMG (249 nodes, 437 elements) NN (225 nodes, 196 elements)
Error/Node Error/Value

u(x, y) f (x, y) PLTMG NN PLTMG NN
e−(x−2)2e−(y−2)2 −uxx − uyy 2.412143E-02 7.530449E-03 4.515054E-02 9.097765E-03

Fig. 24.Results on a nonconvex, non-uniform-density domain.

Finite-Element Mesh Generation Using Self-Organizing Neural Networks 249

PLTMG 149 nodes NN 144 nodes; Quality =

191.241135; "Hot-spot" (2,2) near

center; 16800 Iterations

9-Sided Non-Convex Domain PLTMG (149 nodes, 253 elements) NN (144 nodes, 121 elements)
Error/Node Error/Value

u(x, y) f (x, y) PLTMG NN PLTMG NN
e−(x−2)2e−(y−2)2 −uxx − uyy 2.766172E-02 7.653986E-03 8.125979E-02 9.120655E-03

Fig. 25.Results on a nonconvex, non-uniform-density domain.

PLTMG 234 nodes NN 256 nodes; Quality =

381.146362; "Hot-spot" (2,2) near

center; 30000 Iterations

7-Sided Nonconvex Domain PLTMG (234 nodes, 385 elements) NN (256 nodes, 225 elements)
Error/Node Error/Value

u(x, y) f (x, y) PLTMG NN PLTMG NN
e−(x−2)2e−(y−2)2 −uxx − uyy 2.864687E-02 1.811124E-03 9.151940E-02 1.159691E-03

Fig. 26.Results on a nonconvex, non-uniform-density domain.

250 L. Manevitz, M. Yousef & D. Givoli

ACKNOWLEDGMENT

Supported in part by a joint Technion–University of Haifa re-
search grant. Some of this research was done while D. Givoli
was on a sabbatical visit at Rensselaer Polytechnic Institute.

REFERENCES

1. Bank, R. E.,PLTMG: A Software Package for Solving Elliptic
Partial Differential Equations, SIAM Publications, Philadel-
phia, 1994.

2. Carey, G. F. & Oden, J. T.Finite Elements, vol. III: Computa-
tional Aspects, Prentice-Hall, Englewood Cliffs, NJ, 1984.

3. Fritzke, B. Growing cell structures: A self-organizing network
for unsupervised and supervised learning,Neural Neworks, 7
(1994), 1441–60.

4. George, P. L.,Automatic Mesh Generation, Wiley, Chichester,
UK, 1991.

5. Manevitz, L., Givoli, D. & Margi, M., Heuristic finite element
node numbering,Computing Systems in Engineering, 4 (1993),
159–68.

6. Hecht-Nielsen, R.,Neurocomputing, Addison-Wesley, Read-
ing, MA, 1991.

7. Hughes, T. J. R.,The Finite Element Method, Prentice-Hall,
Englewood Cliffs, NJ, 1987.

8. Jones, R. E.,A Self-Organizing Mesh Generation Program,

ASME Publication 74-PVP-13, New York, 1974.
9. Knupp, P. & Steinberg, S.,Fundamentals of Grid Generation,

CRC Press, Boca Raton, FL, 1993.
10. Kohonen, T.,Self-Organization and Associative Memory, 2d

ed., Springer-Verlag, Berlin, 1988.
11. Thames, F. C., Thompson, J. F., Mastin, C. W. & Walker, R. L.,

Numerical solutions for viscous and potential flow about arbi-
trary two-dimensional bodies using body-fitted coordinate sys-
tems,Journal of Computational Physics, 24 (1977), 245–73.

12. Renka, R., Triangulation and bivariate interpolation for irregu-
larly distributed data points, Ph.D. thesis, University of Texas
at Austin, 1981.

13. Rhynsburger, D. Analytic delineation of thiessen polygons,Ge-
ographic Analysis, 5 (1973), 133–44.

14. Shephard, M. S. & Finnigan, P. M., Towards automatic model
generation, inState of the Art Surveys on Computational Me-
chanics, A. K. Noor and T. J. Oden, eds., ASME, New York,
1989, pp. 335–366.

15. Thomasset, F., Appendix to Navier-Stokes problems, inNavier-
Stokes Problems, R. Temam, ed., North Holland, Amsterdam,
1977.

16. Tubakman, T. & Exman, I., Towards real-time self-organizing
maps with parallel and noisy inputs, inProceedings of the10th
Israeli Symposium on Artificial Intelligence, Computer Vision
and Neural Networks, Ramat Gan, Israel, 1993, 155–64.

17. Yousef, M., Automatic mesh generation using self-organizing
neural networks, master’s thesis, University of Haifa, 1996 (in
Hebrew).

