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Collaborative Filtering (CF) is currently one of the most popular and most widely used
personalization techniques. It generates personalized predictions based on the assump-
tion that users with similar tastes prefer similar items. One of the major drawbacks of
the CF from the computational point of view is its limited scalability since the compu-
tational effort required by the CF grows linearly both with the number of available users
and items. This work proposes a novel efficient variant of the CF employed over a mul-
tidimensional content-addressable space. The proposed approach heuristically decreases

the computational effort required by the CF algorithm by limiting the search process
only to potentially similar users. Experimental results demonstrate that the proposed
heuristic approach is capable of generating predictions with high levels of accuracy, while
significantly improving the performance in comparison with the traditional implemen-
tations of the CF.

Keywords: Collaborative filtering; recommender systems; K-nearest neighbors search;
content-addressable systems.

1. Introduction

In many circumstances, the quantity of available information grows rapidly and
exceeds our cognitive processing capabilities. Thus, there is a pressing need for
intelligent personalization systems providing services tailored to users’ real needs
and interests. Recommender Systems16 are one of the commonly used approaches to
address this problem. These systems assist a user in selecting a suitable item among
a set of potentially selectable items by predicting the user’s opinion on the items
by applying statistical and knowledge discovery techniques.19 Currently, Recom-
mender Systems are used in a variety of application domains, e.g. movies,7 jokes,6

music1 and others, and they exploit various recommendation techniques, such as
Collaborative Filtering,9 Content-Based Filtering,12 Case-Based Reasoning,17 and
numerous hybrid techniques.4

Collaborative Filtering (CF) is probably the most familiar and one of the most
widely-used techniques to generate predictions in Recommender Systems. It relies
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on the assumption that people who agreed in the past will also agree in the future.21

The input for the CF algorithm is a matrix of users’ ratings on a set of items, where
each row represents the ratings provided by a single user and each column represents
the ratings provided by different users on a single item. CF aggregates the ratings
to recognize similarities between users and generates the prediction for an item by
weighting the ratings of similar users on this item.

The CF algorithm is typically partitioned to three generic stages: (1) Similarity
Computation: weighting all the users with respect to their similarity with the active
user (i.e. the user, whose ratings are being predicted), (2) Neighborhood Forma-
tion: selecting the most similar users for the prediction generation, and (3) Predic-
tion Generation: computing the prediction by weighting the ratings of the selected
users.

One of the major drawbacks of the CF is its limited scalability. The stages of
Similarity Computation and Neighborhood Formation require comparing the active
users with all the other users over all the available ratings. Hence, the computational
effort required by the CF grows linearly both with the number of users and the
number of items in the ratings matrix. Thus, for a matrix containing ratings of M

users on N items, the required computational effort is O(MN ). This poses a problem
in real-life systems, where the predictions are generated using millions of ratings
on thousands of items, e.g. in Web-based Recommender Systems. Previous studies,
(e.g. Refs. 3, 5 and 6 and others) tackle the issue of reducing the computational effort
required by the CF either by preprocessing of the ratings matrix or by distributing
the heavy computational stages. Nonetheless it remains one of the most important
issues in the CF research community.

In this work we develop a fast heuristic variant of the CF algorithm that
decreases the computational effort required by the Similarity Computation and
the Neighborhood Formation stages. The basic assumption of the proposed heuris-
tic algorithm is that losing general completeness of the exhaustive search (1) has
a minor negative effect on the accuracy of the predictions, but (2) significantly
decreases the required computational effort. Thus it provides a scalable approach,
applicable to real-life scenarios with a high number of users and items, such as in
Web-based systems.

The proposed heuristic approach is based on a notion of content-addressable
data management15 that provides an adaptive topology for mapping of users’ pro-
files to a multidimensional space. This mapping implicitly clusters similar users
and limits the Similarity Computation and the Neighborhood Formation stages
to a heuristic search among the users that are potentially highly similar to the
active user.

Experimental evaluation of the proposed approach demonstrates both high
efficiency and good accuracy of the proposed algorithm in comparison with the
traditional (exhaustive) K-Nearest Neighbors (KNN) search of the Neighborhood
Formation stage. The evaluation also demonstrates that the algorithm is highly
scalable with the number of nearest neighbors to be retrieved.
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The rest of the paper is organized as follows. Section 2 describes the CF person-
alization technique and surveys the studies focusing on the required computational
effort reduction. Section 3 describes the CAN, a Peer-to-Peer content-addressable
platform for decentralized data management. Section 4 describes the decentralized
storage of users’ profiles over the CAN platform and elaborates on the proposed
heuristic variant of the CF over CAN. Section 5 presents and analyzes the experi-
mental results. Finally, Sec. 6 lists our conclusions and presents some open questions
for future research.

2. Collaborative Filtering

Collaborative Filtering (CF) is probably one of the most familiar and widely-used
recommendation techniques. An input for the CF is the so-called ratings matrix,
where each user is represented by a set of explicit ratings given on various items,
and each item is represented by a set of ratings given by the users.

CF requires a similarity metric between users to be explicitly defined. The state-
of-the-art CF systems exploit three similarity metrics: Cosine Similarity,7 Mean
Squared Difference (MSD),13 and Pearson correlation.19 This work focuses on the
MSD, computing the degree of similarity between users x and y by:

simx,y =

∑|x∩y|
i=1

(Rx,i − Ry,i)2

|x ∩ y| (1)

where |x∩ y| denotes the number of items rated by both users (typically, above
some minimal threshold), and Rx,i denotes the rating of user x on item i. In some
sense, simx,y can be considered as the dissimilarity of the users, as the lower the
result of the MSD computation, the greater is the real similarity between the users.

Prediction Pa,j for the rating of the user a on item j is computed as a weighted
average of the ratings of his/her K most similar users, i.e. K nearest neighbors, by:

Pa,j = R′
a +

∑K

k=1
(Rk,j − R′

k) · sima,k

∑K

k=1
|sima,k|

(2)

where Rx,y denotes the rating of user x on item y, R′
z denotes the average rating

of user z, and simv,u denotes the level of similarity between users v and u.
The Similarity Computation stage of the CF requires comparing the active user

with every other user in the system. For a ratings matrix storing the ratings of
M users on N items, the computational complexity of the Similarity Computation
stage is O(MN ). This indicates poor scalability of the Similarity Computation
stage, as the complexity grows linearly with both the number of users and the
number of items in the matrix.
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2.1. Reducing the computational effort required by the CF

Many prior works have dealt with decreasing the computational, effort required
by the CF. In general, it is achieved either by preprocessing the ratings matrix,
or by distributing the computationally intensive stages of the CF among multiple
machines.

Various preprocessing techniques for decreasing the computational effort
required by the CF (e.g. correlation coefficients, vector-based similarity, and statis-
tical Bayesian methods) are discussed and analyzed in Ref. 3. Another technique,
exploiting preclustering of the ratings matrix, is discussed in Ref. 6. There, prin-
cipal component analysis is used to identify two discriminative dimensions of the
ratings matrix and all the vectors are projected onto the resulting plane. This
inherently partitions the users to clusters or neighborhoods, which are further used
to generate the predictions. In Ref. 5, the authors use a tree-like data structure
and apply a divide-and-conquer approach using an iterative K-means clustering to
group the users. This leads to smaller and more homogeneous clustering of users
for the following Predictions Generation stage.

An alternative approach is to distribute the computational effort required by
the CF among the users, such that every user independently computes its simi-
larity with the active user. This approach was initially proposed in Ref. 22 and
elaborated in Ref. 20. The latter also developed a detailed taxonomy of the CF dis-
tribution approaches and presented implementation frameworks for different appli-
cation domains. The PocketLens project11 compared five decentralized distributed
architectures for the CF. These comparisons showed that the performance of the
decentralized mechanism is similar to the performance of the centralized CF while
providing increased robustness and security.

Further improvements to the decentralized CF were discussed in Ref. 8, which
proposes the exploitation of Peer-to-Peer platform for a decentralized management
of users’ profiles. However, this approach approximates the set of the most similar
users identified by the Neighborhood Formation stage of the CF, and as a result,
the accuracy of the generated predictions is reduced.

This paper is loosely based on the ideas of CAN,15 a content-addressable Peer-
to-Peer platform. We implement a fast heuristic variant of the CF, using a CAN-
like multidimensional space for maintaining a connected structure of users. This
allows to significantly decrease the computational effort required by the Similarity
Computation and Neighborhood Formation stages by limiting the search process
to a search among potentially similar users located in close vicinity to the active
user.

3. Content-Addressable Data Management

This section presents the general architecture of CAN,15 a scalable decentralized
data management platform. In CAN, the users are represented in a one-to-one man-
ner by the nodes of a virtual N -dimensional coordinate space such that the location
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of the user’s node is denoted by a vector (v1, v2, . . . , vN ), where vi represents the
numeric coordinate of the node within a dimension number i. In addition to the
node, each user continuously manages an N -dimensional subspace, called a zone.
For example, consider a two-dimensional space partitioned to three zones, man-
aged by users A, B, and C [Fig. 1 (left)]. Note that the figure shows only the zones
managed by the users, whereas the nodes themselves are not shown.

In CAN space, two nodes (and also zones) are called neighbors if their coordinate
spans overlap along N−1 dimensions and adjoin along one dimension. For example,
consider the neighbor zones A and C in Fig. 1 (left), whose coordinates partially
overlap across the horizontal dimension and adjoin along the vertical. To maintain
connectivity in CAN space, each node stores a data structure representing a list
of pointers to a set of other nodes, managing the neighbor zones. For example,
node A stores the pointers to the nodes managing zones B and C (as, respectively,
horizontal and vertical neighbors) in its list of pointers.

Routing of messages in CAN space is based on the Plaxton routing algorithm.14

This routing iteratively forwards the messages to the nodes that are closer to the
target node than the current node using a greedy forwarding. The metric for eval-
uating the distance between two nodes in the address space is the L1 metric, i.e.
the Manhattan Distance. This metric was chosen due to the fact that CAN space
inherently supports it, as every node stores a list of pointers to the nodes, manag-
ing the neighbor zones. For example, the distance between the nodes (1, 2, 3) and
(6, 5, 4) in three-dimensional CAN space is (6− 1) + (5− 2) + (4− 3) = 9. Thus, in
N -dimensional CAN space a message is routed between an arbitrary pair of nodes
in O(N) routing steps.

In addition, CAN provides a connectivity maintenance algorithm, stable to spo-
radic joints and departures of new users. When a new user is inserted, it is assigned
its own node and the respective zone. This is done by splitting a zone (determined by
the content provided by the recently inserted user) of one of the existing neighbors
according to the following steps: (1) the new user identifies an existing network node,
(2) the new user is routed to the target zone that will be split, and (3) the target
zone is split and the neighbors of the new zone are updated to maintain connectiv-
ity and facilitate future routings. As a result, only a subset of immediate neighbor
zones of the zone that was split is actually affected by the insertion of a new node.

The issue of splitting the target zone (i.e. how to split the existing zone, where
the contents of the recently inserted node are mapped?) is one of the important

Fig. 1. Example of a two-dimensional CAN space.
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issues affecting the performance of CAN. A number of splitting policies are pro-
posed, analyzed and compared in Ref. 15. The simplest policy for the zones splitting
is so-called ordered splitting. According to this policy, the number of dimension,
across which a zone is split, iteratively increases from 1 to N .

For example, consider user D joining CAN two-dimensional space [Fig. 1 (mid-
dle)]. Assuming that the content provided by user D should be located in the right
part of the zone managed by node C and this is the zone that will be split, user D

is routed to C using the Plaxton routing, and zone C is split across the horizontal
dimension (assuming that the previous split of zone C, and also the following split
of both zones C and D will be performed across the vertical dimension). Finally,
the recently inserted node, managing the zone D notifies its neighbors (i.e. the users
“managing zones B and C) about the insertion of a new node, and also their neigh-
bors” pointer tables are updated. Note that in this case, only the zone managed by
user C, which was split and a subset of its neighbor zones (actually, only one zone
managed by user B), are affected by the insertion of a new user D, whereas other
zones are not affected.

Disconnections of the users are handled in a similar manner. The disconnecting
user identifies one of the neighbor nodes that will takeover managing its zone, and
updates other neighbor zones about the departure and the management takeover.
For example, consider the user managing zone B disconnecting from CAN space
[Fig. 1 (right)]. As a result of the disconnection, the user managing zone D takes
over the management of the zone previously managed by user B.

Nonetheless, it should be mentioned that the dimensionality of the above CAN
space can be barely extended. Such extension requires remapping of the existing
N -dimensional nodes to a new (N + 1)-dimensional space. This is an expensive
procedure in a decentralized P2P environment, which can also involve multiple
interactions with the users. Thus, in this work we assume that the dimension of
CAN space is fixed.

Thus, CAN provides a decentralized platform, supporting (1) dynamic space
partitioning and zones allocation, (2) efficient routing algorithm, and (3) connec-
tivity maintenance algorithm over virtual N -dimensional coordinate space. Note
that the distributed structure of CAN is not robust against sudden departures of
users, as fault-tolerance is not one of the main goals of the platform. However,
CAN facilitates a decentralized self-manageable platform for content-addressable
data management in a distributed environment.

4. CF over Content-Addressable Space

This work proposes an efficient heuristic variant of the CF algorithm. It uses a
content-addressable architecture for the purposes of optimizing traditional exhaus-
tive K-Nearest Neighbors (KNN) search to a search among potentially similar users
only. Although our algorithm is a heuristic one by nature, experimental results
demonstrate that it facilitates efficient search process without hampering the accu-
racy of the generated predictions.
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4.1. Mapping user profiles to content-addressable space

The input for the CF algorithm is a matrix of users’ ratings on items, where each
row (ratings vector) represents the ratings of a single user and each column rep-
resents the ratings on a single item. The total number of items (N) defines an
N -dimensional space, where the coordinates range in each dimension corresponds
to the range of ratings on the respective item.

To handle the ratings matrix in a content-addressable manner, we map it to a
CAN-like multidimensional space. Each rating is projected using a uniform injective
(one-to-one) mapping onto the appropriate dimension, such that the whole vector
of length N is mapped to a single point in an N -dimensional space. For example,
consider a system storing the ratings of users on three different items. In such a
system, the evolving CAN-like space will be a three-dimensional cube, where the
range of coordinates within every dimension corresponds to the range of possible
ratings on the respective item.

As already mentioned, each user is represented in a CAN-like space by a single
node whose location corresponds to the set of user’s ratings and by the respective
zone (storing a list of immediate neighbor zones). For example, consider a user U

that rated all three items in the above three-dimensional cube: item i1 was rated
as r1, item i2 as r2, and i3 as r3. The user will be mapped to a location (r1, r2, r3)
of the space and will have exactly two neighbors in each dimension. For example,
in the dimension corresponding to item i1, the user U will have two neighbors,
N1 = (r1 − x, r2, r3) and N2 = (r1 + y, r2, r3), such that both N1 and N2 rated i2
as r2 and i3 as r3, N1 rated i1 below r1, and N2 rated it above r1, and there is
no other user that rated i1 as r′, where r1−x < r′ < r1 or r1 < r′ < r1 + y. Similarly,
user U will have two neighbors in the dimension corresponding to item i2 and to
item i3. If there is no user that provided the required combination of ratings on the
available items, CAN space will maintain connectivity by connecting user U to a
further node, which will serve as its immediate neighbor (i.e. both zones will keep
mutual pointers to the relevant neighbor zone).

Note that in the evolving CAN space, the users (through their ratings vectors)
can be dynamically inserted and removed not only during the initialization, but also
during the life cycle of the system. This is explained by the observation that the
above connectivity maintenance algorithm guarantees that the structure remains
connected regardless of the sudden joints and disconnections of the nodes. Never-
theless, CAN spaces can barely manage insertions of new items, as the dimension
of the space should remain fixed. Thus, the proposed heuristic search (that will
be discussed in the following subsection) is applicable only over a stable matrix of
users’ ratings, where no new items are inserted.

Deciding on the zones split policy affects the evolving structure of the rat-
ings vectors. In our implementation, we used the above mentioned ordered split-
ting policy. This policy may be suboptimal in terms of the number of neighbor
zones, resulting in a less efficient algorithm, i.e. more comparisons or retrieving
less similar neighbors. However, our experiments demonstrate that even this simple
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policy considerably increases the efficiency of the proposed K-Nearest Neighbors
(KNN) search, in comparison with the traditional exhaustive search. Evaluating
other splitting policies is beyond the scope of this work.

In addition to the guaranteed connectivity, content-addressable space inherently
clusters similar users, such that the distance between two similar users (in our
case, according to the MSD similarity metric) is lower than the distance between
two arbitrary users. This is achieved due to the use of an injective mapping of
the ratings vector to the multidimensional CAN-like space, which preserves the
users’ similarity while mapping the ratings vectors to the numeric coordinates in
the space. The following subsection shows a use of the above inherent clustering
property for the purposes of developing fast heuristic variant of the KNN search.

4.2. Heuristic nearest-neighbors search

The Neighborhood Formation stage of the CF over the evolving N -dimensional
space can be schematically described as a heuristically expanding breadth-first
search. The algorithm for retrieving K-Nearest Neighbors of a user x is briefly
explained by the following pseudo-code. The code uses two lists of size K:
(1) CANDIDATES — list of candidates for being one of the K-nearest neighbors,
and (2) NEIGHBORS — list of real K-Nearest Neighbors. In principle, the algo-
rithm needs the CANDIDATES list only, as the NEIGHBORS list only increases
during the execution of the algorithm until it reaches its maximal length and con-
tains the real K-Nearest Neighbors. For the sake of clarity, we show an algorithm
that uses two lists instead of only one.

K Nearest Neighbors (user x )
(1) let NEIGHBORS and CANDIDATES be empty lists, each of size K

(2) let Z be the zone, to where x would be mapped in the CAN space

(3) foreach u∈ (Z∪ neighbors(Z))

(4) compute distance(x,u)

(5) insert u into CANDIDATES, s.t. CANDIDATES is sorted

according to the values of distances(x,u)

(6) for i=1 to K

(7) choose v from CANDIDATES, s.t. distance(x,v) is smallest

(8) for each w∈ neighbors(v) s.t. distance(x,w) is unknown

(9) compute distance(x,w)

(10) insert w into CANDIDATES, s.t. it remains sorted

according to the values of distances(x,v)

(11) move v from CANDIDATES to NEIGHBORS

(12) return NEIGHBORS

Initially, the algorithm pretends to map the active user x to its location in the
N -dimensional space (step 2). Next, the algorithm identifies the zone x is mapped
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to, and its neighbors, i.e. users managing the neighbor zones (step 3). For each of
these zones, the degree of similarity, i.e. the distance between x and the relevant
user, is computed (step 4). Then, the neighbor users are inserted into the CANDI-
DATES list such that the whole list of candidates users is sorted according to the
distances of the users from the active user x (steps 4 and 5).

Afterwards, the algorithm iteratively performs the following operations:

• Selects v, the nearest neighbor stored in the CANDIDATES list (step 7).
• Identifies the neighbors of v that are not in the CANDIDATES list yet, computes

their distances from x, and inserts them into the CANDIDATES, while keeping
the list sorted (steps 8–10).

• Removes v from the CANDIDATES list and inserts it into the NEIGHBORS list.

Finally, the algorithm returns the resulting NEIGHBORS list (step 12).
Consider an example execution of the KNN search as illustrated in Fig. 2. The

initial structure of two-dimensional space is depicted in Fig. 2(a). Nine users, named
from a to i, are inserted into the space and manage the respective zones. Note that
also this figure shows only the zones managed by the users, whereas the nodes
representing the users are not shown. Assume that the active user is mapped to the
zone managed by user e.

Thus, e and its neighbors, i.e. users managing zones c, d, f and i, are the first
candidates for being the nearest neighbors and they are inserted into the CAN-
DIDATES list. Assume that the user managing zone e is the closest one. It is
moved from the CANDIDATES list to the NEIGHBORS list [Fig. 2(a)]. Since all
the neighbors of e are already known, the next closest neighbor is chosen among
its neighbors. Assume that the next closest neighbor is the user managing zone f .
It is moved from the CANDIDATES list to the NEIGHBORS list, and its only
new neighbor, the user managing zone g, is inserted into the CANDIDATES list

(a) (b)

(c) (d)

Fig. 2. Stages of the KNN search over two-dimensional CAN space (zones managed by users
from the CANDIDATES are indicated with a light tone and from the NEIGHBORS — in a dark
gray tone).
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[Fig. 2(b)]. The next closest neighbor is the user managing zone c, inserting the
user managing zone b into the CANDIDATES list [Fig. 2(c)]. Assume that the
next closest neighbor is the user managing zone g (not an immediate neighbor of
e). As a result, the user managing zone h is inserted into the CANDIDATES list
[Fig. 2(d)]. This process is repeated until the NEIGHBORS list contains K-Nearest
Neighbors.

The proposed algorithm reduces the computational effort required by the Sim-
ilarity Computation and the Neighborhood Formation stages, in comparison with
the traditional CF algorithm, where an active user is compared with all the avail-
able users. Conversely, the proposed heuristic algorithm compares the active users
with potentially similar users only, located in close vicinity to the active user.

Since every user in the N -dimensional space continuously maintains an updated
list of its immediate neighbors, any neighbor of a given user is accessed through a
single network hop. This is true regardless of the physical (geographical) and logical
(similarity) distances between the neighbors. Thus, the algorithm will also work in
sparse spaces, where the distance between neighbors in the underlying network
might be very high.

4.3. Heuristic completions of user profiles

In the former sections, we assumed that the user’s ratings were represented as a
complete vector, i.e. explicit ratings on all the items are available. Thus the mapping
of the user’s ratings vectors to the underlying content-addressable space is straight-
forward. However, this assumption is unachievable in most real-life applications and
scenarios, where an average user rates only a portion of the available items. This
raises a need for developing a mapping mechanism capable of mapping incomplete
vectors, where a subset of the ratings is missing, to the content-addressable space.

In this subsection we propose three mappings to handle this task. How-
ever, instead of developing a new mapping of incomplete vectors to the content-
addressable space, we propose to convert the incomplete vectors to complete ones
by heuristically filling-in the missing ratings in the incomplete vectors.2 Thus, the
proposed completion heuristics are designed to reuse the above injective mapping
of complete vectors, while employing it on the modified vectors with heuristically
filled-in ratings.

As the completion heuristics are not the main focus of the current work, we
suffice with three relatively simple heuristics that demonstrate the applicability of
the proposed vectors’ completion. The heuristics are as follows:

• User-average — The missing rating on an item in the user’s vector is substituted
with the average of the real ratings, explicitly provided by this user.

• Item-average — The missing rating on an item in the user’s vector is substituted
with the average of the real ratings, explicitly provided by the other users on
this item.
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• Conditional — Integrates both the user-average and the item-average heuristics
and decides on a run-time regarding the specific completion heuristic to be used
according to a certain predefined condition.

Clearly, the user-average heuristic can be considered as an accurate personalized
completion heuristic, as the missing ratings are substituted with a value, produced
by the real ratings of the given user. Thus, it reflects the real preferences and
tendencies of the user, such as over- or under-rating of items, natural intensity of
expressions and so forth. Conversely, the item-average heuristic can be considered
as the most accurate non-personalized completion heuristic, as the missing ratings
are substituted with a value, produced by numerous real ratings on the given item.
As such, it reflects a general (and relatively reliable) opinion of many other users
on the item.

We conjecture that the user-average heuristic is preferable when the knowledge
about the user’s preferences is reliable, i.e. the number of ratings explicitly provided
by the user is relatively high. On the other hand, when the number of user’s explicit
ratings is low, the item-average heuristic will exploit other users’ ratings for filling-
in the missing rating and it should be preferred. Based on these considerations, we
defined another conditional heuristic, which will autonomously decide which of the
above completion heuristics should be exploited for filling-in the missing ratings of
every user.

In summary, each of these heuristics allows the filling-in of the missing ratings,
converting the incomplete vectors to the complete ones, and then mapping them
to the content-addressable space using the abovementioned injective mapping
mechanism.

5. Experimental Results

In the experimental part of our work we used the Jester dataset of jokes’ ratings.6

Jester is a Web-based jokes Recommender System, containing 4.1 millions of ratings
(on a continuous scale from −10.00 to +10.00) of 73,421 users on 100 jokes. A
significant portion of the users rated all the jokes, so the Jester dataset is relatively
dense. Overall, approximately 56% of all the possible ratings in the matrix are
present.

For the complete vectors experiments, we selected a subset of 14,192 users that
rated all 100 jokes, producing a matrix, where every value corresponds to a real
rating, explicitly provided by a user. The average rating of a single joke in the data
is 0.807, and the overall standard deviation of the ratings in the matrix is 4.267.
We implemented a centralized simulation of a 100-dimensional CAN space (note
that the space dimension equals to the number of rated jokes in the ratings vectors)
and inserted the above 14,192 users into the space. Insertions of the users into the
space were done using the ordered splitting policy.
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5.1. Scalability of the search

These experiments were designed to evaluate the scalability of the proposed heuris-
tic variant of the KNN search. The efficiency of CAN-based KNN is measured by
the number of comparisons performed during the Neighborhood Formation stage
of the CF.

In this experiment we measured number of comparisons during the Neighbor-
hood Formation stage. For this, we gradually increased the number of users inserted
into the system from M =1000 to M =14,000. For each M , we computed the num-
ber of comparisons performed in the traditional exhaustive KNN search and in
CAN-based heuristic variant of KNN. Both searches were aimed at retrieving K = 5
nearest neighbors. For each value of M , the experiments were repeated 1000 times
for different active users. The experimental results are shown in Fig. 3. The horizon-
tal axis stands for M , the number of users inserted into the system, and the vertical
axis reflects the average number of comparisons during a single KNN search, for
both exhaustive and heuristic searches.

As expected, the number of comparisons in CAN-based KNN is significantly
lower than in traditional KNN and it grows at a logarithmic-like manner with the
number of users. This is explained by the fact that in CAN-based KNN the active
user is compared only with a subset of highly similar users (located in close vicin-
ity in a content-addressable space), whereas in traditional KNN it is exhaustively
compared with all the available users.

To achieve a better understanding of comparison-based scalability of the pro-
posed approach, we computed the ratio between the number of comparisons in
CAN-based KNN and the number of comparisons in the exhaustive KNN. This
ratio was computed for different values of M and the results are shown in Fig. 4.
It can be clearly seen that the ratio steadily decreases with M . This allows us to
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Fig. 3. Average number of comparisons versus the number of users inserted.
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Fig. 5. Average number of comparisons versus the number of retrieved neighbors.

conclude that the proposed algorithm is applicable in large-scale systems with high
number of users and items, e.g. on the Web.

The second experiment was designed to evaluate the scalability of CAN-based
KNN with the number of nearest neighbors (K) to be retrieved. We gradually
increased the value of K from K = 1 to K = 50. For each value of K, we measured
the number of comparisons needed to retrieve K nearest neighbors for M = 1000,
2000, 4000, 8000, and 14,000 users. For each value of M and K, the experiments
were repeated 1,000 times for different active users. The number of comparisons as
a function of K for the above values of M is shown in Fig. 5. The horizontal axis
stands for K, the number of nearest neighbors to be retrieved, whereas the vertical
reflects the average number of comparisons during the KNN search.
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As can be clearly seen, the number of comparisons in CAN-based KNN remains
roughly unchanged when K increases. This is explained by the observation that
most of the KNN users are located in close vicinity to the active user (this charac-
terizes a real-life naturally clustered data). Thus, the similar users are discovered
in the early stages of the KNN search, while further expansions contribute very few
new similar users.

Both experiments show good scalability of CAN-based KNN with K. This
means, that practical Recommender Systems can use higher values of K, to form
moderately larger and more reliable neighborhoods, and generate more accurate
predictions with only a very minor computational overhead.

5.2. Accuracy of the search

The following experiments were designed to evaluate the accuracy of the results
obtained by the proposed heuristic variant of KNN search. In the first experiment
we compared the sets of users, i.e. the neighborhoods, retrieved by the traditional
(exhaustive) KNN and by the CAN-based variant of KNN.

Let us denote by KNNe the set of users retrieved by the traditional exhaustive
KNN search and by KNNh the set of users retrieved by the CAN-based heuris-
tic variant of KNN. Since the CAN-based KNN is a heuristic approach, a sub-
optimal structure of zones may lead to a situation, where KNNe �= KNNh, i.e.
the heuristic search retrieves only a subset of the real K nearest neighbors. As
the collaborative predictions are generated by aggregating the ratings of similar
users, identifying the set of most similar users is essential for generating accurate
predictions.

To evaluate the accuracy of the proposed heuristic KNN search, we adapt the
traditional Information Retrieval metric of precision.18 In fact, the computed accu-
racy metric is not a classical precision, but rather precision@K, since the overall
search procedure is limited to K most similar users only. However, this metric also
provides some indication about the recall of the search, as it can be considered
as the recall of the search for a limited number of the most similar users to be
retrieved. For the sake of clarity, this metric is referred to in the paper as precision.
The precision is computed by:

precision =
|KNNe ∩ KNNh|

|KNNe| =
|KNNe ∩ KNNh|

K
. (3)

The cardinality of the KNNe set was K = 10, while the cardinality of the
KNNh set was gradually increased from K ′ = 1 to K ′ = 100. The precision was
computed for M =1000, 2000, 4000, 8000 and 14,000 users inserted into the system.
For each value of M and K ′, the experiments were repeated 1000 times for different
active users. Figure 6 shows the precision as a function of K ′ for the above values
of M . The horizontal axis stands for M , the number of users inserted into the
system, whereas the vertical reflects the average precision of the heuristic KNN
search.
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Fig. 6. Precision of CAN-based KNN.

As can be clearly seen, the curves behave similarly and the accuracy increases
with K ′, such that for K ′ > 50, it is over 0.9 for all the given values of M . Previous
experiments presented in previous subsection show that the algorithm is highly
scalable with K. Thus, retrieving a larger set of users (i.e. higher values of K ′)
leads to a minor increase in the computational overhead. Hence, it is feasible to
moderately increase the number of neighbors retrieved by CAN-based search in
order to achieve a higher accuracy and generate better predictions.

Since the precision of the heuristic CAN-based KNN search may seem low for
small values of K ′, we conducted another two experiments, aimed at evaluating the
quality of the neighborhood retrieved by the heuristic search. In the first, this was
done by computing the average similarity between the nearest neighbors retrieved
by the heuristic search and the active user. The computed average similarity was
compared to the average similarity of neighborhood retrieved by the traditional
search.

In the experiment, we gradually increased the number of users inserted into
the system from M = 1000 to M =14,000. For each value of M , we compared the
average similarity of heuristically retrieved neighbors with the average similarity of
exhaustively retrieved neighbors for K = K ′ = 10. For each value of M , the above
experiments were repeated 1000 times for different active users. The results of the
experiment are shown in Fig. 7 (they are discussed after Fig. 8). The horizontal
axis stands for the number of users inserted into the system, whereas the vertical
reflects the average similarity value between the users in KNN set and the active
user for both exhaustive and heuristic searches.

The second experiment was designed to evaluate the quality of the heuristically
retrieved neighborhood by comparing the accuracy of the generated predictions.
The final goal of the KNN search is to retrieve a set of the most similar users, whose
ratings will be aggregated when generating the predictions. Thus, we generated the
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Fig. 7. Average similarity versus the number of users inserted.

predictions using both exhaustively and heuristically retrieved sets of K-Nearest
Neighbors and evaluated the accuracy of the predictions using well-known Mean
Average Error (MAE) metric9:

MAE =

∑N

i=1
|pi − ri|
N

(4)

where N denotes the number of predicted items, and pi is the predicted, and ri is
the real rating on item i.

Also in this experiment the number of users inserted into the system was grad-
ually increased from M = 1000 to M =14,000. For each value of M , the experiment
was repeated 1000 times for various, randomly chosen active users. For each active
user chosen, the following operations were conducted: (1) a single randomly selected
rating in the user’s profile was hidden and served as a rating to be predicted, while
the remaining all-but-one ratings served as the user’s profile, (2) based on the all-
but-one user’s profile, the set of K = K ′ = 10 nearest neighbors was retrieved
using both traditional exhaustive and heuristic retrievals, (3) predictions were
generated using both heuristically and exhaustively retrieved neighborhoods, and
(4) the MAE error of the generated predictions relatively to the original hidden rat-
ing was computed. The average values of the MAE computed for certain values of
M are shown in Fig. 8. The horizontal axis stands for the number of users inserted
into the system, whereas the vertical reflects the MAE values for both exhaustive
and heuristic searches.

The results show that the average similarity (which is actually the dissimilarity)
and the MAE of the predictions decrease with M . This is explained by the obser-
vation that the probability of discovering a similar user increases with the number
of users inserted into the system. Thus, the average dissimilarity of the retrieved
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Fig. 8. Mean average error of the predictions versus the number of users inserted.

K-Nearest Neighbors decreases with M , while the accuracy of the generated pre-
dictions increases, and the MAE decreases as well.

Although both the similarity and the MAE of CAN-based heuristic search are
higher (i.e. the retrieved neighbors are more dissimilar and the accuracy is actu-
ally lower), the curves are very close and the results are quite similar. Average
deviation of the similarities is 2.93% and of the MAEs is only 0.38%. Note that
the average deviation of the MAE is significantly lower than the average deviation
of the similarities, as the generated predictions are barely affected by the changes
in the retrieved neighborhoods. These experiments allow us to conclude that the
proposed heuristic algorithm succeeds in both retrieving similar neighborhoods and
generating accurate predictions.

5.3. Inherent clustering

One of the basic assumptions, that allows us to limit the heuristic search to users,
located in close vicinity to the active user, is the inherent clustering. That means
that the distance between two similar users is lower than the distance between two
arbitrary users. Thus, the following experiment was designed to verify the property
of inherent clustering in the underlying content-addressable space.

For this, we computed the average and the standard deviation of the similarity of
the users located R = 1, 2, and 3 routing hops from the active user. The experiments
were conducted for M =1000, 2000, 4000, 8000 and 14,000 users inserted into the
system. For each value of M , the experiments were repeated 1000 times for different
random orders of inserting the users into the system and for different active users.
Figure 9 shows the average similarity and the standard deviation as a function of R

for the above values of M . The horizontal axis stands for M , the number of users
inserted into the system, whereas the vertical reflects the average and the standard
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Fig. 9. Average similarity versus number of hops from the active user.

deviation of the similarity of the retrieved users, located within a given number of
hops from the active user.

It can be seen that for any given value of M the similarity increases with R. This
means that the similarity of users, located close to the active user is higher than the
similarity of those located far. Thus, this experiment verifies our assumption on
the clustering in content-addressable space. For any R, the average similarity and
the standard deviation steadily decrease with M . This observation is explained
by the fact that higher number of users leads to a better organization of zones,
where zones managed by more similar users block the zones managed by dissimilar
users. Thus, the average similarity (and the standard deviation) of users located
within a given number of hops decreases with R.

Moreover, this experiment demonstrates the stability of the proposed CAN-
based structure of users. This experiment was repeated 1000 times, for different
random orders of inserting the users into the system. Low values of the standard
deviation, and the steady decrease of it with the number of users in the system, show
that the inherent clustering holds regardless of the different types of organization
of the CAN zones, imposed by the different orders of inserting the users. Thus, we
can conclude that the proposed heuristic KNN search will also succeed in retrieving
accurate neighborhoods of users for different system usage scenarios.

5.4. Completion heuristics

The following experiments were designed to evaluate the proposed completion
heuristics for filling-in the missing values in the incomplete ratings vectors. To
run the experiment with the incomplete vectors, we used the full Jester dataset.6

In previous experiments we used a partial dataset of complete vectors, built by
14,192 users that rated all 100 jokes. In addition, the full dataset also contains the
ratings of 59,229 users that rated on average 45.26 jokes. The full Jester dataset
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(i.e. the dataset containing both complete and incomplete vectors) was used in the
completion heuristics experiments.

We implemented the user-average and the item-average heuristics that were
discussed in Sec. 4.3. As for the conditional heuristic, the decision regarding the
chosen completion heuristic was based on the number of explicitly rated items in
user’s ratings vector. Since in the full Jester dataset the average number of items
rated by a user was 45.26, in our implementation of the conditional heuristic the
threshold for choosing an appropriate heuristic was set to 20 items. That means
that if a user rated less than 20 items, his/her ratings vector is not considered
as a reliable one, and vector completion exploits the item-average heuristic, which
substitutes each missing rating with the average rating of the other users on the
given item. However, if a user rated 20 items or more, the user-average heuristic is
exploited, the missing ratings are substituted with the average rating of the given
user on the other items.

To evaluate the accuracy of the proposed three completion heuristics, we con-
ducted two types of experiments. In the first, we compared the average similarity
value between the active user and the K-Nearest Neighbors retrieved by the heuris-
tic search and by the traditional exhaustive search. The experiment was repeated
three times, for the different completion heuristics exploited before inserting the
completed vectors to the underlying content-addressable space.

In the experiment, we gradually increased the number of users inserted into
the system from M = 5000 to M =50,000. For each value of M , we compared the
average similarity of the retrieved neighbors (using both exhaustive and heuristic
retrieval techniques) for K = K ′ = 10. For each value of M , the above experiments
were repeated 1000 times for different active users. The results of the experiment
are shown in Fig. 10. The horizontal axis stands for M , the number of users inserted
into the system, whereas the vertical reflects the average similarity value between
the users in KNN set and the active user for both exhaustive and heuristic searches.
Note that the heuristic retrieval was conducted three times, according to the slightly
different datasets inserted into the content-addressable space, as imposed by the
completion heuristics being exploited.

The curves show, that similarly to the accuracy results in previous subsec-
tions, the average similarity (i.e. dissimilarity) of the retrieved KNN users decreases
with M , the number of users inserted into the system. Comparison of the proposed
completion heuristics yields that the personalized user-average heuristic outper-
forms the nonpersonalized item-average heuristic. Average similarity deviation of
the KNN set exploiting the user-average heuristic from the exhaustively retrieved
KNN is 4.43%, while the similarity deviation of the item-average KNN set is 6.21%.
Since the conditional heuristic is a smarter combination of the above heuristics, it
slightly outperforms the user-average heuristic as well, and for it the average simi-
larity deviation from the exhaustively retrieved KNN set is 4.11%.

Since the ultimate goal of the Collaborative Filtering is to generate predic-
tions, the second experiment was designed to evaluate the quality of the completion
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Fig. 10. Average similarity versus the number of users inserted.

heuristics by comparing the accuracy of the generated predictions. To do this, we
generated the predictions using both exhaustively and heuristically retrieved sets of
K-Nearest Neighbors and evaluated the accuracy of the predictions using the MAE
metric. In the experiment the number of users inserted into the system was gradually
increased from M =5000 to M =50,000. For each value of M , the experiment was
repeated 1000 times for various, randomly chosen active users. The experimental
setting was similar to one described in previous subsections: the user’s profile was
partitioned to the predicted rating and all-but-one profile, the sets of K = K ′ = 10
nearest neighbors were retrieved using both exhaustive and heuristic retrievals, the
predictions were generated using both neighborhoods, and the MAE of the gener-
ated predictions relatively to the original rating was computed. The average values
of the MAE are shown in Fig. 11. The horizontal axis stands for the number of
users inserted into the system, while the vertical reflects the MAE values for both
exhaustive and heuristic searches. Note that the heuristic retrieval was conducted
three times, according to the completion heuristics being exploited.

Similarly to the results in Sec. 5.2, this experiment shows that the MAE of
the prediction decreases with M , the number of users inserted into the system.
Comparison of the proposed completion heuristics yields that the accuracy of the
predictions exploiting personalized user-average heuristic is better than that of the
nonpersonalized item-average heuristic. However, for both heuristics the average
increase of the MAE values is minor: for the user-average heuristic it is 0.69%,
whereas for the item-average heuristic it is 1.37%. As can be seen from the chart,
also in this experiment the conditional heuristic slightly outperforms both of them,
as for the conditional heuristic the increase of the MAE is only 0.46%. Hence, out
of the proposed three completion heuristics, the conditional heuristic retrieves the
most similar KNN set and generates the most accurate prediction. This allows us to
conclude that this heuristic should be used for converting the incomplete vectors to
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Fig. 11. Mean average error of the predictions versus the number of users inserted.

the complete ones, and naturally leads to future research, dealing with developing
more accurate completion heuristics.

6. Conclusions and Future Research

One of the major drawbacks of the state-of-the-art CF implementations is their high
computational complexity, which grows linearly both with the number of users and
items in the system. In this work we proposed to heuristically decrease the required
computational effort by implementing the CF over content-addressable CAN-like
N -dimensional space.

6.1. Conclusions

Experiments conducted over the Jester dataset of jokes ratings show that in gen-
eral the proposed heuristic algorithm outperforms the traditional exhaustive KNN
search as the computational overheads are significantly decreased, while the accu-
racy remains roughly unchanged. Our algorithm decreases the number of required
comparisons, while the ratio between the numbers of comparisons steadily decreases
with the number of users. For example, for 14,000 users the number of comparisons
was decreased by almost an order of magnitude (precisely, by 87%). Other experi-
ments show that the number of comparisons roughly remains unchanged when K

increases. This allows us to increase the number of nearest neighbors to be retrieved
(and to potentially improve the accuracy of the generated predictions) with a very
minor computational overhead.

In the accuracy experiments we qualitatively compared the neighborhoods
retrieved and the predictions generated by the CAN-based heuristic and by the
traditional exhaustive KNN searches. The retrieved neighborhoods were similar
and the predictions were very close, which indicates good accuracy of the proposed
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algorithm. In summary, comparing the proposed heuristic KNN search with tra-
ditional exhaustive search shows that our algorithm achieves high accuracy (very
similar to the accuracy of the traditional exhaustive KNN search), while signifi-
cantly decreasing the required computational effort.

Another set of experiments were aimed at validating the inherent clustering
property of content-addressable spaces. The results showed that this property holds
in the CAN-like space, as the dissimilarity of users, located in a certain number of
network hops from the active user increased with the number of network hops. The
experiments also showed that the inherent clustering property holds regardless of
the number of users inserted into the system and the order of their insertion.

The last set of experiments were aimed at comparing three heuristic for convert-
ing the incomplete vectors to complete ones by filling-in the missing ratings. Three
simple heuristics were compared: two heuristics that substitute the missing ratings
either with the average rating of the given user, or with the average rating on the
given item, whereas the third heuristic integrates the first two. The experiments
showed that the heuristic, which conditionally integrates two other heuristics, out-
performs them both in terms of the retrieved neighborhoods’ similarity and of the
generated predictions’ accuracy.

Comparing the MAE of the predictions generated by the complete and heuristi-
cally completed vectors yields that the accuracy of the predictions generated by the
complete vectors is slightly better. This conclusion is reasonable, since the proposed
completion heuristics insert some extent of noise into the original ratings. How-
ever, the increase in the MAE is minor, allowing us to conclude that the achieved
computational optimization is preferential than the minor noises in the generated
predictions caused by the artificial ratings inserted by the completion heuristics.

6.2. Future research

In this work, we inherently assumed that the system assigns equal relative weights
to the ratings on each item. However, this assumption is not true in many real-
life personalization applications. For example, this assumption might be false in
a situation, where different criteria affect differently on the similarity values, e.g.
when the similarity values between the items are known. Developing a weighted
prediction algorithm will result in a more accurate Recommender System.

Also, we assumed that either the user’s ratings on the items are available or
they can be easily filled-in using one of the proposed simple completion heuris-
tics. However, in some real-life scenarios, this completion is hard to achieve, since
the matrix is very sparse (e.g. density of 2–3% in typical Collaborative Filtering
datasets such as in Refs. 9 and 10) and the substitution of the missing values may
require exploiting more intelligent techniques. In the future, we plan to study the
use of various completion heuristics, exploiting statistical and Machine Learning
techniques.
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In addition to decreasing the computational effort, the proposed algorithm can
naturally be extended to distribute it among multiple users. In traditional central-
ized implementations of the CF, the Similarity Computation and the Neighbor-
hood Formation stages are performed in a single central location. However, as the
underlying CAN platform is originally distributed Peer-to-Peer platform, it inher-
ently allows distributed and fully decentralized storage of the ratings matrix. In
the future, we plan to implement a distributed variant of the algorithm and to
investigate the distribution issues.

The current work is limited to the Mean Squared Difference (MSD) similarity
metric, since the injective mapping to a multidimensional CAN-like space inher-
ently supports it. However, for other metrics, such as Cosine Similarity or Pearson
Correlation, CAN space might be inappropriate and new types of topologies and
respective mappings should be developed. We plan to study other metrics and to
produce a general framework for efficient heuristic Collaborative Filtering.
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