
Document Classification on Neural Networks Using Only Positive
Examples

L a r r y M. M a n e v i t z
Mal ik Youse f

Department of Computer Science, University of Haifa, Haifa, Israel

MANEVITZ~CS.HAIFA.AC.IL
YOUSEF~CS.HAIFA.AC.IL

A b s t r a c t
In this paper, we show how a simple feed-
forward neural network can be trained to fil-
ter documents when only positive informa-
tion is available, and that this method seems
to be superior to more standard methods,
such as tf-idf retrieval based on an "aver-
age vector". A novel experimental finding
that retrieval is enhanced substantially in
this context by carrying out a certain kind
of uniform transformation ("Hadamard") of
the information prior to the training of the
network.

1. I n t r o d u c t i o n
The goal of this research is to develop a filter that
can examine a corpus of documents and choose those
of interest.

This requires a method of defining what it means to
be "of interest" and a method of matching the docu-
ments to this definition. It is natural and convenient
to assume that the definition of interest be learned
(see also [4] and [6]) by observing examples, and,
in this context, it is pertinent to assume only posi-
tive examples. That is, one can have a sample set of
examples of documents which are "interesting" and
from this set develop a filter which can be applied
to select other such "interesting" documents. The
reason for using only positive examples is that one
can (i) obtain such examples simply by observation;
i.e. for many applications an "active" teacher will
not be necessary (ii) in many contexts, it is easier
to find "typical" examples rather than typical "non-
examples". See [2] for other papers on the use of
positive examples only.

Permmsion to make digital or hard copies of all or part of th,s work for
personal or classroom use m granted without fee provided that
copras are not made or distributed for profit or commerc|al advsn-
rage and that copras bear this not,ce and the full citation on the first page,
To copy otherwise, to republish, to post on servers or to
redmtrlbute to Itsts, requires prior specific permissLon and/or s lee.
SIGIR 2000 7/00 Athens, Greece
© 2000 ACM 1-58113-226-3/00/0007...$5.00

2. T h e N e u r a l N e t w o r k s Classifier
The basic design of the filter under discussion here is
a feed-forward neurM network. In order to incorpo-
rate the restriction of positive examples only, we used
the design of a feed-forward network with a "bottle-
neck", we choose a three level network with m inputs,
m outputs and k neurons on the hidden level, where
k < m. Then the network is trained, under stan-
dard back-propagation to learn the identity function
on the sample examples.

The idea is that while the bottleneck prevents learn-
ing the full identity function on m-space; the iden-
t i ty on the small set of examples is in fact learnable.
Then the set of vectors for which the network acts
as the identity function is a sort of sub-space which
is similar to the trained set. (This avoids the "sat-
uration" problem of learning from only positive ex-
amples.) Thus the filter is defined by applying the
network to a given vector; if the result is the identity,
then the vector is "interesting".

In most our experiments we used 20 real valued in-
puts and output and 6 hidden level neurons. All neu-
rons were standard sigmoids. Training proceeded ac-
cording to standard back-propagation with learning
parameter .75 and momentum coefficient .08 until the
mean-square error fell below a pre-determined level.

For acceptance threshold determination, a sophisti-
cated method was used , based on a combination
of variance and calculating the optimal F1 measure.
(See below and [7] for a definition of F1 .) During
training, we checked, at different levels of error, the
F1 values of the test set. We stop the training at the
point which F1 started a steep decline. Then we did a
secondary analysis to determine an optimal real mul-
tiple of the standard deviation of the average error to
serve as the threshold.
We also examined our neural network filter with dif-
ferent sizes of input and output , (corresponding to
different numbers of features from the document, see
below) in order to investigate how this influenced the

304

performence of the classification task. (See table 2.)

2.1 T e x t R e p r e s e n t a t i o n a n d F e a t u r e
S e l e c t i o n

To implement the bottleneck filter, we ran experi-
ments with several different representations. In addi-
tion, as a comparison, we ran a different algorithm,
that simply takes the average vector of the sample
examples as a prototype vector and defines the tol-
erance as the largest angle between this prototype
and all sample examples. The filter then accepts all
documents whose vector representation is within this
tolerance. (Note that this is similiar to the Rocchio
algorithm [1] although we are using only positive ex-
amples to determine the angle.)

One can use , instead of the word frequency, the tf-
idf (term-frequency-inverse-document- frequency)
representation [5] which is given by the following for-
mula (where f(word) meand the frequency of the
word in the document and N(word) means the num-
ber of documents the word appears in):

tfidf(word) = f(word) . [log N(word) + 1].

To explain our heuristic mix of neural network en-
coding and heuristic choice of representation, we will
need a few definitions:

Let C, the "corpus" be the set of documents to be
classified. Let T be a subset of C the class of "in-
teresting" documents. Let E be a subset of T, the
positive examples. The problem is to define a func-
tion (or "filter"), using only information from E that
distinguishes T from T, the complement of T.

We proceed as follows: Let D be the dictionary of
all words in I,J E; with each word is associated its
frequency in the list. Heuristically, we eliminate
words whose document frequency is less than 3; and
use standard algorithms to (i) eliminate connecting
words and (ii) strip grammatical endings from com-
mon words [3].

From this dictionary, we then chose the m words that
appear in the most documents of E. We call these
"key-words"; however they are chosen automatically.
This choice of m is was influenced by the compar-
isons with different choices of m (see table 2). For
later reference (see "Hadamard product" below) we
define vE as the m-dimensional vector consisting of
the frequencies of appearance of each of the keywords
throughout the dictionary. Then for each document
e E E we associate a vector of dimension m, which
we will continue to designate as e. Here el is the
frequency of the i th chosen keyword in the document
e .

2.2 H a d a m a r d P r o d u c t

We discovered experimentally that the following ad-
ditional transformation, .HE, of vectors substantially
enhances performance. Here

HE(ei) = ei .v~i,

i.e. take the component-wise product with the fre-
quency vector of the dictionary.

It seems reasonable to look for a Bayesean explana-
tion of this phenomenom. Let g represent a given
document, w~ the i th word in the dictionary, and E a
set of training examples. Assume that el represents
P(w~lg) and rE, represents P(wilE); i.e. the proba-
bilities of a chosen word being wi given that you are
either in the document being tested or in the class of
interesting examples. One can then argue (under cer-
tain independent assumptions) using Bayes rule that
the product vector is representing the adjusted prob-
ability of a word being chosen given that it is both in
the document g and an interesting example.

3. D a t a S e t , E x p e r i m e n t s a n d R e s u l t s
3.1 R e u t e r s - 2 1 5 7 8

To test the above ideas, we applied these filters to the
standard Reuters data-base, a preclassified collection
of short articles. This is one of the standard test-beds
used to test information retrieval algorithms. So C
is the overall collection of articles, and there are a
variety of subsets T.

For each choice of subject T, we used 25% of the
positive data to train; and then ran the filters on all
of C.
We treated each of the 10 categories as a binary clas-
sification task and evaluated the classifiers for each
category separately. For reporting the results we used
the F1 measure, the recall and the precision values.

For text categorization, the effectiveness meaure of
recall and precision are defined as follows, recall is
the number of items of category identified devide by
the number of category members in test set. precision
is the number of items of category identified devide
by total items assigned to category.

Van Rijsbergen [7] defined the Fl-meanre as a com-
bination of recall (R) and precision (P) with an equal
weight in the following form: F1 (R,P)= 2RP

R--I- P

In Table 1, we summarize the results for using Neu-
ral Networks classifier with Hadamard and frequency
document representation. The Prototype algorithm
is presented as baseline algorithms.The results show
that the Hadamard representation is superior, and
the Neural Networks is more superior than the Pro-
totype algorithm.

305

Table 1. Neural Networks (NN) Comparison of Hadamard and Frequency representation.
3resented as the baseline algorithm usin6 tf-idfrepresentation.

Ft NN(Hadamard)l:t P I NN(Frequency)Ft R P I F1 Prototypel:t [P

Earn 0.781 0.800 0.763 0.418 0.805 0.282 0 .637 0.569 0.724
Acq 0.534 0.598 0.483 0.347 0.363 0.332 0.468 0.492 0.446
Money 0 .542 0.641 0.470 0.475 0.420 0.546 0 .484 0.500 0.470
Grain 0.415 0.394 0.439 0.379 0.355 0.408 0.402 0.320 0.542
Crude 0.537 0.505 0.573 0.476 0.410 0.566 0.398 0.322 0.520
Trade 0.573 0.600 0.547 0.536 0.513 0.561 0 .557 0.503 0.623
Int 0.496 0.416 0.616 0.478 0.405 0.583 0 .454 0.440 0.468
Ship 0.393 0.328 0.492 0.388 0.400 0.376 0.370 0.358 0.382
Wheat 0 .507 0.446 0.588 0.414 0.430 0.400 0.262 0.263 0.260
Corn 0,310 0.451 0.236 0.315 0.434 0.247 0.230 0.423 0.158
Average 0.508 0.517 0 .520 0.422 0.453 0.430 0.426 0.419 10.459

Prototype algorithm is

In Table 2, using only the Hadamard representation,
we investigated the affect of increasing the dimension
of the features. (That is, allowing a larger number
of key-words, while keeping the size of the hidden
level the same.) We see some improvement but not
dramatic.

Table 2. Corn 9arison of different sizes of Networks Using
Hadamard Re presentation

NN size 20 140 IJ 60 I 1°° 1 200 I
Fx F1 Fi F1 F1

Grain 0.415 0 5 0 4 0 . 5 1 5 05 8 0 37
Crude 0.537 I 0.591 II 0.565 I I 583 I
Trade 0.57310.605 ~ o .6161o.6o21o.6031
Interest 0.496 0.504 0.497 0.528 0.510

4. S u m m a r y

The basic result can be summarized as follows: (i)
Using the autoencoder neural network works. (ii) It
is sensitive to the choice of representation, a. Rep-
resenting documents by tf-idf in this context fails, b.
Representing documents by frequency works reason-
ably. c. Modifying the frequency representation by
a "Hadamard" operation results in substantially im-
proved results.

5. A c k n o w l e d g e m e n t s

This work was partially supported by HIACS, the
Haifa Interdisciplinary Center for Advanced Com-
puter Science. This work is part of a doctoral thesis
of the second author.

R e f e r e n c e s

[1] T. Joachims. A probabilistic analysis of the roc-
chio algorithm with tfidf for text categorization.
Technical report, School of Computer Science,

Carnegie Mellon University, Pittsburgh, 1996.

[2] S. Muggleton. Learning from positive data. Ma-
chine Learning, 1999.

[3] M. Porter. An algorithm for suffix stripping, pro-
gram, (14):130-137, 1980.

[4] C. Quek. Classification of world wide web docu-
ments. Master's thesis, School of Computer Sci-
ence Carnegie Mellon University, 1997.

[5] G. Salton and M.J. McGill. Introduction to Mod-
ern Information Retrieval. McGraw-Hill, Berlin,
1983.

[6] B.D. Sheth. A learning approach to personal-
ized information filtering. Master's thesis, Mas-
sachusetts Institute of Technology, 1994.

[7] C.J. van Rijsbergen. Information Retrieval. But-
terworths, London, second edition, 1979.

306

