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Abstract— Using Machine Learning Tools (Neural Net-
works and Support Vector Machines) we show how raw
fMRI brain scan data can be correctly assigned to cognitive
tasks.

We describe experiments classifying visual and motor
tasks using one-class and two-class labeling for training.
No a priori knowledge (e.g. of anatomy or physiology) is
needed for the system to work.

These results further suggest that feature reduction
techniques may allow for the automatic location of brain
areas correlated with specific cognitive tasks - possibly even
when the needed features are not localized.

I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) [1] is
an imaging technique which can be used in principle to
map different sensor, motor and cognitive functions to
specific regions in the brain. fMRI allows the carrying
out of specific non-invasive studies within a given
subject while providing an important insight to the
neural basis brain processes (Figure 1 shows a slice
overlying of fMRI scans). Neurons, which are the basic
functional unit of the brain, consume a higher level of
oxygen when active, hence blood with a higher level of
oxygenation is supplied to those active neurons. fMRI
makes indirect use of this effect by detecting areas
of the brain which have an elevated consumption of
oxygen. This effect can be used to identify areas of the
brain associated with specific functions.

The current methodology used to identify such regions
is to compare, using various mathematical techniques
[2], [3], the elevation of oxygen consumption during a
task with that used during a resting state.

We are interested here in theinverse problem - given
the entire fMRI data, to classify the cognitive task the

subject was engaging in. This is a challenging task since,
amongst other things, the subject may be engaged in a
variety of tasks; the dimension of data (i.e. the number
of pixels in the fMRI) is enormous; and without more
information, the signal to noise ration may be quite poor.
(That is, probably most dimensions are irrelevant to a
classification.)

One can think of this as a standard classification prob-
lem; and in this context one can use either clustering,
one-class or two-class techniques.

From the standard two-class perspective, [4] applied
machine learning techniqes to this problem, when con-
sidering the classification of the cognitive state of a
human subject. [5] presented initial work on this problem
using Kernel Canonical Correlation Analysis (KCCA)
[6], [7]. Thus, in order to determine the elevation of
oxygen consumption during a task, images acquired
during a resting state are required for the second class. In
order to keep the alternation between activity, a reference
time-course is needed, where the resting and active states
are embedded. A commonly used reference time-course
is the square-wave time-course as plotted in Figure 2.

[8] first considered the problem of identifying fMRI
scans that have only been acquired during the “active”
state, i.e. scans acquired during the duration when
the human subject has performed the given task. In
machine learning terminology, this is called ”one-class”
classification, because the learning method is trained
solely with positive information. The basic intuitions
are that, if available, two-class classification should
perform better; although not always [9]. However, as
is the case under consideration here, often we have
some reasonable sampling of the positive examples; i.e.
the distribution of positive examples can be estimated;



Fig. 1. Overlaid fMRI slices of the brain.

while the negative examples are either non-existent or
episodic; i.e. not necessarily representative.

Obtaining good results under this assumption is
known to be quite challenging [10], [11], [12], [13];
nonetheless it is often the most realistic assumption.
Moreover, although not addressed in this paper, in
principle one can imagine combining the one-class
approaches with clustering methods which would allow
the development of classification without any a priori
labeling. We hope to address this issue in a later paper.

For the fMRI classification described above, this prob-
lem is particularly non-trivial as we expect the data to be
of very high dimension and extremely noisy, as the brain
concurrently works on many given tasks. It is also quite
natural to assume that there is only representative data
of the task of interest; and not necessarily representative
data of the negation of this task thus making the one-
class learning techniques appropriate.
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Fig. 2. The commonly used square-wave reference time-course.

In this work, we investigated both one-class and two-
class learning regarding data involving both motor tasks
(where we imagine important features to be in the motor
cortex) and visual tasks (where we imagine important
features to be in the visual cortex). These data sets
were generously provided by Ora Friman (currently of
Harvard Medical School) for the motor task and by Rafi
Malach (of the Weizmann Institute) for the visual task.

An earlier report on this work (involving part of the
one-class results only) was reported in [8].

The paper is organized as follows: Section II de-
scribes the methods and results obtained using one-class
methodologies. Section III does the same for the two-
class case. Section IV discusses possible extensions of
our work, and mentions how it might be useful for the
opposite problem of identifying brain features related
to specific cognitive tasks. Section V summarizes our
conclusions.

II. ONE-CLASS RESULTS

We used two major one-class learning techniques
- ”bottleneck” or compression neural networks [10]
and a common version of the one-class Support Vector
Machine (SVM) [14], [10] on brain slice data obtained
from fMRI obtained while a subject is doing a simple
motor (”finger lifting”) task. We point out that we use
the entire brain slice, with no pre-filtering - i.e. the data
is the entire slice, labeled with the task.1 In addition,
since we use data where there was, in fact, two-class
labeling, we use this to illustrate the difference in the
two methodologies, and how much classification ability
is lost.

A. One-Class Methods

We use two techniques for the one-class approach.
The first one is the compression neural network method
[15], [16], [10]. We apply a design of a feed-forward
neural network where in order to accommodate the usage
of only positive examples we use a “bottleneck”. A
bottleneck feed-forward network has the assumption that
the images are represented in am dimensional space
where we choose a three level network withm inputs,
m outputs andk neurons on the hidden level, where

1In early simulations because of computational limitations, we
manually reduced the brain to one quadrant, where the motor cortex
is known to lie. This reduction increased the efficacy of the methods
presented here, for example, lifting the classification of the compres-
sion neural network for the motor data. This suggests that further
research in feature reduction will improve all of the results.



m > k. Figure 3 gives a graphical example of the bot-
tleneck network. This network is then trained using the
standard back-propagation to learn the identity function
on the sample example [10]. Thus the architecture of the
bottleneck neural network used, is that of a feed-forward
one with three layers, an input, hidden and output
layer. All the neurons used were standard sigmoids and
initial weights were chosen as small random values. We
have used the standard back-propagation in the Neural
Networks Toolbox in Matlab, where we have trained for
20 epochs which we observed avoids overfitting.

Trained Identity Function

Input

Compression
(dimension k)

Output
(dimension m)(dimension  m)

fully connected fully connected

Fig. 3. Bottleneck NN Architecture

[10] showed that much thought is needed for select-
ing a good threshold procedure. [16] has suggested a
heuristic approach to the threshold selection using only
the positive information. This is done by training the
network for some predetermined number of epochs and
to relax the maximal error obtained by some percentage.
[10] have tested this approach with poor results, and
have suggested a similar method that is opposite to [16].
Instead of relaxing the maximal error obtained on the
training they tighten the threshold by an amount heuristi-
cally related to the percentage of near zero vectors in the
training set. In this work we suggest a different approach.
Experimentally we found that the error during training
exhibits a behaviour of having two spikes of high error,
whereas following the second spike the error reduces to
near zero. We thus take the threshold as the value of the
error following the second spike. In figure 4 the error
during training and average error on testing is plotted.

We are able to observe that the average error on testing
is roughly the same as the value following the second
spike.
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Fig. 4. Error during training and average testing error.

The second method used is the one-class Support
Vector Machine (SVM) method [14]. Under this method,
instead of separating positive and negative samples in the
kernel feature space, as in standard (two-class) SVM,
the origin is the only negative sample and therefore the
method separates the positive samples from the origin via
using relaxation parameters in SVM. We use the OSU-
SVM 3.00 package2 for Matlab for the one-class SVM
experiments. Full details regarding the approaches can
be found in [14], [17].

B. Two-Class methods

To discuss the difference in performance between one-
class and two-class methods on the motor task, we also
used a regular two-class SVM on this data. We used the
OSU-SVM 3.00 package with the default settings for
two-class SVM experiments.

C. Motor Task Experimental Protocols

The fRMI scans are of a volunteer3 flexing their index
finger on the right hand inside a MR-scanner while12

image slices of the brain were obtained from a T2∗-
weighted MR scanner. Figure 5 gives an example to
the extracted slices from the brain. The time-course
reference of the flexing, as plotted in Figure 2, is built
from the subject performing a sequence of 20 total
actions and rests consisting of rest, flex, rest,. . . flex
(an example for the rest, flex sequence on the MRI
images is given in Figure 6). Two hundred fMRI scans

2OSU SVMs Toolbox http://www.ece.osu.edu/∼maj/osusvm/
3Provided by Ola Friman [18].



are taken over this sequence; ten for each action and rest.
The individual fMRI images are dicom4 format of size
128× 128. Each image is labelled as either1 (active) or
−1 (inactive). The labelling was done manually at the
time of the scans.

Fig. 5. Extracted slices of the brain.

Fig. 6. The time-sequence with the images sequence.

Thus, in our data we have100 positive and100

negative images for each of the12 slices. For the
bottleneck neural network80 positive samples were
chosen randomly and presented for training and40

samples, consisting of the remaining20 positive and20
random negative samples, were used for testing. This
experiment was redone with ten independent random
runs. The limitation to20 negative samples out of a
possible100 was chosen to keep the testing fair between
the positive and negative classes. We manually cropped
the non-brain background from the scans; resulting in
a slightly different input/output size for each slice of
about8, 300 inputs and outputs.

The compression percentage arising from the bot-
tleneck was chosen by experimenting with different
possible values. Table I shows some typical results. A

4For information regarding dicom see http://medical.nema.org/

uniform compression of about60% gave the best results.
for the hidden layer. The irrelevant (non-brain) image
data was cropped for each slice resulting in a slightly
different input/output size for the network for each slice.

TABLE I

BOTTLENECK COMPRESSIONCOMPARISON

Method Result on slices Compression
BN - NN 56.19% ± 1.26% 60%

BN - NN 56.02% ± 0.89% 70%

BN - NN 54.79% ± 0.90% 80%

Thus a typical network had an architecture of about
8, 300 (input level)× about2, 500 (compression level)
× 8, 300 (output level). The network was trained to
the identity using20 epochs on the above chosen
data. Following training the network was used as a
classification filter, with an input value being classified
as positive if the error level was lower or equal to
a threshold as defined in the previous section and
classified as negative. We used the same protocol in a
one-class SVM.

Additionally, we used the two-class SVM where we
randomly selected160 training images and the remaining
40 for testing. This was also repeated10 times.

D. Motor Task Experimental Results

We performed this experiment twice; by running an-
other fMRI session on the same individual performing
the same task. We report the results of each session
separately.

The obtained results are an average over all the slices.
Each slice was averaged over10 repeats where in each
repeat a random split of training testing was selected.
Both SVM classifiers were used in their default setting as
set by the OSU-SVM3.00 package with a linear kernel
with C = 1 and a radial based (RBF) kernel withγ = 1,
the one-class SVM was used withν = 0.5. In addition,
the two-class SVM was used with the unnormalised data
as we have experimentally found that when the data was
normalised, as with the other methods, with the two-class
SVM the overall results were significantly worse.

1) Session 1: In Table II the SVM results for the
linear and RBF kernel are presented, we are able to
observe that while the one-class SVM performs better
with the RBF kernel, the two-class SVM is better with
the linear kernel.



TABLE II

SVM RESULTS.

Method Linear kernel RBF kernel
One-class SVM 49.12% ± 0.86% 59.18% ± 1.47%

Two-class SVM 68.06% ± 2.10% 44.70% ± 1.12%

In Table III we compare the one-class to two-class
techniques for the motor task. As initially expected
we are able to observe that the two-class approach
outperforms those of the one-class. The one-class SVM
is slightly better then the bottleneck compression NN.
We further analyse the statistics of the methods i.e. the

TABLE III

METHODS SUCCESS RESULTS.

Method Result on slices
BN - NN 56.19% ± 1.26%

One-class SVM 59.18% ± 1.47%

Two-class SVM 68.06% ± 2.10%

separation of the classified samples to their true classes.
In Table IV5 we compute and show the statistics of the
fMRI images of the Positive samples that were classified
as positive, denoted as true-positive, and the positive
samples that were classified as negative, denoted as false-
negative. While in Table V the statistics of the negative
fMRI images samples that were classified as negative,
denoted as true-negative, and those that were classified
as positive, denoted as false-positive, are presented. We
observe in Table IV that the compression NN is able to
find a higher rate of true-positive fMRI images then the
one-class SVM and the two-class methods even though
they have obtained an higher overall success rate. In
Table V we observe that the two-class methods perform
better then the one-class. This is expected as the one-
class methods make no use of the negative samples and
eminently will have a lower ability in classifying it.

TABLE IV

METHODSSTATISTICS - POSITIVE TESTING SAMPLES

Method True-Positive False-Negative std
BN - NN 78.96% 21.04% ±3.15%

One-class SVM 72.83% 27.17% ±1.98%

Two-class SVM 71.55% 28.45% ±3.21%

5std stands for Standard Deviation

TABLE V

METHODSSTATISTICS - NEGATIVE TESTING SAMPLES

Method True-Negative False-Positive std
BN - NN 33.42% 66.58% ±3.45%

One-class SVM 39.25% 60.75% ±3.25%

Two-class SVM 65.64% 54.46% ±3.02%

2) Second Session: Corroborating our results by run-
ning the same experiments on another fMRI session
of the same individual performing the same task as
described above. The experiments have been run with
the same configurations of the compression NN and
one/two-class SVM. Table VI show the success rate
in correctly classifying the fMRI scan of the second
session. We find that compression NN is slightly better
then the one-class SVM by≈ 4%. Tables VII and VII
give the statistics of the positive and negative testing
samples. We are able to observe that even though the
one-class SVM is able with a higher rate to correctly
classify the positive scans, its ability to distinguish
the negative from the positive is much lower then the
compression NN.

TABLE VI

METHODS SUCCESS RESULTS ON SECOND SESSION.

Method Result on slices
BN - NN 58.92% ± 2.03%

One-class SVM 54.81% ± 1.18%

Two-class SVM 69.56% ± 4.12%

TABLE VII

METHODSSTATISTICS (SECOND SESSION) - POSITIVE TESTING

SAMPLES

Method True-Positive False-Negative std
BN - NN 72.96% 27.04% ±4.06%

One-class SVM 84.96% 15.04% ±2.04%

Two-class SVM 72.49% 27.51% ±3.59%

TABLE VIII

METHODSSTATISTICS (SECOND SESSION) - NEGATIVE TESTING

SAMPLES

Method True-Negative False-Positive std
BN - NN 44.88% 55.12% ±3.82%

One-class SVM 24.67% 75.33% ±3.24%

Two-class SVM 67.51% 32.49% ±2.17%



III. T WO-CLASS RESULTS ON AV ISUAL TASK

In this section we present initial work done on a
more complicated visual task where fMRI scans of 4
volunteers6 watching five different categories of images
while 58 image slices of their brain were taken in the
MRI machine. The categories are of; Faces, Houses,
Patterns, Objects and Blank. The different category
images were displayed in alternating order,7 repetitions
for 3 time points each. Altogether21 time points
(images) per slice. The blank scene was shown to the
volunteer in the start of the experiment for6 time points
and in-between repetitions and alternations of the main
categories for2 time points (a total of56 time points).
The over all time point length of MRI scans is147.
The individual fMRI images are dicom format of size
40× 46. (In the data available part of the brain was not
scanned.) Unlike the motor task described in section
II, we usedall of the slices together as one data point.
Thus the dimension of a data point is in principle about
106, 000. 7

We did two separate analyses of the data; once training
between a specific category and blank for a specific
subject; and once combining all three subjects into one
data set and training between the specific categories and
blank. All training was for specific categories versus
blank. We used one subject, ”A”, to find the global SVM
penalty parameterC. We then used this parameter for the
other subjects and did not use the data of ”A” again.

For the first analysis case, we had 21 positive labels
and 63 negative ones for each subject; while for the
second case we had 63 positive labels and 189 negative
ones.

Each analysis was rerun 10 times with a random
permutation of the training-testing split.

The results for the first analysis can be seen in Table
IX while the results for the second analysis can be seen
in Table X.

The results show a success rate of about 90% for each
category trained for separate individuals and close to the
same rate for the combined analysis.

IV. D ISCUSSION

A. One-Class Results and Methods

The classification results trained with either the Bot-
tleneck Neural Network or the One Class SVM are on

6Provided by Rafael Malekh [19], [20]
7In actual fact, on the data supplied, part of the brain was not

scanned, so the actual dimension used was about 53,000.

the one hand, substantially above random, and thus show
that these methods can indeed be trained to find the
information for these tasks.

On the other hand, the results (about 60% accuracy)
are not yet sufficient for practical application. Since, for
many tasks, it is unreasonable to expect to have the
neat negative examples, as we had in the Motor Class
protocol, it is important to find ways to leverage these
results. Moreover, if we in fact were to take arbitrary
negative slices (NOT from the protocol), one should
expect that the advantage of the two-class would decline.

Looking at the results of the NN and the One-Class
SVM, it is striking that they are quite successful at
learning the positive class; but not as successful as ruling
out the negative one.

B. Feature Selection, Applications to Brain Mapping
and Other Future Work

It is important to emphasize that the two cognitive
tasks were done in different ways. The Motor Task data
were analyzed with separate slices; i.e. not as the full
three dimensional brain.

This was done because of limitations of both data and
computational ability at the time. The results reported
are thus the average results over the different slices. In
juxtaposition to that, the visual task used the entire three
dimensional brain.

Looking over (not reported here) the data from the
slices, there is a big variance between the results from
the separate slices. This is to be expected, since it is quite
possible that some of the slices have very few features
that are in fact related to the task. Thus those levels
should be only slightly above random choice, which is
in fact what was observed. One could alleviate this by
reporting only the maximal result and assume that as a
by-product the machine learning is also picking out the
appropriate levels.

However, there is no reason to assume that the features
are in fact located in a specific slice; or certainly in the
slices that were available.

This situation suggests using the machine learning to
narrow in on the significant features. There are several
ways to do this; one method currently under development
will remove areas of the brain; redo the learning and then
see if there is a loss in the results. If there is not, then
that part of the brain, with all of its features can be safely
eliminated. A binary search can then be used to ”focus
in” on the areas which are pertinent. This method can be
combined with different focusing strategies and we will



TABLE IX

SEPARATE INDIVIDUALS - SVM PARAMETERSSET BY SUBJECTA

Face Pattern House Object
Subject B 83.21%± 7.53% 87.49%± 4.20% 81.78%± 5.17% 79.28%± 5.78%
Subject C 86.78%± 5.06% 92.13%± 4.39% 91.06%± 3.46% 89.99%± 6.89%
Subject D 97.13%± 2.82% 93.92%± 4.77% 94.63%± 5.39% 97.13%± 2.82%

TABLE X

COMBINED INDIVIDUALS - SVM PARAMETERSSET BY SUBJECTA

Face Pattern House Object
B & C & D 86.00%± 2.05% 89.50%± 2.50% 88.40%± 2.83% 89.30%± 2.90%
(combined)

hope to report on various experiments in this direction
shortly.

We hope that such a method of eliminating features
will allow a substantial boosting of the results.

In addition, we envisage the possibility of using such a
search to discover appropriate areas pertinent to various
cognitive tasks - that is, we hope in this way to also
use the machine learning tools on theopposite task,
automatically locating areas of the brain related to spe-
cific cognitive tasks. Note that, in principle, such areas
do not need to be spatially compact; which no current
techniques can find.

C. Future Work

• We feel that further investigation on automated
feature reduction might be fruitful.

• Comparison of the same individual across sessions.
• Compare training between distinct active lables in

the visual task.
• Further comparison of training across individuals.
• Technically, we feel that further work can be done

in the threshold selection for the compression neural
network.

V. CONCLUSIONS

• One class classification can be done, even with the
”noisy” data and even with the full slices of the
brain scan.

• Comparable results (about 58% accuracy) were ob-
tained under both one-class SVM and Compression-
Based Neural Network techniques.

• Two class classification on Visual data using stan-
dard SVM techniques results in close to 90% accu-
racy.

• We have proposed methods to bootstrap our results
which we will apply in future work.
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