
Automating the Finite Element Method: A Test-Bed forSoft Computing�Larry Manevitz1 and Dan Givoli21Department of Computer ScienceUniversity of Haifa2Faculty of Aerospace EngineeringTechnion - Israel Institute of TechnologyHaifa, IsraelAbstractThis paper is an interim report on a programme to automate the �nite element method.The overall programme is discussed, and the implementations of three speci�c sub-problems(node numbering, mesh placement, and adaptive meshing) are described. It is also argued thatthe overall architecture of an "intelligent �nite element package" can serve as a \test-bed" formany soft-computing techniques.Scienti�c BackgroundThe �nite element method (FEM) is a computationally intensive method for the numericalsolution of partial di�erential equations. It is a widely used tool and in many cases is the method ofchoice. This is especially (but not exclusively) true in structural engineering and solid continuummechanics. The �nite element procedure has been proved most e�ective when applied to linearboundary value problems in spatial domains which are complicated geometrically. (See e.g. [16])Basically (and oversimplifying) the FEM works, by deciding a priori on a certain kind of simpleapproximation to the solution, and by dividing up the region of solution into small "elements",and allowing the parameters of the simple approximations to vary from element to element. Therequirement that the individual local solutions remain consistent together with e.g. boundaryconditions, results in linear constraints on the parameters. These are then solved by standard linearalgebra techniques.However, in practice one can not use the FEM as a \black-box" solver; i.e. it is not su�cientto know the governing equations, the geometry, and the boundary and initial conditions in order toobtain high-quality numerical results. It is well appreciated among �nite element users in industrialand scienti�c communities that the successful application of this technique requires substantialamount of experience and expertise in order to make the computation feasible and the resultsaccurate at the same time. This is true with regard to any of the large commercial �nite elementpackages available currently, although various codes may have a di�erent amount of 
exibility.This is because there is a very large number of parameters that need to be chosen; computationallimitationsmake the choice of these parameters crucial for successful use. These are knowledge based�Partially supported by joint U.Haifa-Technion Research Grant1



requirements; and current usage requires much human expertise. There are no known e�ectivealgorithms that can replace a human user in all cases; and many of the problems are known to becomputationally intractable in the general case [11].On the other hand, the complexity of some of the problems are beyond the realm of e�cientmanual control (e.g. in more than two dimensions or in quite complicated situations like parallelimplementations which are not directly amenable to human intuitions).In recent years there has been a large development of tools for arti�cial intelligence, neural net-works, fuzzy logic and related disciplines, (called by some "Soft Computing" [34], [33] [32]), whichour work and analysis indicate are applicable to the problems under discussion here. Each problemcan in fact be attacked by a number of methods, but usually a certain approach suggests itself asthe most promising one in each case. Thus expert system technology [6] seems most appropriate toreplace human numberers, self-organizing neural networks [19] and fuzzy logic "critics" [32] seemappropriate for mesh placement, neural network non-linear predictors are appropriate for dynamicmesh placement for solutions to time dependent PDEs [31] , distributed arti�cial intelligence [27]and genetic algorithms [14] can be appropriate for load balancing in parallel computation, and soon . The speci�c problems and tools we have in mind are described in �gure 2.Our main goal in working on the �nite element method is, of course, the automation of the method;and any e�cient means towards that is welcome. In this paper, we report on our results so far.In addition, we have come to realize [35] [13] that the FEM serves as a rich test-bed appropriatefor the serious use of these techniques in real world (i.e. non-\toy") problem settings. Evaluatingthese techniques in realistic settings is in itself an important research goal. In fact, our initial workhas already resulted in advancing somewhat [21] one of the most classical neural network algorithmsas a result of evaluating the needs in the realistic setting.We point out that since one can compare results with analytic ones in certain settings, it allows forquantitative evaluation of the e�ectivity of the techniques. In principle, this allows to compare andevaluate competing techniques and directions both between themselves and with current commercialpackages.By a test-bed we have in mind the a system which allows one to implement a variety of techniqueson various problems, run it easily on "real-world" applications, and be able to do some sort ofevaluation/comparison studies with other techniques.Intelligent automation of the FEM can be appropriate for this because� There are a wide variety of optimization/satisfaction sub-problems to be solved. Varioustechniques are applicable to the di�erent problems.� The architecture of the automation is modular. This means that each of the sub-problemscan be solved more or less independently. ("More or less" means that when all the solutionsteps are in place, one has to consider another optimization problem concerning trade-o�s.However, this a�ects only the potential optimality of the FEM solution, and not the e�ectivityof the individual steps.) Each of the steps can be evaluated individually or how it a�ects theglobal quality of the numerical solutions.� The nature of the FEM, a numerical solver for partial di�erential equations, makes it easyto generate test problems. In fact any partial di�erential equation with boundary conditionsde�nes a test case. This means it is almost as easy to work on real world problems as onarti�cal simple or "toy" ones. One can also provide test cases with analytic solutions toprovide a natural "gold standard" for evaluations.� The importance of the FEM means that there are commercial codes available for comparison.2



Dynamic Load Balancing

Division of Body into "Simple Bodies"

Choice of Approximating Elements

Allocating Resources to Sub-Bodies

Placement of Geometry on Topology

Efficient Numbering of Nodes

Choosing  Topology of Mesh

Solving Linear Equations Adapting the MeshFigure 1: Some general tasks in the Finite Element Method.Some Sub-problems for the Finite Element MethodIn Figure 1 , we list some of the human-based tasks that must be performed in using the FEM.Figure 2 lists some corresponding possible techniques.So far, together with our students Miha Margi and Malik Yousef, we have implemented twoof these solutions: (automated mesh numbering via an expert system and mesh placement via aself-organizing neural network). In addition a third sub-problem (mesh adaptivity) is under currentdevelopment using feed-forward neural network run in a temporal predictive mode. In the followingsections, we sketch the results of these sub-problems (full details appear or will appear elsewhere[13], [35]).Heuristically Numbering the NodesWhen applied to linear boundary value problems, the �nite element discretization of the governingpartial di�erential equations leads �nally to a linear system of algebraic equations (see [16]),Kd = F. Here K is the so-called sti�ness matrix, F is the load vector, and d is the vector of unknowns.The dimension of the system (1) in typical industrial applications is of order 100 or 1000 or even10000. The computational e�ort involved in solving such a large system is reduced considerablybecause most entries Kij are zero; i.e. it is a sparse matrix.The degree of sparseness of K depends on the speci�c �nite element discretization of the spatialdomain, or more explicitly on the �nite element mesh. The spatial domain is divided into elements,3
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Figure 2: Table of Problems and Soft Computing Solution Approacheswhich are connected to each other by nodes. In two dimensions, the elements may be quadrilateralor triangular, and the nodes are their vertices. Points on the edges and in the interior of the elementsmay also be de�ned as nodes.Two nodes are said to interact if they both belong to a common element in the mesh. If thereis a total number of N nodes in the mesh and they are numbered from 1 to N , then Kij 6= 0 onlyif nodes i and j interact. Thus the structure of the sti�ness matrix is determined by the nodeinteraction. Since the mesh is typically imposed on a physical domain and thus can be thought ofas a planar or spatial graph, most Kij are zero, i.e. K is sparse.The discussion above implies that the order in which the nodes are numbered is crucial, sincethis numbering determines how sparse K is. Note �rst that optimal numbering of a given mesh isan NP complete problem ([11]). Thus for a mesh containing a large number of nodes and elementsit is of course impractical to �nd an exact solution for the optimization problem by performing a fullenumeration. However, there are so-called "algorithmic" solutions which have been incorporated incommercial software. Anecdotal evidence about this software reports that: (i) a human expert canoften outperform it. (ii) The best such algorithms typically result in rather complicated numberingsinvolving substantial "windings" and for some applications there is an advantage in the simplicityof the numbering. (These algorithms include the methods described by Cuthill and McKee [4], King[18], Collins [3], Akin and Pardue [1] Gibbs [12] Razzaque [26] [20], Pina [24] Sloan and Randolph[28], Fenves and Law [8], and Sloan [29].)According, we decided to test the feasibility of developing an expert system to try and mimic theheuristic mechanisms of a pro�cient human numberer. Actually only some of the possible heuristicswere implemented, but the system proved to compare favorably with the human user on a varietyof test examples. (Full details appear in [13] .)In order to state the optimization problem mathematically we introduce some notation. Letthe dimension of the matrix K be N � N . Let bi be de�ned as bi = i + 1 �maxKji 6=0 j : In otherwords, bi is the height of column i starting from the diagonal and up to the skyline. Now, letthe average half bandwidth AHB and the root-mean-square bandwidth RMSB be de�ned as AHB =1=N PNi=1 bi; RMSB = (1=N PNi=1 bi2)1=2: It is apparent that the bandwidth depends on the nodalnumbering system. This dependence becomes strong for large meshes. The optimization problemunder consideration can thus be stated as follows: Find a numbering system for the nodes (from 14



to N) such that AHB (or RMSB) will be minimal.A brief description of the expert system characteristicsOne of the hardest steps in producing an expert system is to construct the heuristics according towhich the expert system will perform, and which will mimic the considerations of a human expert.To this end, we note the following functions typically performed when numbering the nodes of a�nite element mesh manually and brie
y comment on our system's approach to these tasks.0. Preparation of numbering strategies for \paradigm simple blocks" with di�erent geometries andtopologies. Varying parameters of freedom are associated with each strategy. These strategies areachieved by experience, by trial and error, and sometimes by full analysis. This step is not "per-formed" for each mesh separately, but is rather a data base of knowledge an expert has accumulated.Examples of simple blocks are rectangles, annuli, discs.1. Subdivision of the mesh into a disjoint union of simple blocks. Our system does not performthis, but receives it as given.2. Choosing the order in which these blocks are picked for numbering.In this step the order of the simple blocks is determined. To optimize the numbering a user triesto keep the node numbers as continuous as possible. However when passing from block to blockthis is often impossible. Thus the goal is to keep the \jumps" across block interfaces as small aspossible. In the discussion that follows, a component is a topological component, i.e. a maximalconnected sub-body.In the implemented system the procedure for block ordering is as follows:� Choose the �rst block to be numbered as the largest simple block, based on the number of nodes.� Remove this simple block from the mesh. (This may cause the remaining mesh to have severaldisconnected components.)� Place all resulting separate components in increasing order in a stack.� Until the stack is empty do the following: � Remove the smallest component from the stack.� From the chosen component, choose the next simple block to be numbered in the following way:� Consider all simple blocks in the component with an interface with the previously numberedblock (there are always such).� Choose the one with the largest interface.� Remove the chosen block from the component. (This may divide the remaining blocks intoseveral connected components.)� Place the new components on the stack in increasing order.See �gure 3 for an example of how the blocks are numbered.3. For each block, choosing a numbering strategy, depending on the topology and the geometry ofthe block. That is, choosing the best match to a paradigm simple block. Essentially this has twoparts: (1) solution of a pattern recognition problem; i.e. given a simple block �nd which of theparadigm simple blocks it is closest to; (2) after identi�cat ion choosing a numbering method forthe block form amongst the possible methods mentioned in step 0.In the implemented version, all the blocks are assumed to be pseudo-rectangles and there is onlyone numbering strategy for numbering rectangles, so this step is to a large extent vacuous.Notwithstanding, it remains for the system to perform the following analysis: (a) to decide onthe orientation of the block, regarded as having a rectangular shape; (b) to be able to ignore smallperturbations. The �rst is done using an algorithm involving the convex hull of the block andregression ; the second is accomplished using a heuristic (also involving the convex hull) that de�nesa "grain size". 5
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(i)Figure 3: Ordering the simple blocks4. For each block, determining the free parameters associated with the strategy chosen for that block,such as the node from which to start the numbering. For the rectangular strategy which is handledin the implemented version, the only free parameter is the node from which to start the numbering,and there are four possibilities, corresponding to the four corners of the pseudo-rectangle. This isselected by a heuristic that is based on both topological and geometrical considerations.It is interesting and crucial to note that while the mesh is a purely topological object as far asnode numbering is concerned, the user decides on the division based not only on topological criteria,but also on geometric criteria. This is an obvious logical fallacy and it is easy to devise arti�cialmesh examples where the results are extremely bad. Nonetheless for real meshes the results seemacceptable.The reason why human users can be so successful in numbering meshes although basing theirdecisions on geometric considerations is that they intuitively rely on the fact that actual meshesare designed with implicit geometric constraints. For example, a good practice in mesh design isto use elements which have aspect-ratios close to unity, namely quadrilaterals and triangles whichare nearly equilateral. Another good practice is to pass from a crude region (large elements) to are�ned region (small elements) in a gradual manner. (See e.g. Irons and Ahmad [17].)Our expert system tries to mimic a human user; therefore it uses geometric considerations as wellas topological ones. This is in contrast to the \algorithmic approach", where only the topologicalproperties of the mesh play a part in the node reordering procedure.The system was tested on a number of meshes taken from the literature; here we mention thelargest mesh tested to date similar to one that appears in [36] which has 359 nodes and 559 triangularelements. Here the average half band width of the system was 17.6; that of the human expert was15.9 while for comparison a random numbering resulted in a value of 210.2.Some other meshes were taken from applications in large deformation continuum mechanics dis-cussed in [15] and solved by the �nite element code NIKE2D. The results were are quite comparableto that of the human expert. (In one case the expert system actually outperformed the humanexpert.)The results show that although the human expert performs better than the expert system, thedi�erences between the two AHBs are reasonably small. Other examples have been tested as welland the results compared favorably with those of a human expert.6



Iteration0; InitialSetup Iteration 500;Quality =288.10 Iteration2000; Quality= 237.78 Iteration4500; Quality= 226.00Iteration 6000Quality =222.81 Iteration12000 Quality= 207.79 Iteration30000 Quality= 202.46Figure 4: A sequence of snapshots of a mesh being placed via a NN algorithmMesh Placement via Self-Organizing Neural NetworksOnce a topological mesh has been de�ned (a problem we have suggested is appropriate for an expertsystem), the mesh has to be given its geometry; i.e. it has to be placed appropriately on the body.Moreover, there are points and regions which one wants to cover with a �ner mesh than other areas.These are regions or points of "interest" where the approximation used in the �nite element methodis intrinsically worse. Essentially it is an optimization problem; given a �xed amount of computationthat one wants to expend, which translates into a �xed amount of elements; how should one bestdistribute these elements so as to obtain the best approximation using the �nite element method.A better mesh results in a better approximation.There are several requirements for the quality of a mesh. For example, one wants the proportionsof the elements to be as close as possible to those with good aspect ratios (the aspect ratio is theratio of the radii of circumscribed circle to that of the inscribed circle; "good" means here closeto one). For a quadrilateral then, for the best results from the �nite element method one wantsquadrilaterals close to squares and triangles close to equilaterals. In addition, one wants the changein size between elements determined by the mesh to be gradual. Quantitatively, one wants to keepthe ratio of radii of circumscribed circles of adjacent elements to be close to one; globally that meansthat the maximum and minimum of such ratios of all pairs of adjacent elements should be as closeto one as possible.Moreover, in a typical �nite element mesh, the density of the nodes is taken to vary from beingvery high near certain critical regions or points to more sparse where simpler approximations willsu�ce.This can be handled using a modi�cation of Kohonen's self organizing the neural network ap-proach ([35], [22]) by setting the probability density function of the input to correspond to thedesired density of the network. The "self-organizing" feature of the Kohonen map will then placethe highest density of nodes according to the sampling of data according to this density function. Inthis implementation, one identi�es the weight of the neurons with the geometric coodinates of thebody. The Kohonen map results in an equiprobably response map of the neural net (constrainedby its given topology) subject to the sample data. Actually, the algorithm we use is a substantialadaptation of the basic Kohonen map since we require that the network map boundaries to bound-aries. This is accomplished by using a weaving of one dimensional and two dimensional Kohonenmaps. This is discussed further in [21]. Figure 4 gives a view of the algorithm in action.7



PLTMG 249 nodes NN 225 nodes; Quality =278.713715; ``Hot-spot" (2,2)near center; 46650 Iterations7-Sided Non-Convex Domain PLTMG (249 nodes, 437 elements) N N (225 nodes, 196 elements)Error/Node Error/Valueu(x; y) f(x; y) PLTMG NN PLTMG NNe�(x�2)2e�(y�2)2 �uxx � uyy 2.412143E-02 7.530449E-03 4.515054E-02 9.097765E-03Figure 5: A typical comparison between the NN and a commercial packageIn a series of experiments this algorithm was compared with one of the most popular �niteelement packages over a series of problems, and was found to be generally superior. Figure 5 givesa sample comparison with the PLTMG [2] package. Full details of this experiment can be found in[35].Dynamic Mesh Generation for Temporal PDEsTime is often treated distinctly from spatial dimensions in the solution phase of PDEs . That is,the typical method of choice for solution of such equations is not to treat time as simply anotherdimension, but to "simulate time"; i.e. to repeatedly solve the equations for di�erent times; usingthe previous solution as the starting conditions for the next one.However, in a dynamic system, this implies that one should not use the same mesh at di�erenttimes since the "areas of interest" are, of course, changing with time.For example, when the solution of a hyperbolic problem involves a shock wave which propagatesthrough the mesh, the location of the \area of interest," namely the shock vicinity, keeps changingin time. Another example is a problem of 
uid 
ow in a cavity, where 
ow cells are generated andundergo continuous changes in their shapes and size as time proceeds [9] .Thus the mesh choice should be dynamic; varying with time. In current usage, the method isto use the solution at time tn to indicate where the mesh should be modi�ed (where it should bere�ned and where it can be made coarser) at time tn+1. The work [9] used this mechanism.However, this su�ers from the obvious defect that one is always one step behind. If the area ofinterest is propagating (a common phenomenon) then one may be always re�ning directly behind themost interesting phenomenon. This is also assuming that one does not miss the "action" altogether.One can look at this as a special instance of a control problem.It would be preferable to "predict" the area of interest at time tn+1 based on the solution at tkfor k � n. There is what we propose to try using one of several neural network approaches. Since aNN is a universal approximator [5, 10, 25, 20] the intention is to use as input the areas of "interest"at recent times and predict the areas of interest at the next time stage.The simplest such mechanism is to use a feed-forward neural network trained with a delay to dothe prediction. This is what we propose to try using a neural network plant predictor, which hasbeen developed in the context of control theory and signal analysis [31, 30] . The basic idea can beseen in Figure 6. Various parameters; (e.g. function values at the node at several prior timesteps,values at neighboring nodes, distance from \anomalies" in the body) will be entered to the network;8
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     Adjacency to BoundaryFigure 6: A neural network designed to predictthe output will be an encoding on the need for re�nement following a delay.The problem in such an approach, is (1) to decide on the appropriate information to train thenetwork with, and (2) to decide on the appropriate breakdown into sub-problems. That is, althoughit is known that simple NNs are in principle universal approximators; in practice, one should notattempt to make one network do too many things, and the best results in the literature are obtainedwhen the NNs are applied to speci�c sub-problems.Such a mechanism was used to good a�ect in the recent work "GloveTalk" [7] where a neuralnetwork was taught to translate hand-language to phonemes by using varied information; includingrate of change of hand position. We mention this work, because we think its use of velocity;computed by including the values of a function over several time steps (and acceleration; by includingthe velocity over several time steps) as input to a NN is something that will be useful for ourimplementation. We anticipate including the solution over several previous time steps in order topredict where the solution will have a large change in the next time step. Substantial experimentationwill be needed to decide on the correct encoding of information for this prediction.Another breakdown we anticipate is the use of di�erent such neural networks for di�erent partsof the mesh. That is, we expect that training such a network will be more e�ective by dividing nodesin the mesh into di�erent classes and using separate nets for the di�erent classes. The underlyingphilosophy here is that the more similar the elements of a class are; the simpler the representationof the predictor function should be; and the easier and faster the training. For example, one woulduse a di�erent network for nodes near boundaries than ones in the interior of a body. On the otherhand, one does not want to divide the body into too many subclasses. (In the limit, this would leadto having a di�erent network for every node.) A predictor should work quickly, and thus use the"experience" gained at some nodes to predict density needs at others. A priori, it is our estimatethat such a method will work well on propagation solutions; such as occur in models measuring,e.g. the heat equation, or shock [23].References[1] J.E. Akin and R.M. Pardue, Element resequencing for frontal solutions, Mathematics of Finite Ele-ments and Applications (New York) (J.R. Whiteman, ed.), Academic Press, New York, 1975.[2] R.E. Bank, Pltmg: A software package for solving elliptic partial di�erential equations, SIAM publi-cations, Philadelphia, 1994. 9
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