
NEUROCOMWTING

Neurocomputing 14 (1997) 15-39

Assigning meaning to data: Using sparse distributed
memory for multilevel cognitive tasks

Larry M. Manevitz a* * , Yigal Zemach b
a Department of Mathematics and Computer Science, University of Haifa, Haifo, Israel

and
Polytechnic University, New York, NY, USA

b Department of Mathematics and Computer Science, University of Haifa, Haifn, Israel
and

Intel Corporation, Haifa, Israel

Received 23 September 1994; accepted 3 October 1995

Abstract

It is shown how a single homogeneous SDM memory can be organized to link between low
level information and high level correlations. To illustrate this, we report on experiments run in a
unified memory retrieval system, that combined pattern recognition of individual English charac-
ters followed by the assignment of ‘meaning’ to a string by giving it a Hebrew translation.
Symmetry allows the reverse action on the same memory (i.e. Hebrew character identification
followed by translation of a string to English).

Keywords: Sparse distributed memory; High-order-correlation; Associative memory

0. Introduction

Many cognitive tasks require multilevel organization. Consider, for example, a
musician who can identify a piece of music from its score: first he has to identify the
individual notes from his visual input, then identify the music from the sequence of
notes.

To artificially accomplish a task of this sort, an associative memory would seem
appropriate, of which several models [6,8,13,5,9] have heen studied in recent years.

* Corresponding author. Email: manevitz@matbcs2.haifa.ac.i1

0925-2312/97/$17.00 8 1997 Elsevier Science B.V. All rights reserved
SSDI 0925-2312(95)00130-l

16 L.M. Manevitz, Y. Zemach/Neurocompuiing 14 (1997) IS-39

However, to perform such a task, not only must the memory work with information
on different levels, performing what seems to be different sorts of tasks on the different
levels, it must also deal with pattern recognition of sequences which require multi-order
correlations.

Most tasks which have been performed on artificial associative memories have
limited themselves to single-level cognitive tasks and first-order correlation affects. ’
Some unspecified sort of linkage of the different mechanisms into a structured or
hierarchical architecture ’ is supposed to account for multilevel effects.

It is not clear how this linkage is to be accomplished and in any case is unsatisfactory
on several accounts:

(1) Any such memory processing system will seem to be completely ad hoc; each
different task might require a separate retrieval system.

(2) Many memory systems emphasize their ‘naturality’ [8,9,10,2], i.e. in some sense
they are supposed to be explumtory for a natural neural mechanism as well as
functional. Without a unified system this explanatory ability is lost.

Kanerva’s model of Sparse Distributed Memory (SDM), in particular, emphasizes
6) the naturality of the model, and
(ii) computation as an outcome of the organization of the memory.

(This model uses associative and probabilistic memory access.>
Most experiments with the model, however, have worked on single correlation

experiments, i.e. simple pattern recognition problems. Kanerva himself comments ([8],
Ch. 8) that first-order predictions (single address-data relations) have a very limited
value in real life situations. Yet his proposed solution (a multi-stage design) besides
being somewhat complicated (requiring delay systems), still relies on combinations of
first order correlations alone and therefore is stochastically insufficient. 3 (However,
Kanerva has pointed out ([8], p. 89) that his design does allow the possibility of a ‘more
general memory’ that could react when a specific ‘sequence of events has just occurred’.
This work can be seen as a specific realization of this suggestion.)

The goal of this work is to show how a single associative memory retrieval system
can accomplish multilevel cognitive tasks. We do this in’ the context of Sparse
Distributed Memory [8]; however the ideas are essentially adaptable to any associative
memory that provides a ‘best match’ capability.

’ Consider, for example, NETtalk [12] which uses a neural network to translate written text to phonemes.
While the translation is context dependent, it manages the contextual problem by relating each 7-letters-string
to a phoneme. Since there is no constraint between adjacent phonemes this is a first order cormlation. See also
[7] where a similar task is performed using the SDM model.

* For example, [12] notes that ‘NETtalk is clearly limited in its ability to handle ambiguities that require
syntactic and semantic levels of analysis’. ‘they suggest the possibility of using some ‘structured network’ to
combine information from larger parts of sentences.

3 e.g., a memory which leamed the sequences: FAT, FEW, GET, SET, FIT. RAW, PAW, NOW given FE,
and relying on lst-order conlations atone, will predict T as the next item (since Pr(TI F *) = 2/3 and
Pr(TI * E)= 2/3), albeit it is obvious that W can be deduced with certainty (given by the 2nd-order
correlation P&V 1 FE) = 1). Notice that Kanerva’s j-step transition is a pair, hence it can not store a
multi-order correlation.

L.M. Manevitz, Y. Zmach/Newocomputing 14 (1997) IS-39 17

The underlying methodology used, is to assume that each item in memory is
associated with a short code (e.g. 256 bit length information with 32 bit length code; in
the application in this paper 64 bit information with 8 bit code was used). Then the
system can first identify the code and then use code combinations to represent addresses
for the higher level information. Note that there is no distinction between ‘levels’ - the
memory structure is entirely uniform.

Our emphasis in this paper is not on coding per-se, but rather on the uniform storage
and retrieval of different levels; accordingly, in this work we hand-chose the codes
(other authors (see [4]) have pointed out that use of codes would be necessary; [l] have
given one example of how a neural network could naturally assign codes).

To illustrate and test the ideas of linking low level information with high level
correlations, we ran experiments in a single unified memory retrieval system that
combined visual (pixel) pattern recognition of English letters followed by the assign-
ment of ‘meaning’ to a string by giving it a Hebrew translation. This task was chosen
because there should be little correlation between the Hebrew translation and the English
pattern. That is, it is a true high level correlation problem which is solved here by
multi-level processing on a uniform memory. (Of course, we are not claiming that this
explains how people translate.) The structure of SDM is such that symmetry allows the
reverse action on the same memory (i.e. Hebrew character identification followed by
translation of a string to English).

The paper is organized as follows: Section 1 describes the organization of the
memory model for use with multilevel processing; Section 2 describes how this
organization is specified for use in the example of two-way translation and character
identification; Section 3 gives the detailed description of the experiments; Section 4 has
the tables of results; finally Section 5 has the discussion of the results and a summary.
(Appendix A has the list of translation words stored in memory; appendix B has visual
examples of translation outputs.)

1. Memory organization

We work within the context of the SDM model (for details see 181). Briefly, SDM is
designed to be a generalized random access memory, that provides the ‘best match’ for
an arbitrary address. The association with the address occurs by averaging the contents
of all addresses (‘hard locations’ in terminology of [81) sufficiently (Hamming) close to
the input address. This is implemented by a three level feed-forward neural network,
with hard thresholds at levels two and three. The neurons of the first level define the
input pattern, the neurons of the hidden level correspond to the ‘hard’ locations, the
neurons in level three define the output pattern. The weights between level one and two
are fixed (usually chosen randomly) for the model, establishing the addresses for the
hard locations, the threshold for all level two neurons correspond to the fixed Hamming
distance; the threshold in level three is set to zero, and the weights between level two
and three are set by a form of Hebbian learning where a ‘0’ bit decreases the appropriate
weight by 1 while a ‘ 1’ increases it by 1. (In other words, if one is storing a vector Qi of
bits at an address, for each hidden neuron i that responded to the address, one modifies
the weights between the hidden and output level, by Wiyw = Wip,l” + Gj - @,Ymp’ement.)

18 L.M. Maneuitz, Y. Zemach/Neurocomputing 14 (1997) IS-39

0 Posltlvo(l) orNe@lvo(O) ’
valmJEocomog l

6
l

ValwofPixcb

i ;>
l A l

u
n

IidllOUbbO~Of
OlWOltSlO
“Avmgod”

ltaoltfaoulpm
Plxeb

(Very Lqe Nmobu of N-1

Fig. I. Sparse distributed memory as a 3 level neural network. Note the huge number of hidden level neurons
and the fixed weights between levels 1 and 2.

The result of this arrangement is that for a given input, only the set of neurons in the
second level which are in the given Hamming radius of the input fire; the 0 threshold in
the output level implies that on retrieval the output is a form of averaging of the storage
at all the hard locations in the Hamming radius of the input. One can think of this as the
network reacting as if it could respond to an arbitrary address from the 2” possibilities,
despite having only a relatively small number of ‘hard’ locations corresponding to the
hidden level neurons. This occurs because a set of neurons in the hamming radius
responds to each input. Kanerva’s analysis [81 shows that one can choose the hamming
radius appropriately so that this model works reliably. The size of this network is usually
quite large; for example, the example run in Section 2 has 5400 neurons in the hidden
level. (See Fig. 1)

We fix some notation, to aid in describing our use of the model.

Let m be the length (number of bits) of an address; (in the experiments in Section 2,
m=64.
c will be the length of a code (in the experiments, c = 8).
a will denote an m-bit pattern.
a
7

will denote a sequence of items (a,, a*, . . . , aj), each of m-bit length.
a will denote a (c-bit) code associated with the m-bit pattern a.
a+ will denote the (c + m bits) concatenation of a and B.

L.M. Manevitz, Y. Zemach/Neurocomputing 14 (1997) 15-39 19

Abusing notation somewhat, we shall denote by 4 the collection of (a,, &, . . . , &j)
and by a+ the sequence (a:, al,...,
for MAr%FY (a>.>

a:).(Later on we shall define and use Mg(8),

In our case each memory location consists of m + c registers, i.e. the number of
neurons on the output level is m + c. (m/c is the upper limit for the number of items in
a sequence which can be handled by a single operation of the sort to be discussed.) This
is a slight deviation from the most common organization of SDM where each location
has m bits (i.e. address length = number of counters). This enhances the flexibility of
the model since from any location operations will apply either to the first m bits or to
the last c bits of the output level.

We assume that the system is capable of assigning a different code to each distinct,
frequently-occurring write data. 4

Since the address length is m there are 2 m ‘virtual’ locations of which, as is usual in
SDM, a small random sample (‘hard’ locations) is physically realized. (This is the
number of neurons in the hidden level.)

1.1 Operations on the memory

Our memory has the following basic operations:
0 WRITE
ORBAD
0 TRUNC
0 CHUNK (with components EXTRACT, JOIN)
0 EXPAND (with components MAGNIFY, BREAK)
These are described briefly below.

WRITE WRITE to memory (data at address): This is as in standard SDM ([8]). That is,
an address is supplied to the memory; all ‘hard locations’ (hidden level neurons)
sufficiently close to the address respond and update their storage (i.e. weights between
levels 2 and 3) according to the data. When the codes are given by the system, the
external data and address would both be of m bits.

READ READ from memory (at an address): This is as in standard SDM, except that the
output has m + c bits; i.e. longer than the m-bit input.

TRUNC TRUNC is a new operation, which takes the first m bits of an m + c bit vector
and ignores the last c bits. Since (see [81), rehearsals (i.e. a loops of repetitive READ
operations, each taking the output of the last iteration as an input), are done in standard
SDM memories to converge to the best retrieval; here we have to input only the first m
bits of the READ output - hence we combine our READ with TRUNC. So, our
rehearsal is a READ-TRUNC-READ-T . . . loop.

4 This code should not be confused with data-tagging (proposed by [I II). since the extra cc&. bits are
truncated in rehearsals, and therefore can not help to enhaoce resolution between close patterns.

20 L.M. Manevitz, Y. Zemach/Neurocomputing 14 (1997) 15-39

Aside: WRITE and READ are the original names given by Kanerva; they are a little bit
confusing (when x reads a book, x WRITES to her memory.. .). Hence we shall
sometimes use ‘store’ for ‘WRITE’ and ‘retrieve’ for ‘READ’; however, these terms
will be used also in the context of the multi-level connections, while READ and WRITE
will apply exclusively to individual-item operations. (When ‘WRITE’ or ‘store’ is used
with an m-bit argument, the intention is that the information is entered at the first m bits
of the memory location, while the remaining c bits are irrelevant).

CHUNK CHUNK is a new operation that takes several ‘low level’ items in memory
(each m + c long), and produce an (m-bit) ‘high level’ address. It is a double-stage
process consisting of several uses of EXTRACT and JOIN.

EXPAND EXPAND (also new) takes one ‘high level’ item in memory and returns the
addresses of ‘low level’ associated components. It is double-stage process consisting of
BREAK and several uses of MAGNIFY.

We place ‘high level’ and ‘low level’ in quotation marks because the memory is
homogeneously organized; i.e. there is no architectural distinction between the levels of
information. That is one of the main points of this work, showing how multilevel
processing can be done in a natural homogeneous environment.

EXTRACT EXTRACT takes from an (m + c)-bit vector only its code part, the last c
bits; it is the complement of TRUNC. That is, EXTRACT (cr’) = 8.

JOIN JOIN takes several codes (which were previously EXTRACTed) and concatenates
them to a single address. Now several EXTRACTions (typically from several READ
outputs) and one JOIN, make a complete CHUNK. Thus CHUNK (cy’) = JOIN
B=JOIN(&,,...&j).5

BREAK BREAK takes an m-bit vector and separates it to (m/c) c-bits (e.g. a 256-bit
vector can be BREAKed into 8 codes of 32 bits each).

MAGNIFY MAGNIFY takes a single code and duplicates it in some predefined
variations to form an m-bit address (the copies are concatenated). The only formal
requirement on these variations is that each be given by a l-l transformation. However,
simple repetition is not advisable since repetitive structures are highly above random in
‘real’ inputs, which would lead to early clustering. This is pertinent in SDM memories
since their capacity is adversely affected by such clustering [Ill. Our results are not
sensitive to the particular choice of such transformations; specifically we used combina-
tions of bitwise negation and bit-subgroup order changes. (Additional discussion of

5 A technical problem of size. matching arises when j < m/c. Since CHUNK concludes with au m-bit

address, we need to JOIN m/c codes, while we have only j. Our way out was to JOIN several copies of the
codes-sequence plus a special ‘end-of-sequence’ code. See the later translation diagrams (5,6) to get the i&a;
the ‘-’ is the ‘end-of sequence’ sign in those diagrams, added automatically when chunking short words.

L.M. Manevitz, Y. Zenach/Neurocomputing 14 (1997) IS-39 21

Input
Sequence a

a+ CHUNK(d) meaning

P

READ CHUNK BEAD
MEMORY

Fig. 2. Sequence-meaning association (general).

MAGNIFY and JOIN is presented at the end of the paper.) We shall abbreviate
MAGNLFY (2) by Mg (a). One BREAX and several MAGNIFYs are needed to
complete an EXPAND operation. MAGNIFY has the property that EXPAND (CHUNK
(_a’)) = Mg@) (i.e. the sequence Mg(&,),. . . ,Mg(hj)).

1.2 Entries in memory

During the learning phase, the following information is stored:
(1) If a is a ‘known’ pattern, store a+ at location a. (This is our version of

self-addressing. Recall a+ is a followed by its code a.>
In addition, store a at location MAGNIFY (a) 6. Recall that MAGNIFY has the
property that EXPAND (CHUNK ((~‘1) = Mg@) (i.e. the sequence
Mg(&,) ,..., Mg(djii)).

(2) Whenasequence_a=(a,,..., aj) is to be associated with a ‘meaning’ I_L (some
associated bit pattern), store p at CHUNK ((r+).

(3) If a bit-pattern p is to be associated with a sequence _a, store CHUNK (_a’) at
location TRUNC(~1.

1.3 General description of retrieval of meaning and sequence

Retrieval of ‘meaning’ from a sequence: (See Fig. 2). We start with a given sequence g:
READ memory at each address a,, a*, . . . , aj. Since we wrote a+ at each a, (see (1)

6 Note. that the code part of the storage is missing. Here, it is unused. But such ‘unused’ code areas are in
fact of great importance, since through them other, more complicated com~ections can be made.

22 L.M. Manevitr, Y. Zemach/Neurocomputing 14 (1997) IS-39

CHUNK(g+) M&i) output
sequence G

READ EXPAND READ
MEMORY MEMORY

Fig. 3. Meaning-sequence association (general).

above), the outputs will be (ff: , al,. . . , ai). CHUNK these to form CHUNK ((w’).
Finally make another READ at the address CHUNK (e+); since we stored p at the
same address (according to (2) above), we now retrieve it. In brief, this retrieval is a
READ-CHUNK-READ process.

Retrieval of a sequencefrom ‘meaning’: (See Fig. 3). We start with a given address p,
or, if it is an m + c bit vector, TRUNC (CL): READ memory at this address will result
in CHUNK (cy’), which we stored there according to (3) above. Next we EXPAND
what we have got; but EXPAND (CHUNK ((r+)) gives Mg(fi) (see (I)), so we get the
sequence Mg(&,), Mg(&,> ,..., Mg(hj), which are j addresses (they are the MAGNIFI-
CATIONS of &,, &, . . . , Gj). According to (1) above, READ at each of these Mg(a,>,
1 < i s j, will come up with the desired patterns (a,, oz,. . . , aj), since we stored them
exactly there. To sum up, this retrieval is a READ-EKPAND-READ procedure.

1.4 Detailed description of learning and retrieval

Let us take a closer look at the learning phase, as it is supposed to take place in actual
operation. The ‘known’ (Y’S are stimuli that have been entered previously when they
were both code-assigned and self-addressed stored (i.e. cr+ at ar). Moreover, note that
whenever the system assigns a code B to (Y, it MAGNIFYs that code to produce Mg(B)
and stores (Y at Mg(a>.

When a sequence-meaning association is stored, the elements of _a are first retrieved
(READ), including rehearsal, and CHUNKed to form a single m-bit (address-sized)
pattern, CHUNK (e_‘); at that address we WRITE the ‘meaning’ Jo.

Learning the other way round, high to low level connection, begins with the same
READ-rehearse-CHUNK operated on the given cy (a low level stimuli sequence); only

L.M. Mane&, Y. Zemach / Neurocompwing 14 (1997) 15-39 23

Input
sequence a

Lx? h CHUNK(rr+) meaning
P

READ & REHEAR!SE
CHUNK

MEMORY EXTRACT JOIN

Fig. 4. Sequence-meaning association (detailed).

now WRITE that CHUNK (_a’) at the given ~1, or TRUNC (CL), (the ‘meaning’) as
address. So storing association is a READ-CHUNK-WRITE process, although it is only
the WRITE that affects the memory state (the counters).

Now let us look in more detail at the retrieval processes.

Retrieval of ‘meaning’ from a sequence: (See Fig. 4). We start with a given sequence
g: READ memory at each address a,, az, . . . , aj, produces <a:, al,. . . , ai+), as
explained earlier. To improve recognition, a rehearsal (always possible with self-addre-
ssed locations) is made. CHUNK makes CHUNK (cy’) = JOIN (a,, B,, . . . , S,>, by
two stages: first, for each 1 zz i ZG j EXTRACT (a,?) to get (a,); then JOIN them all.
Now READ again at the address CHUNK (_a’) retrieves the stored p; p is also
improved by rehearsing. (The question-mark drawn in Fig. 4 on the rehearsal arrow,
hints that the rehearsal may be of a more complex type, exemplified in the 2-way-trans-
lation (described below)).

Retrieval of a sequence from ‘meaning’ (See Fig. 5). Start with a given address p or
TRUNC (CL): READ memory at it will result in CHUNK (_a’), as was shown earlier.
CHUNK (g’) is rehearsed (again in the simple or complex type, depending on what
was stored at it). After this, BREAK the improved CHUNK (CT+) to the individual codes
Ui,, B, ,..., cjj); MAGNIFYing each will complete the EXPAND of CH?JNK (_a’).
Each such MAGNIFICATION - Mg(a,), 1 s i zz j - serves as an address for READ,
again with rehearsal to improve it, and comes up with the stored desired patterns
(a:, a:,..., a:). If we wish to output the m-bit long (a,, h,, . . . , Cj) items, we
simply TRUNC each.

Remark. Note that the mechanism linking levels is general. That is, there is no limit to
(and no design necessity to specify) the number of levels and connection types. In

24 L.M. Mane&z, Y. Zemach/Neurucompuring 14 11997) IS-39

“mrming” p CHUNK(n’) !i h%(d)

READ & REEEARSE
hlEhlORY

EXPAND
READ & REHEARSE TRUNC

BREAK MAGNIFY MEMORY mtpt.

Fig. 5. Meaning-sequence association (detailed).

principle, every data vector written in memory can be code-assigned and connected to

other vectors. In fact, the levels are completely external to the model, since the
architecture is homogeneous; and, so for example, there is no obstruction to CHUNKing
codes from different levels.

2. Language translation as a demonstration

To test these ideas, we chose a cognitive task which it seems must take place in
different levels.

Input is a word in English or Hebrew, presented as a sequence of patterns correspond-
ing to letters in the appropriate alphabet; while output should be the translation of the
word to the other language, presented as a sequence of letter patterns (in the other
alphabet).

To accomplish this task, then, the following must take place:
0 Identification of the individual patterns (a ‘classical’ use of SDM)
0 Access of the word from the sequence of letters
0 Association of the word with its translation
0 Access of the sequence of letter-patterns from the (translated) word
Each word serves as the ‘meaning’, in the sense of the previous section, associated

with the letter sequence of the other language. Since there is no correlation between the
‘meaning’ (i.e. in this case the translation) of a work and its letter sequence, there is
clearly a multi-level cognitive task to be performed.

L.M. Manevitz. Y. Zmach/Neurocomputing 14 (1997) 15-39 25

Two versions of application of the model to this task were implemented: One-Way
Translation and Two-Way Translation.

2.1 One-way translation

We shall denote the set of source language words by S and the set of destination
language words by D. For example, if the input of that particular run is a Hebrew
character-sequence (and the desired output is an English character-sequence - the
translation) then S is the set of all Hebrew words written to memory for that run and D
is the set of all the English words written to memory for that run. (In this work
I S I = I D 1 since each word at either set has exactly one translation-twin in the other
set.>

2.2 Enm’es in memory

During the learning phase, the following information is stored:
For each character (Y (in either alphabet), store a+ at o, and also at Mg(a), (in

accordance with rule (1) of Section 1, ‘Entries in Memory’).
For each 04 translation word pr:, whem_ 8 E S and @ E D; 8 is represented by the

character patterns sequence 3 2 (0,, 6,, . . .
patterns sequence 9 = (@,, @,, . . . ,

ej>, and @ is represented b the character
@,): store JOIN (&) at JOIN (J > (in order to

allow rehearsal), and also at JOIN (41, @ = &i, &r , . . . &,I, and 4 =T(?,, e^, , . . . , ij>;
in accordance with rule (2) of Section 1, ‘Entries in Memory’).

2.3 Translation phase

The basic structure of translation is READ-CHUNK-READ-EXPAND-READ, where
each READ is accompanied by rehearsal. Let us follow the details of the example in
Fig. 6.

We start with a sequence of .four bit-patterns sequence, each graphically representing
an English character, ‘S’, ‘T’, ‘A’, ‘R’. Memory is READ at the locations of each of
those f~ur~a~rn~, producing S+, T+, A+, R+; each of them is rehearsed. Next the
codes S, T, A, R, are EXTRACTed one by one, and JOINed to form the address
<&%$ (actually, to complete the full m-bit address, the hyphen ‘-’ code was added by
the program, to indicate end of_sA$ngL and then the codes are re-copied until the vector is
filled in. This explains the (STAR-STAI) CHUNKing; see also footnote 5). READing at
that address now, produces the Hebrew counter-part (-3-l-X a~-~~I*~) which
has been written at (%&-&$,l (since they are a translation-pair). The asterisk ‘* ’ at
the (a 3 _ I_)- a 1- 3 A I A 3) code area shows another case where we don’t actually use
an optional code, but this can be used in other tasks.

(* 3 n I A)- n 51 A 3 * I A 3) is rehearsed (it was self-addressed written as a destination-
language JOIN @I, so it can be rehearsed) and EXPANDed.

EXPANDING starts by BREARing (A 2 A 3 * I A 3) to the individual codes 3, I, 3, 1
(ignoring those after the hyphen), and MAGNIFYing each of them; the results are the
addresses Mg(A D), Mg(*l), Mg(_ 31, Mg(- 1). But at these locations the individual

26 L.M. Manevitz, Y. &much / Neurocomputing I4 (I 997) 15-39

c
H

u codes

s
K

EXTRACT

TRUSC
I

Al w

Fig. 6.

I
all ‘3

L.M. Manevitz. Y. Zemach/Neurocomputing 14 (1997) 15-39 27

Fig. 7. 2-way translation (small loop).

corresponding Hebrew character-patterns were written, so READ and rehearse (as the
letters were also self-addressed written) obtain the character-patterns 3+, I+ , D+ , 1’:
so now we just TFWNCate them and get (3, I, 2, It> i.e., the word “1313” for
output. ’

’ Although it is not shown in the diagram, the hyphen (‘end of word’ sign) itself was also included and
printed out (if identified).

2s L.M. Manevitz, Y. Z&nach/Neurocomputing 14 (1997) 15-39

The translation included the two kinds of level transitions and an ordinary SDM
association at the higher level (English to Hebrew word).

2.4 2-way translation (small loop)

The l-way translation either works from Hebrew to English or vice versa, but not
both with the same memory states; this is because the destination language JOIN (4)
(the coded (^ >- In 3 - A 2 * DA I A 3)) is self addressed WRITTEn, which cannot be done
for the source language JOIN (6) (the coded (%&?&A), since at location ($fikfAJ
we stored (A Dn I _ 3- n 3 a 3’1 a 3). Therefore, the only way to make the method
symmetric in both directions is mutually write each one of them at the address of the
other.

In such a case the rehearsal at the high level is of what we call small loop type:
reading at the JOIN (2) address retrieves JOIN @) data and using its TRUNCation as
an address retrieves the JOIN (4) one etc. As in the simple rehearsal, with less than a
critical distance to start (see [8]), and not-too-overloaded memory, convergence by this
complex rehearsal is expected, implying successful translation (at the high level) when
the number of rehearsals is odd.

Thus mutual translations can be executed by referring to the same state of memory.
To sum up, the entries stored during the learning phase are:
For each individual character a (in either alphabet), store Q+ at (Y, and also at

Mg(&) (in accordance with requirement (1) of Section 1, ‘entries in memory’).
For each 8 - @ tranilat~on wtrd pair, where fJ is represented by the character

patterns sequence e=(e,, 0,,... 0,), and @ is represented by the character patterns
sequence (2 = a,, G2,. . . , @,); store JOIN (&) at JOIN @), and JOIN @), at JOIN
(&>; where @)=(@,, Qz ,..., a,), and <$r=<e^,, e^, ,..., &). (Both according to
requirement (2), and to allow the complex loop-rehearsal for JOIN @)-JOIN (4)).

For the translation phase, refer to Fig. 7; the details are quite similar_t:_those of the
l-way case (Fig. 6), exc_ept for the loop discussed; the (CAT%@^) -
(^l’+n^n-^ ^f^t^n*n)-(CA~~~~)-(~l^n*n-^ AL7nIrn,n)...rehearsal.’ Still,
the basic structure is READ-CHUNK-READ-EXPAND-READ.

2.5 Two-way translation (big loop)

If both Hebrew-English and English-Hebrew translations are simultaneously possible,
one can rehearse by starting with one word, translate to the other language, then back
and so on. This idea has not been tested yet.

3. Implementation details and experiment design

Program units were written in Turbo-Pascal ’ (4) and run on a 640K memory
ordinary PC-compatible. Bits numbers were: m = 64 for address and c = 8 for code.

* The Hamming-distance function was written in Turbo-assembler.

L.M. Mane&, Y. Zemuch/Neurocomputing 14 (1997) 15-39 29

The radius 9 was 21 and 5400 hard locations were used (taking 6 heap segments for
counters and almost an entire segment for the array describing the locations). All
addresses and data were condensed to bits and handled by bitwise operators.

A pool of 30 word-pairs (listed in Appendix A) was used, with 49 (26 + 23)
characters and a hyphen as an ‘end of word’ inner sign. In part of the trials random
stimuli were added to the memory writings, half of them self-addressed and half not.

The small scale of the model implementation, implies severe constraints on memory
capacity: at the same time, the nature of the needed entries and the specific task chosen,
implies quite a heavy memory load (e.g. to start up one writes to memory some 99 times
for the 2 characters sets and hyphen alone - each character pattern at 2 places). Even
more critical is the fact that the storing locations and stored items (i.e. character-patterns,
chunked word-sequences, and magnified codes) were far-from-randomly distributed, that
is, heavily clustered.

On the other hand, such conditions give us the opportunity to take a look at the model
performance near its limits. Hence we controlled (and checked memory performance at
combinations of) the following parameters:

Distance: Distance of the input letter-patterns from the learned ones. It took two
values: 0 (exact input) or 4 (‘damaged’ randomly). That is, for trials (a ‘trial’ means a
single translation under a specific set of parameters values) in which the parameter
‘distance’ was assigned the value 4, from each of the letter patterns (64 bits) of the
input, 4 bits were randomly chosen and negated, thus creating a pattern of Hamming
distance 4 from the original learned pattern. Each new trial with dist = 4 (even with the
same ‘word’ to translate), randomization of the damaged bits was restarted.

Number of Words: By how many word-pairs was the memory loaded at that
particular trial time. It took 4 values: 5, 10, 20, 30. That is, if on a particular trial this
parameter (abbreviated nW) took the value 10, the trial was run after a learning phase of
ten word-pairs. Actually, after such a learning session all members of the learned
words-set were presented as an input for translation (each considered a separate trial).

The nW mostly affects the local density aspect of memory load.
Number of Random additions: 0 or 100 additional random writings to memory,

stored at the learning phase, to check for general overload effects. Thus it is a parameter
of two possible values, nR = 0 or nR = 100. In some settings of the other parameters, it
made some sense to check for nR = 200 (as in the 5 words case), and this was done as
well. For most of the parameter configurations, however, the results with nR = 100 were
so poor that it was pointless to go beyond that number.

The overall number T of writings to memory is given by: T = 99 + 2nW + nR.
Way: Was the trial run under the l-WAY or 2-WAY setting. Again it is a

double-valued parameter, allowing a comparison of the two settings.

9 After some disappointing experimentation with greater radii. Some authors (see [I 11) adjusted theii radius
to get approximately fi hard locations (where N is the total number of hard locations) in each select (i.e.
within a sphere of that radius). In our case, that will correspond to 73 hani locations; while with r = 21 the
average number of selected hard locations is 22. Perhaps the close affinity between the letters Cm spite of our
efforts to draw them in such graphic style that will be taken apart from each other), made it necessary to
sharpen memory resolution at the cost of somewhat lowering its error-resistance.

30 L.M. Mane&z, Y. Zemach/Neurocomputing 14 (1997) 15-39

Two other parameters were changed for the sake of the experiment balance and noise
reduction rather than an interest in their exact effects:

Hebrew-English: (Abbreviated H-E): Which language was the source (input) and
which the destination on that particular trial.

File-Order: We have a pool of 30 words; but at values of nW < 30, we store (and
retrieve) only a subgroup of the pool. That subgroup choice, i.e. who are the 5 words at
the nW = 5trials, who the 10, etc., was balanced using 4 controlled versions of the input
file (pool) order. However, for nW = 30, the changes in FO (the abbreviation of File
Order), means no more than new randomizations.

So the experiment ran over all the combinations of:

with some additional nR = 200 trials.
Hence a total of: 2 X (5 + 10 + 20 + 30) X 2 X 2 X 2 X 4 = 4160 (not including the

nR = 200 trials) word-translation-trials were run.
Unconditioned variables (measuring task performance): Each character in the source

stimuli was re-checked after the fmt rehearsal against the learned pattern; if it was more
than 3 bits away, we considered it ‘not identified’. So the first variable is the percenfuge
of defected source characters, which has nothing to do with the special coding
mechanism of our model, but is rather a standard SDM characteristic, will be denoted by
LI.

A word was considered ‘identified completely’ if its translation characters were all
detected in the above sense; a word was considered ‘partially identified’ if at least half
of its characters, but not all, were identified. to Only numbers of completely and
partially identified words were preserved at the destination side, and not of single
characters.

Percentage of completely identified words will be denoted by CW, and Percentage
of partially idenf@ed words will be denoted by PW; the rest (not identified) - by NW.
Hence CW+PW+NW= 1.

4. Results

Experiment results are summarized in Tables l-4.
For examples of output, see Appendix B.

lo This criterion is highly above random; On the other hand. with less than half cham3e.n identified, one can
hardly expect any useful timctioniog from the word, in further processing.

L.M. Manevitz, Y. Zmach/Neurocomputing 14 (1997) 15-39 31

Table 1
Percentage of identified characters, completely identified words and parrtially identified words, averaged over

HE aad FO

Way I-WAY 2-WAY

distance d=O Id=4 d=O Id=4

nR nW LJ cw PW Ll CW PW LI CW PW Ll cw PW

5 100. 65. 30. 75.4 31.5 22.5 100. 62.5 35. 72.7 32.5 30.

0 10 100. 70. 23.8 12.5 37.5 12.5 100. 68.8 25. 70.3 35. 17.5

20 99.7 56.9 37.5 68.6 23.7 19.4 100. 69.4 23.7 70.4 34.4 15.6

30 99.3 56.7 41.7 64.4 18.8 22.9 100. 55. 31.7 65.5 23.3 17.9

5 97.9 30. 55. 63.1 12.5 22.5 98.9 37.5 45. 65.8 15. 17.5

100 10 86.6 2.5 17.5 42.5 0. 2.5 85.6 0. 11.3 39. 0. 0.

20 56.3 0. 1.3 19. 0. 0. 61.5 0. 0. 15.7 0. 0.

30 36.9 0. 0. 8.8 0. 0. 33.8 0. 0. 5.5 0. 0.

200 5 100. 22.5 57.5 54.7 2.5 15. 94.6 23.3 40. 56. 1.7 8.3,

W - Letters IdentifiedKW - Completely Identified Words. PW - Partially Identified Words.Nw - Not Identified

Word0 - Total No. of Writings to Memory.

Table 2

Percentage of identifications, Averaged over number of words, HE and FO. Note: Since the majority of trials

were made in the last two (20.30) categories of nW, the figures are biased towards the heavy-lOad
performance characteristics

Way l-WAY ZWAY

distance d=O d=4 d=O d=4

nR Ll CW PW Ll cw PW LI cw PW LI CW PW

0 99.6 59.4 36.7 67.8 24.6 20.2 100. 62.1 28.5 68.3 29.2 18.1

100 55.2 2.7 7.3 21.3 I. 2.1 55.3 2.9 5.2 18.4 1.2 1.3

Table 3

Percentage of identifications, averaged over way, HE, FO

DiStSJICe d=O
nR nW T Ll CW PW NW

5 109 100.0 63.8 32.5 3.1
0 10 119 100. 69.4 24.4 6.2

20 139 99.9 63.2 30.6 6.2

30 159 99.7 55.8 36.7 7.5

5 209 98.4 33.8 50. 16.2

100 10 219 86.1 1.3 14.4 84.3

20 239 58.9 0. 0.6 99.4

30 259 35.4 0. 0. 100.

200 5 309 97.3 22.9 48.8 28.3

d=4
LI CW PW NW

74.1 35. 26.3 38.7
71.4 36.3 15. 48.7
69.5 29.1 17.5 53.4
65.5 21.1 20.4 595

64.5 13.8 20. 66.2
40.7 0. 1.3 98.7

17.4 0. 0. 100.

7.2 0. 0. 100.

55.3 2.1 11.7 86.2

32

Table 4

L.M. Maneuitz, Y. Zemach/Neurocomputing 14 (1997) 15-39

Percentage of identifications, averaged over way, distance, HE and FO

I nR=o

nW W cw PW NW

5 87. 49.4 29.4 21.2
10 85.7 52.8 19.7 27.5
20 84.7 46.1 24.1 29.8
30 82.3 38.5 28.5 33.

5. Discussion

(I)

(II)

(III)

Look, for example, at Table 4, where the performance in the standard task is
measured by LI, and that of the multi-level by CW and PW. In the not-too-loaded
conditions, the sum of CW + PW is pretty close to LI. As loading increases, there
appears a sharp decrease in the multilevel performance.

(IV) In analyzing the interactions among factors in our experiment, the most interesting
is the strong mutual enhancement of the load parameters nR, nW. The combined
effect of general and local loads is much greater than the sum of each one of them
alone. This is clearly seen in Table 4.

(V) The critical factor in loading is not the number of writings (T) to memory per se,
but rather clustering - local density of close patterns. (In the context of the present
work this is not so obvious, since one could expect that local density will affect
only a specific stage of the process, while overall loading will harm every stage
independently). The crucial role of clustering was revealed through:
(i) The relatively great effect of nW (as opposed to nR), that is, the local load at
the high level elements region.
(ii) In earlier version of the I-Way translation, we did not store the character
patterns of the source language at their codes MAGNIFY. That is, if we translated
from Hebrew to English we did not need a way to reconstruct Hebrew characters

The potential of the model was experimentally demonstrated. Multilevel processing
can be done in principle and in practice.
The results were sensitive both to load and to noise in the input stimulus; at least
part of the reason for this is due to the limitations of the implementation and the
nature of the test items (i.e. small scale and highly correlated input). Further
discussion follows below.
The l-way and 2-way versions achieved approximately the same level of perfor-
mance; the differences are insignificant. This illustrates the flexibility and richness
of the model. That is, changing the task somewhat was simple and did not affect
performance.
When the loading is not very close to the memory capacity limits, the performance
of the multilevel task is in the same order of magnitude as the performance of the
standard (single item), low level pattern recognition task. Obviously it must be
lower, since the accomplishment of the multi-level task depends on many single
level tasks.

L.M. Manevitz, Y. Zemach/Neurocomputing 14 (1997) 15-39 33

from a word. In the final l-WAY version we made that store only to make a fair
comparison between the l-WAY and the Z-WAY. So we have earlier results in
which there were 23 writings less - writings which both their address (MAG-
NIFied codes) and their data (characters) are heavily crowded.

Comparison of the results of this early version with the later l-WAY yields that these
23 writings had a dramatic effect: e.g. in the earlier version, for nR = 100, nW = 30,
d = 4, 60% of the words were partially or completely identified (vs. none even with
d = 0 in the final version); with d = 0, we still found a considerable performance at the
nR = 200, nW = 30 conditions and nR = 300, nW = 5 conditions. So it turns out that
these 23 writings had a very serious effect.

Now this sensitivity at the Mg(B) area deserves closer attention. It seems to be an
artifact of the particular technical choice of JOIN and MAGNET.

The code is the most vulnerable part of the described mechanism, due to its small
dimensions and because it does not take part in the rehearsals (TRUNCed away). The
codes in our implementation were of size c = 8, and the nearest neighbours between
them were 2 bits apart. (This was inevitable since 50 codes were needed and the
maximal number of 8-bit codes which are not less than-3 bits apart is only 16.)

M+GNIFY was chosen so that if two codes, B, /? are k bits apart then Mg(B),
Mg(/3>. are km/c apart, which seems to be too close (in our case, 16 bits). Similarly, if
$ and & are two sequences of m/c codes each, separated by a total distance d, then
JOIN Eand JOIN ($1 are also separated by distance d.

However, different choice of these functions could have been made which increases
the separation of close codes. (The major constraint is to choose JOIN so that its inverse
BREAK is easily calculated.)

6. Summary

The idea of using a single homogeneous SDM memory to carry out multilevel
information processing, was successfully demonstrated by a translation task. The model
also proved to be flexible - changing the task somewhat did not affect performance. The
performance of the model near its capacity limits was experimentally investigated, and
local density seems to play the most critical role.

34 L.M. Maneuitz, Y. Zemach/ Neurocomputing 14 (1997) 15-39

Appendix A: List of input words

1. LETTER

2. JOKE

3. BIG

4. FIREFLY

5. MODEL

6. MEMORY

7. CAT

a. NATURE

9. RELATION

10. STAR

11. HEART

12. BRAIN

13. COMPUTER

14. CAR

15. POLITE

16. GUM

17. POINT

18. THRESHOL(D)

19. ON

20. EVENING

21. OPEN

22. COLOR

23. FROG

24. SET

25. WIZZARD

26. BOX

27. VISION

28. VARIETY

29. QUESTION

30. CELL nn

L.M. Manevitz, Y. Zemach/Neurocomputing 14 (1997) 15-39 35

Appendix B: Translation output examples

The four examples below shows two cases of complete word identification (one with
exact input, i.e. d = 0, the other three with damaged input, d = 41, one case of partial
word identification, and one case of identification failure. In each example, the first
word shown (using the ‘#’ character) is the input - the bit pattern sequence fed into the

Example 1. Hebrew (3n’r) to English (MEMORY); exact stimulus (d = 0); complete word identification.

88 888

88 888

88 888

88 888

888 888

888 888

888

8888 888

00 aaa
aa OOQ

aa aaa

aa aaa

aaa aaa

aaa aaa

aaaaa 000

aaaa aaa

8888

88#####

888 888

88 88

8

88

888

88

8888

8######

88 88

88

88

88 888

8#####8

8####

aaaa aaaa
aaaaaaa

aaa cad a8 aa

aa aa a#

a aa

aa aa aaa

a80 aaaaaaa

aa aaaaa

6HEBREyLETl%R6 ID6llYIPIED. 0 IIM. WORD IDEITIPIED C0HPLEI'EX.Y

ss :s :stss: ss ss
MS sss SSSSSS t:: :st
MS sst ss sss sss
:8:s:sss sst:ss ttssssss
s: St :s MSSSS t: SS s:
SS ts ss ss ss
:s 0 ssssss ss St

ssssss

88

88

88

8888

88

88 88

88 88

8888

aa

#a

aa

aa

aa aa

aa aa

aaaa

sstt
ss sssss

tttt ss ss
:s ss SSSSS

ss ss ssss
ts St ss s:
stss ss ss
ss ss ss

ss ss
ss ss
SS ss :ssts#s
ss :s sssss:sS

SSSS ssssStSs

s: SSWSSS

ss
ss

36 L.M. Manevitz, Y. Zemoch/Neurocomputing I4 (1997) 15-39

translation process. The second sequence (using ‘@’ character) is the result of the first
READ and rehearse - the ordinary SDM pattern recognition task. The last patterns
sequence (using the ‘$’ character) is the output of the translation process. Hebrew words
were reversed before printing, in accordance with the direction of the Hebrew writing.

Example 2. English (STAR) to Hebrew (3”‘) damaged stimulus (d = 4); complete word identification.

#888

8 8

88

881

8888

88

88 8

8888

aaaa

QOQO

00

0000

aaa

00 OQ

oa a

0000

8

8888888 888

8888 888 88 88

8 888 8

8 8888888

88 8888888

88 888 8

88 88 88

8888

8888

88 88

8888

8888

88 88

8 88

8 88

0 OOOQ

oaooooao ooa oaaaa

000omo8 aaaa 00 00

00 00 00 QIQQO

00 aoaaao8 OOOQ

00 aaoaaoo a0 aa

00 00 a0 oa aa

oa oa aa 00 oa

3 EIIGLISH LElTER3 IDEIITIPIED. 1 NOT. WORD IDEIIYIPIED COHPLZ'IZLY

SW

$$$$SS

Stttt$tt t:: ts
t$M:s:: :: ts
t:#t$ts $S

s:$$:$:s 0s :t

stt:OC

w w

tsst
$$$$$SS

ts ts
ss
SS

St stt
$WSW

SW$

L.M. Manevitz, Y. Zmach/ Newocompnting 14 (1997) IS-39 31

&le 3. Hebnw (vlnn) to English (CAT); damaged stimulus (d = 4); partial word identification [2 letters

of 31.

8888

at 88
at

ttttt

8888
88 8

tttttt
8888

OWO

00 00

00

awoo

oooa

woo

00 00

ooao

888 8

at

888

888 8

8888

888

tat

888

oooao

oooo0

00

0000

ooo

w

ooooa

oawo

8

ttttt

tttttt

8 88

88 8

888 88

888 888

888 88

00

oooo0

ooao

woo

ooo a0

oooo oao

ooa OQ

88 88

ttttttt

888 888

at 88
88 at
88 88

tat at

at 88

aooa

woo

00 00

00 00

00 oa
ooao

a0 00

3 HEBREW LElTBFS IDEllTIPIED. 1 ROY. WORD PARTIALLY IDENTIFIED.

WWS :t:t

$$$W$ W# $$MW$

$: tt $$ SMMW ttSttt

$t tt tt :$ $#W$$

$$ tt 1s :$ ttttmt

tt 0 $$ 0 $¶$$$$O

$$$S$$ MW $$

WW SW $t

38 L.M. Maneuitz, Y. Zemach/Neurocomputing 14 (1997) 15-39

Example 4. English (MODEL) to Hebrew (IX7); damaged stimulus (d = 4); word identification failed [I
letter &t of 31. -

tt 8 88

88 88

888 888

tttttttt

88 88 88

88 8

88 88

QQ 00

ooa 000

aaa a00

QWOOQOQ

oa 00 a0

oa m

oa 00

88

8888

8 88

88 888

88 88

888

8 88

OO

aoaa

00 oa

00 oa

a0 00

0000

QQ

88

88 8

88888

88 88 8

88 88

88

88

00

oooo
OOWQ

QO a0

00 00

0000Q

ooao

00

tttttt

tttttt

88 8

tttttt

tttttt

888

ttttttt

8888 8

oaaoaa

OO@OoO

a0 0

aaaaaa

oaoaao
Qa

88 8

88 8

88

88

88 8

88

ttt#tt

888 88

00

00

00

00

00

00

000004

6 ENGLISB LEnEns IDlWTIPIED. 0 UOT. WORD ID? IDEWTIPIED.

ttttttts
SWSW

$$S$S$$$

:S$$tt$t

WS

$S ss
$8

:t::

SW

s :$

$ ss
stts

111 D.H. Ackley, GE Hinton and T.J. Sejnowski, A learning algorithm for Boltzmaun machines, Cognitive
Science, 9 (1985) 147-169 (reprinted in [3D.

[2] J.S. Albus, Brains, Behauior and Robotics. (BYTE Books/McGraw-Hill, Peterborough, NH, 1981).

L.M. Mane&, Y, Zemach / Neurocompuh’ng 14 (1997) IS-39 39

[3] J.A. Anderson and F. Rosenfeld. NeuroComprcring: Found&ion of Research (Bradford Book, MIT Press,
1988).

[4] J.A. Feldman and D.H. Ballard, Connectionist models and their properties, Cognirive Science 6 (1982)
205-254 (reprinted in [3n.

[5] S. Grossberg, How does a brain build a cognitive code? Psychological Rev. 87 (1980) l-254, (reprinted
in [31).

[6] J.J. Hopfield, Neural networks and physical systems with emergent collective computational abilities,
P rot. Nar. Acad. Sci. 79 (1982) 2554-2558 (reprinted in [3]).

[7] U.D. Joglekar, Learning to read aloud: A neural netword approach using Sparse Distributed Memory,
RIACS Technical report 89.27, 1989.

[8] P. Kanerva, Sparse Distributed Memory (MIT Press, Cambridge, MA, 1988).
[9] T. Kohonen, Self-Organization and Associative Memory (Springer-Verlag, Berlin, 1984).

[lo] D. Marr, A theory of cerebral cortex, J. Physiology 202 (I%91 437-470.
[1 I] D. Rogers, Using data tagging to improve the performance of Kanerva’s sparse distributed memory,

RIACS Technical report 88.1, 1988.
[12] T.J. Sejnowski and C.R. Rosenberg, NETtalk: A parallel NETtalk that learns to read aloud John Hopkins

University Technical report JHU/EECS-86/01, 1986.
[13] H. Sompolinski and I. Kanter, Physical Rev. Letters Vol. 57 (1986) 2861-2864.

Larry Manevitz is on the faculty of the University of Haifa and has held recent
visiting positions at Polytechnic University (Brooklyn Poly), Courant Institute of
Mathematical Sciences (NYU), CUNY (Baruch) and NASA (Ames Research Labo-
ratory). His degrees are from Yale University (Ph.D. in mathematics-applied logic),
and Brooklyn College, CUNY (B.S.). He has done applied work with IBM. His wife
Jenny is a speech path&gist interested in cognitive models of speech and language.
They have three children (Zev, Shoul and Miriam) involved in the study of power
rangers.

His professional work mostly revolves around developing and applying mathemat-
ical models of reasoning and mental processes. He has worked in artificial intelli-
gence, neural networks and mathematical logic.

In artificial intelligence, his work includes several papers on combining informa-
tion; as well as helping design an expert system for the use of the fmite element

method. In neural networks he has worked on the development of a new general learning method, and applied
neural networks as well to the finite element method, and to an automatic translation device. He has also
designed an associative memory model appropriate for temporal storage and retrieval. He has applied the logic
of ‘non-standard analysis’ to solve problems in group theory, topology and stochastic processes. He has also
done foundational work in the logical structure of number theory.

Yii Zemach was born in Haifa, 1srae.l 1953; and now lives in Or-Aqiva, Israel. He
received the B.A. degree in mathematics at the Haifa University (1992) in the
computer-science course. Since 1992 he has been a software engineer at Intel, Israel
Development Center.

