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Abstract 

It is shown how a single homogeneous SDM memory can be organized to link between low 
level information and high level correlations. To illustrate this, we report on experiments run in a 
unified memory retrieval system, that combined pattern recognition of individual English charac- 
ters followed by the assignment of ‘meaning’ to a string by giving it a Hebrew translation. 
Symmetry allows the reverse action on the same memory (i.e. Hebrew character identification 
followed by translation of a string to English). 
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0. Introduction 

Many cognitive tasks require multilevel organization. Consider, for example, a 
musician who can identify a piece of music from its score: first he has to identify the 
individual notes from his visual input, then identify the music from the sequence of 
notes. 

To artificially accomplish a task of this sort, an associative memory would seem 
appropriate, of which several models [6,8,13,5,9] have heen studied in recent years. 
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However, to perform such a task, not only must the memory work with information 
on different levels, performing what seems to be different sorts of tasks on the different 
levels, it must also deal with pattern recognition of sequences which require multi-order 
correlations. 

Most tasks which have been performed on artificial associative memories have 
limited themselves to single-level cognitive tasks and first-order correlation affects. ’ 
Some unspecified sort of linkage of the different mechanisms into a structured or 
hierarchical architecture ’ is supposed to account for multilevel effects. 

It is not clear how this linkage is to be accomplished and in any case is unsatisfactory 
on several accounts: 

(1) Any such memory processing system will seem to be completely ad hoc; each 
different task might require a separate retrieval system. 

(2) Many memory systems emphasize their ‘naturality’ [8,9,10,2], i.e. in some sense 
they are supposed to be explumtory for a natural neural mechanism as well as 
functional. Without a unified system this explanatory ability is lost. 

Kanerva’s model of Sparse Distributed Memory (SDM), in particular, emphasizes 
6) the naturality of the model, and 
(ii) computation as an outcome of the organization of the memory. 

(This model uses associative and probabilistic memory access.> 
Most experiments with the model, however, have worked on single correlation 

experiments, i.e. simple pattern recognition problems. Kanerva himself comments ([8], 
Ch. 8) that first-order predictions (single address-data relations) have a very limited 
value in real life situations. Yet his proposed solution (a multi-stage design) besides 
being somewhat complicated (requiring delay systems), still relies on combinations of 
first order correlations alone and therefore is stochastically insufficient. 3 (However, 
Kanerva has pointed out ([8], p. 89) that his design does allow the possibility of a ‘more 
general memory’ that could react when a specific ‘sequence of events has just occurred’. 
This work can be seen as a specific realization of this suggestion.) 

The goal of this work is to show how a single associative memory retrieval system 
can accomplish multilevel cognitive tasks. We do this in’ the context of Sparse 
Distributed Memory [8]; however the ideas are essentially adaptable to any associative 
memory that provides a ‘best match’ capability. 

’ Consider, for example, NETtalk [12] which uses a neural network to translate written text to phonemes. 
While the translation is context dependent, it manages the contextual problem by relating each 7-letters-string 
to a phoneme. Since there is no constraint between adjacent phonemes this is a first order cormlation. See also 
[7] where a similar task is performed using the SDM model. 

* For example, [12] notes that ‘NETtalk is clearly limited in its ability to handle ambiguities that require 
syntactic and semantic levels of analysis’. ‘they suggest the possibility of using some ‘structured network’ to 
combine information from larger parts of sentences. 

3 e.g., a memory which leamed the sequences: FAT, FEW, GET, SET, FIT. RAW, PAW, NOW given FE, 
and relying on lst-order conlations atone, will predict T as the next item (since Pr(TI F *) = 2/3 and 
Pr(TI * E)= 2/3), albeit it is obvious that W can be deduced with certainty (given by the 2nd-order 
correlation P&V 1 FE) = 1). Notice that Kanerva’s j-step transition is a pair, hence it can not store a 
multi-order correlation. 
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The underlying methodology used, is to assume that each item in memory is 
associated with a short code (e.g. 256 bit length information with 32 bit length code; in 
the application in this paper 64 bit information with 8 bit code was used). Then the 
system can first identify the code and then use code combinations to represent addresses 
for the higher level information. Note that there is no distinction between ‘levels’ - the 
memory structure is entirely uniform. 

Our emphasis in this paper is not on coding per-se, but rather on the uniform storage 
and retrieval of different levels; accordingly, in this work we hand-chose the codes 
(other authors (see [4]) have pointed out that use of codes would be necessary; [l] have 
given one example of how a neural network could naturally assign codes). 

To illustrate and test the ideas of linking low level information with high level 
correlations, we ran experiments in a single unified memory retrieval system that 
combined visual (pixel) pattern recognition of English letters followed by the assign- 
ment of ‘meaning’ to a string by giving it a Hebrew translation. This task was chosen 
because there should be little correlation between the Hebrew translation and the English 
pattern. That is, it is a true high level correlation problem which is solved here by 
multi-level processing on a uniform memory. (Of course, we are not claiming that this 
explains how people translate.) The structure of SDM is such that symmetry allows the 
reverse action on the same memory (i.e. Hebrew character identification followed by 
translation of a string to English). 

The paper is organized as follows: Section 1 describes the organization of the 
memory model for use with multilevel processing; Section 2 describes how this 
organization is specified for use in the example of two-way translation and character 
identification; Section 3 gives the detailed description of the experiments; Section 4 has 
the tables of results; finally Section 5 has the discussion of the results and a summary. 
(Appendix A has the list of translation words stored in memory; appendix B has visual 
examples of translation outputs.) 

1. Memory organization 

We work within the context of the SDM model (for details see 181). Briefly, SDM is 
designed to be a generalized random access memory, that provides the ‘best match’ for 
an arbitrary address. The association with the address occurs by averaging the contents 
of all addresses (‘hard locations’ in terminology of [81) sufficiently (Hamming) close to 
the input address. This is implemented by a three level feed-forward neural network, 
with hard thresholds at levels two and three. The neurons of the first level define the 
input pattern, the neurons of the hidden level correspond to the ‘hard’ locations, the 
neurons in level three define the output pattern. The weights between level one and two 
are fixed (usually chosen randomly) for the model, establishing the addresses for the 
hard locations, the threshold for all level two neurons correspond to the fixed Hamming 
distance; the threshold in level three is set to zero, and the weights between level two 
and three are set by a form of Hebbian learning where a ‘0’ bit decreases the appropriate 
weight by 1 while a ‘ 1’ increases it by 1. (In other words, if one is storing a vector Qi of 
bits at an address, for each hidden neuron i that responded to the address, one modifies 
the weights between the hidden and output level, by Wiyw = Wip,l” + Gj - @,Ymp’ement.) 
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Fig. I. Sparse distributed memory as a 3 level neural network. Note the huge number of hidden level neurons 
and the fixed weights between levels 1 and 2. 

The result of this arrangement is that for a given input, only the set of neurons in the 
second level which are in the given Hamming radius of the input fire; the 0 threshold in 
the output level implies that on retrieval the output is a form of averaging of the storage 
at all the hard locations in the Hamming radius of the input. One can think of this as the 
network reacting as if it could respond to an arbitrary address from the 2” possibilities, 
despite having only a relatively small number of ‘hard’ locations corresponding to the 
hidden level neurons. This occurs because a set of neurons in the hamming radius 
responds to each input. Kanerva’s analysis [81 shows that one can choose the hamming 
radius appropriately so that this model works reliably. The size of this network is usually 
quite large; for example, the example run in Section 2 has 5400 neurons in the hidden 
level. (See Fig. 1) 

We fix some notation, to aid in describing our use of the model. 

Let m be the length (number of bits) of an address; (in the experiments in Section 2, 
m=64. 
c will be the length of a code (in the experiments, c = 8). 
a will denote an m-bit pattern. 
a 
7 

will denote a sequence of items (a,, a*, . . . , aj), each of m-bit length. 
a will denote a (c-bit) code associated with the m-bit pattern a. 
a+ will denote the (c + m bits) concatenation of a and B. 
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Abusing notation somewhat, we shall denote by 4 the collection of (a,, &, . . . , &j) 
and by a+ the sequence (a:, al,..., 
for MAr%FY ( a>.> 

a: ).(Later on we shall define and use Mg( 8 ), 

In our case each memory location consists of m + c registers, i.e. the number of 
neurons on the output level is m + c. (m/c is the upper limit for the number of items in 
a sequence which can be handled by a single operation of the sort to be discussed.) This 
is a slight deviation from the most common organization of SDM where each location 
has m bits (i.e. address length = number of counters). This enhances the flexibility of 
the model since from any location operations will apply either to the first m bits or to 
the last c bits of the output level. 

We assume that the system is capable of assigning a different code to each distinct, 
frequently-occurring write data. 4 

Since the address length is m there are 2 m ‘virtual’ locations of which, as is usual in 
SDM, a small random sample (‘hard’ locations) is physically realized. (This is the 
number of neurons in the hidden level.) 

1.1 Operations on the memory 

Our memory has the following basic operations: 
0 WRITE 
ORBAD 
0 TRUNC 
0 CHUNK (with components EXTRACT, JOIN) 
0 EXPAND (with components MAGNIFY, BREAK) 
These are described briefly below. 

WRITE WRITE to memory (data at address): This is as in standard SDM ([8]). That is, 
an address is supplied to the memory; all ‘hard locations’ (hidden level neurons) 
sufficiently close to the address respond and update their storage (i.e. weights between 
levels 2 and 3) according to the data. When the codes are given by the system, the 
external data and address would both be of m bits. 

READ READ from memory (at an address): This is as in standard SDM, except that the 
output has m + c bits; i.e. longer than the m-bit input. 

TRUNC TRUNC is a new operation, which takes the first m bits of an m + c bit vector 
and ignores the last c bits. Since (see [81), rehearsals (i.e. a loops of repetitive READ 
operations, each taking the output of the last iteration as an input), are done in standard 
SDM memories to converge to the best retrieval; here we have to input only the first m 
bits of the READ output - hence we combine our READ with TRUNC. So, our 
rehearsal is a READ-TRUNC-READ-T . . . loop. 

4 This code should not be confused with data-tagging (proposed by [I II). since the extra cc&. bits are 
truncated in rehearsals, and therefore can not help to enhaoce resolution between close patterns. 
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Aside: WRITE and READ are the original names given by Kanerva; they are a little bit 
confusing (when x reads a book, x WRITES to her memory.. .). Hence we shall 
sometimes use ‘store’ for ‘WRITE’ and ‘retrieve’ for ‘READ’; however, these terms 
will be used also in the context of the multi-level connections, while READ and WRITE 
will apply exclusively to individual-item operations. (When ‘WRITE’ or ‘store’ is used 
with an m-bit argument, the intention is that the information is entered at the first m bits 
of the memory location, while the remaining c bits are irrelevant). 

CHUNK CHUNK is a new operation that takes several ‘low level’ items in memory 
(each m + c long), and produce an (m-bit) ‘high level’ address. It is a double-stage 
process consisting of several uses of EXTRACT and JOIN. 

EXPAND EXPAND (also new) takes one ‘high level’ item in memory and returns the 
addresses of ‘low level’ associated components. It is double-stage process consisting of 
BREAK and several uses of MAGNIFY. 

We place ‘high level’ and ‘low level’ in quotation marks because the memory is 
homogeneously organized; i.e. there is no architectural distinction between the levels of 
information. That is one of the main points of this work, showing how multilevel 
processing can be done in a natural homogeneous environment. 

EXTRACT EXTRACT takes from an (m + c)-bit vector only its code part, the last c 
bits; it is the complement of TRUNC. That is, EXTRACT (cr’) = 8. 

JOIN JOIN takes several codes (which were previously EXTRACTed) and concatenates 
them to a single address. Now several EXTRACTions (typically from several READ 
outputs) and one JOIN, make a complete CHUNK. Thus CHUNK (cy’) = JOIN 
B=JOIN(&,,...&j).5 

BREAK BREAK takes an m-bit vector and separates it to (m/c) c-bits (e.g. a 256-bit 
vector can be BREAKed into 8 codes of 32 bits each). 

MAGNIFY MAGNIFY takes a single code and duplicates it in some predefined 
variations to form an m-bit address (the copies are concatenated). The only formal 
requirement on these variations is that each be given by a l-l transformation. However, 
simple repetition is not advisable since repetitive structures are highly above random in 
‘real’ inputs, which would lead to early clustering. This is pertinent in SDM memories 
since their capacity is adversely affected by such clustering [Ill. Our results are not 
sensitive to the particular choice of such transformations; specifically we used combina- 
tions of bitwise negation and bit-subgroup order changes. (Additional discussion of 

5 A technical problem of size. matching arises when j < m/c. Since CHUNK concludes with au m-bit 

address, we need to JOIN m/c codes, while we have only j. Our way out was to JOIN several copies of the 
codes-sequence plus a special ‘end-of-sequence’ code. See the later translation diagrams (5,6) to get the i&a; 
the ‘-’ is the ‘end-of sequence’ sign in those diagrams, added automatically when chunking short words. 
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Fig. 2. Sequence-meaning association (general). 

MAGNIFY and JOIN is presented at the end of the paper.) We shall abbreviate 
MAGNLFY (2) by Mg (a). One BREAX and several MAGNIFYs are needed to 
complete an EXPAND operation. MAGNIFY has the property that EXPAND (CHUNK 
(_a’)) = Mg@) (i.e. the sequence Mg(&,),. . . ,Mg(hj)). 

1.2 Entries in memory 

During the learning phase, the following information is stored: 
(1) If a is a ‘known’ pattern, store a+ at location a. (This is our version of 

self-addressing. Recall a+ is a followed by its code a.> 
In addition, store a at location MAGNIFY (a) 6. Recall that MAGNIFY has the 
property that EXPAND (CHUNK ((~‘1) = Mg@) (i.e. the sequence 
Mg(&,) ,..., Mg(djii)). 

(2) Whenasequence_a=(a,,..., aj) is to be associated with a ‘meaning’ I_L (some 
associated bit pattern), store p at CHUNK ((r+). 

(3) If a bit-pattern p is to be associated with a sequence _a, store CHUNK (_a’) at 
location TRUNC( ~1. 

1.3 General description of retrieval of meaning and sequence 

Retrieval of ‘meaning’ from a sequence: (See Fig. 2). We start with a given sequence g: 
READ memory at each address a,, a*, . . . , aj. Since we wrote a+ at each a, (see (1) 

6 Note. that the code part of the storage is missing. Here, it is unused. But such ‘unused’ code areas are in 
fact of great importance, since through them other, more complicated com~ections can be made. 
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Fig. 3. Meaning-sequence association (general). 

above), the outputs will be ( ff: , al,. . . , ai). CHUNK these to form CHUNK ((w’). 
Finally make another READ at the address CHUNK (e+); since we stored p at the 
same address (according to (2) above), we now retrieve it. In brief, this retrieval is a 
READ-CHUNK-READ process. 

Retrieval of a sequencefrom ‘meaning’: (See Fig. 3). We start with a given address p, 
or, if it is an m + c bit vector, TRUNC (CL): READ memory at this address will result 
in CHUNK (cy’), which we stored there according to (3) above. Next we EXPAND 
what we have got; but EXPAND (CHUNK ((r+)) gives Mg(fi) (see (I)), so we get the 
sequence Mg(&,), Mg(&,> ,..., Mg(hj), which are j addresses (they are the MAGNIFI- 
CATIONS of &,, &, . . . , Gj). According to (1) above, READ at each of these Mg( a,>, 
1 < i s j, will come up with the desired patterns (a,, oz,. . . , aj), since we stored them 
exactly there. To sum up, this retrieval is a READ-EKPAND-READ procedure. 

1.4 Detailed description of learning and retrieval 

Let us take a closer look at the learning phase, as it is supposed to take place in actual 
operation. The ‘known’ (Y’S are stimuli that have been entered previously when they 
were both code-assigned and self-addressed stored (i.e. cr+ at ar ). Moreover, note that 
whenever the system assigns a code B to (Y, it MAGNIFYs that code to produce Mg(B) 
and stores (Y at Mg( a>. 

When a sequence-meaning association is stored, the elements of _a are first retrieved 
(READ), including rehearsal, and CHUNKed to form a single m-bit (address-sized) 
pattern, CHUNK (e_‘); at that address we WRITE the ‘meaning’ Jo. 

Learning the other way round, high to low level connection, begins with the same 
READ-rehearse-CHUNK operated on the given cy (a low level stimuli sequence); only 
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Fig. 4. Sequence-meaning association (detailed). 

now WRITE that CHUNK (_a’) at the given ~1, or TRUNC (CL), (the ‘meaning’) as 
address. So storing association is a READ-CHUNK-WRITE process, although it is only 
the WRITE that affects the memory state (the counters). 

Now let us look in more detail at the retrieval processes. 

Retrieval of ‘meaning’ from a sequence: (See Fig. 4). We start with a given sequence 
g: READ memory at each address a,, az, . . . , aj, produces <a:, al,. . . , ai+), as 
explained earlier. To improve recognition, a rehearsal (always possible with self-addre- 
ssed locations) is made. CHUNK makes CHUNK (cy’) = JOIN (a,, B,, . . . , S,>, by 
two stages: first, for each 1 zz i ZG j EXTRACT (a,?) to get (a,); then JOIN them all. 
Now READ again at the address CHUNK (_a’) retrieves the stored p; p is also 
improved by rehearsing. (The question-mark drawn in Fig. 4 on the rehearsal arrow, 
hints that the rehearsal may be of a more complex type, exemplified in the 2-way-trans- 
lation (described below)). 

Retrieval of a sequence from ‘meaning’ (See Fig. 5). Start with a given address p or 
TRUNC ( CL): READ memory at it will result in CHUNK (_a’), as was shown earlier. 
CHUNK (g’) is rehearsed (again in the simple or complex type, depending on what 
was stored at it). After this, BREAK the improved CHUNK (CT+) to the individual codes 
Ui,, B, ,..., cjj); MAGNIFYing each will complete the EXPAND of CH?JNK (_a’). 
Each such MAGNIFICATION - Mg( a,), 1 s i zz j - serves as an address for READ, 
again with rehearsal to improve it, and comes up with the stored desired patterns 
(a:, a:,..., a:). If we wish to output the m-bit long (a,, h,, . . . , Cj) items, we 
simply TRUNC each. 

Remark. Note that the mechanism linking levels is general. That is, there is no limit to 
(and no design necessity to specify) the number of levels and connection types. In 
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principle, every data vector written in memory can be code-assigned and connected to 

other vectors. In fact, the levels are completely external to the model, since the 
architecture is homogeneous; and, so for example, there is no obstruction to CHUNKing 
codes from different levels. 

2. Language translation as a demonstration 

To test these ideas, we chose a cognitive task which it seems must take place in 
different levels. 

Input is a word in English or Hebrew, presented as a sequence of patterns correspond- 
ing to letters in the appropriate alphabet; while output should be the translation of the 
word to the other language, presented as a sequence of letter patterns (in the other 
alphabet). 

To accomplish this task, then, the following must take place: 
0 Identification of the individual patterns (a ‘classical’ use of SDM) 
0 Access of the word from the sequence of letters 
0 Association of the word with its translation 
0 Access of the sequence of letter-patterns from the (translated) word 
Each word serves as the ‘meaning’, in the sense of the previous section, associated 

with the letter sequence of the other language. Since there is no correlation between the 
‘meaning’ (i.e. in this case the translation) of a work and its letter sequence, there is 
clearly a multi-level cognitive task to be performed. 
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Two versions of application of the model to this task were implemented: One-Way 
Translation and Two-Way Translation. 

2.1 One-way translation 

We shall denote the set of source language words by S and the set of destination 
language words by D. For example, if the input of that particular run is a Hebrew 
character-sequence (and the desired output is an English character-sequence - the 
translation) then S is the set of all Hebrew words written to memory for that run and D 
is the set of all the English words written to memory for that run. (In this work 
I S I = I D 1 since each word at either set has exactly one translation-twin in the other 
set.> 

2.2 Enm’es in memory 

During the learning phase, the following information is stored: 
For each character (Y (in either alphabet), store a+ at o, and also at Mg( a), (in 

accordance with rule (1) of Section 1, ‘Entries in Memory’). 
For each 04 translation word pr:, whem_ 8 E S and @ E D; 8 is represented by the 

character patterns sequence 3 2 (0,, 6,, . . . 
patterns sequence 9 = (@,, @,, . . . , 

ej>, and @ is represented b the character 
@,): store JOIN (&) at JOIN ( J > (in order to 

allow rehearsal), and also at JOIN (41, @ = &i, &r , . . . &,I, and 4 =T(?,, e^, , . . . , ij>; 
in accordance with rule (2) of Section 1, ‘Entries in Memory’). 

2.3 Translation phase 

The basic structure of translation is READ-CHUNK-READ-EXPAND-READ, where 
each READ is accompanied by rehearsal. Let us follow the details of the example in 
Fig. 6. 

We start with a sequence of .four bit-patterns sequence, each graphically representing 
an English character, ‘S’, ‘T’, ‘A’, ‘R’. Memory is READ at the locations of each of 
those f~ur~a~rn~, producing S+, T+, A+, R+; each of them is rehearsed. Next the 
codes S, T, A, R, are EXTRACTed one by one, and JOINed to form the address 
<&%$ (actually, to complete the full m-bit address, the hyphen ‘-’ code was added by 
the program, to indicate end of_sA$ngL and then the codes are re-copied until the vector is 
filled in. This explains the (STAR-STAI) CHUNKing; see also footnote 5). READing at 
that address now, produces the Hebrew counter-part (-3-l-X a~-~~I*~) which 
has been written at (%&-&$,l (since they are a translation-pair). The asterisk ‘* ’ at 
the (a 3 _ I_ )- a 1- 3 A I A 3 ) code area shows another case where we don’t actually use 
an optional code, but this can be used in other tasks. 

( * 3 n I A )- n 51 A 3 * I A 3) is rehearsed (it was self-addressed written as a destination- 
language JOIN @I, so it can be rehearsed) and EXPANDed. 

EXPANDING starts by BREARing ( A 2 A 3 * I A 3) to the individual codes 3, I, 3, 1 
(ignoring those after the hyphen), and MAGNIFYing each of them; the results are the 
addresses Mg( A D), Mg(*l), Mg( _ 31, Mg(- 1). But at these locations the individual 
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Fig. 7. 2-way translation (small loop). 

corresponding Hebrew character-patterns were written, so READ and rehearse (as the 
letters were also self-addressed written) obtain the character-patterns 3+, I+ , D+ , 1’: 
so now we just TFWNCate them and get (3, I, 2, It> i.e., the word “1313” for 
output. ’ 

’ Although it is not shown in the diagram, the hyphen (‘end of word’ sign) itself was also included and 
printed out (if identified). 
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The translation included the two kinds of level transitions and an ordinary SDM 
association at the higher level (English to Hebrew word). 

2.4 2-way translation (small loop) 

The l-way translation either works from Hebrew to English or vice versa, but not 
both with the same memory states; this is because the destination language JOIN (4) 
(the coded (^ >- In 3 - A 2 * DA I A 3)) is self addressed WRITTEn, which cannot be done 
for the source language JOIN (6) (the coded (%&?&A), since at location ($fikfAJ 
we stored (A Dn I _ 3- n 3 a 3’1 a 3). Therefore, the only way to make the method 
symmetric in both directions is mutually write each one of them at the address of the 
other. 

In such a case the rehearsal at the high level is of what we call small loop type: 
reading at the JOIN (2) address retrieves JOIN @) data and using its TRUNCation as 
an address retrieves the JOIN (4) one etc. As in the simple rehearsal, with less than a 
critical distance to start (see [8]), and not-too-overloaded memory, convergence by this 
complex rehearsal is expected, implying successful translation (at the high level) when 
the number of rehearsals is odd. 

Thus mutual translations can be executed by referring to the same state of memory. 
To sum up, the entries stored during the learning phase are: 
For each individual character a (in either alphabet), store Q+ at (Y, and also at 

Mg(&) (in accordance with requirement (1) of Section 1, ‘entries in memory’). 
For each 8 - @ tranilat~on wtrd pair, where fJ is represented by the character 

patterns sequence e=(e,, 0,,... 0,), and @ is represented by the character patterns 
sequence (2 = a,, G2,. . . , @,); store JOIN (&) at JOIN @), and JOIN @), at JOIN 
(&>; where @)=(@,, Qz ,..., a,), and <$r=<e^,, e^, ,..., &). (Both according to 
requirement (2), and to allow the complex loop-rehearsal for JOIN @)-JOIN (4)). 

For the translation phase, refer to Fig. 7; the details are quite similar_t:_those of the 
l-way case (Fig. 6), exc_ept for the loop discussed; the (CAT%@^ ) - 
(^l’+n^n-^ ^f^t^n*n)-(CA~~~~)-(~l^n*n-^ AL7nIrn,n)...rehearsal.’ Still, 
the basic structure is READ-CHUNK-READ-EXPAND-READ. 

2.5 Two-way translation (big loop) 

If both Hebrew-English and English-Hebrew translations are simultaneously possible, 
one can rehearse by starting with one word, translate to the other language, then back 
and so on. This idea has not been tested yet. 

3. Implementation details and experiment design 

Program units were written in Turbo-Pascal ’ (4) and run on a 640K memory 
ordinary PC-compatible. Bits numbers were: m = 64 for address and c = 8 for code. 

* The Hamming-distance function was written in Turbo-assembler. 
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The radius 9 was 21 and 5400 hard locations were used (taking 6 heap segments for 
counters and almost an entire segment for the array describing the locations). All 
addresses and data were condensed to bits and handled by bitwise operators. 

A pool of 30 word-pairs (listed in Appendix A) was used, with 49 (26 + 23) 
characters and a hyphen as an ‘end of word’ inner sign. In part of the trials random 
stimuli were added to the memory writings, half of them self-addressed and half not. 

The small scale of the model implementation, implies severe constraints on memory 
capacity: at the same time, the nature of the needed entries and the specific task chosen, 
implies quite a heavy memory load (e.g. to start up one writes to memory some 99 times 
for the 2 characters sets and hyphen alone - each character pattern at 2 places). Even 
more critical is the fact that the storing locations and stored items (i.e. character-patterns, 
chunked word-sequences, and magnified codes) were far-from-randomly distributed, that 
is, heavily clustered. 

On the other hand, such conditions give us the opportunity to take a look at the model 
performance near its limits. Hence we controlled (and checked memory performance at 
combinations of) the following parameters: 

Distance: Distance of the input letter-patterns from the learned ones. It took two 
values: 0 (exact input) or 4 (‘damaged’ randomly). That is, for trials (a ‘trial’ means a 
single translation under a specific set of parameters values) in which the parameter 
‘distance’ was assigned the value 4, from each of the letter patterns (64 bits) of the 
input, 4 bits were randomly chosen and negated, thus creating a pattern of Hamming 
distance 4 from the original learned pattern. Each new trial with dist = 4 (even with the 
same ‘word’ to translate), randomization of the damaged bits was restarted. 

Number of Words: By how many word-pairs was the memory loaded at that 
particular trial time. It took 4 values: 5, 10, 20, 30. That is, if on a particular trial this 
parameter (abbreviated nW ) took the value 10, the trial was run after a learning phase of 
ten word-pairs. Actually, after such a learning session all members of the learned 
words-set were presented as an input for translation (each considered a separate trial). 

The nW mostly affects the local density aspect of memory load. 
Number of Random additions: 0 or 100 additional random writings to memory, 

stored at the learning phase, to check for general overload effects. Thus it is a parameter 
of two possible values, nR = 0 or nR = 100. In some settings of the other parameters, it 
made some sense to check for nR = 200 (as in the 5 words case), and this was done as 
well. For most of the parameter configurations, however, the results with nR = 100 were 
so poor that it was pointless to go beyond that number. 

The overall number T of writings to memory is given by: T = 99 + 2nW + nR. 
Way: Was the trial run under the l-WAY or 2-WAY setting. Again it is a 

double-valued parameter, allowing a comparison of the two settings. 

9 After some disappointing experimentation with greater radii. Some authors (see [I 11) adjusted theii radius 
to get approximately fi hard locations (where N is the total number of hard locations) in each select (i.e. 
within a sphere of that radius). In our case, that will correspond to 73 hani locations; while with r = 21 the 
average number of selected hard locations is 22. Perhaps the close affinity between the letters Cm spite of our 
efforts to draw them in such graphic style that will be taken apart from each other), made it necessary to 
sharpen memory resolution at the cost of somewhat lowering its error-resistance. 
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Two other parameters were changed for the sake of the experiment balance and noise 
reduction rather than an interest in their exact effects: 

Hebrew-English: (Abbreviated H-E): Which language was the source (input) and 
which the destination on that particular trial. 

File-Order: We have a pool of 30 words; but at values of nW < 30, we store (and 
retrieve) only a subgroup of the pool. That subgroup choice, i.e. who are the 5 words at 
the nW = 5trials, who the 10, etc., was balanced using 4 controlled versions of the input 
file (pool) order. However, for nW = 30, the changes in FO (the abbreviation of File 
Order), means no more than new randomizations. 

So the experiment ran over all the combinations of: 

with some additional nR = 200 trials. 
Hence a total of: 2 X (5 + 10 + 20 + 30) X 2 X 2 X 2 X 4 = 4160 (not including the 

nR = 200 trials) word-translation-trials were run. 
Unconditioned variables (measuring task performance): Each character in the source 

stimuli was re-checked after the fmt rehearsal against the learned pattern; if it was more 
than 3 bits away, we considered it ‘not identified’. So the first variable is the percenfuge 
of defected source characters, which has nothing to do with the special coding 
mechanism of our model, but is rather a standard SDM characteristic, will be denoted by 
LI. 

A word was considered ‘identified completely’ if its translation characters were all 
detected in the above sense; a word was considered ‘partially identified’ if at least half 
of its characters, but not all, were identified. to Only numbers of completely and 
partially identified words were preserved at the destination side, and not of single 
characters. 

Percentage of completely identified words will be denoted by CW, and Percentage 
of partially idenf@ed words will be denoted by PW; the rest (not identified) - by NW. 
Hence CW+PW+NW= 1. 

4. Results 

Experiment results are summarized in Tables l-4. 
For examples of output, see Appendix B. 

lo This criterion is highly above random; On the other hand. with less than half cham3e.n identified, one can 
hardly expect any useful timctioniog from the word, in further processing. 
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Table 1 
Percentage of identified characters, completely identified words and parrtially identified words, averaged over 

HE aad FO 

Way I-WAY 2-WAY 

distance d=O Id=4 d=O Id=4 

nR nW LJ cw PW Ll CW PW LI CW PW Ll cw PW 

5 100. 65. 30. 75.4 31.5 22.5 100. 62.5 35. 72.7 32.5 30. 

0 10 100. 70. 23.8 12.5 37.5 12.5 100. 68.8 25. 70.3 35. 17.5 

20 99.7 56.9 37.5 68.6 23.7 19.4 100. 69.4 23.7 70.4 34.4 15.6 

30 99.3 56.7 41.7 64.4 18.8 22.9 100. 55. 31.7 65.5 23.3 17.9 

5 97.9 30. 55. 63.1 12.5 22.5 98.9 37.5 45. 65.8 15. 17.5 

100 10 86.6 2.5 17.5 42.5 0. 2.5 85.6 0. 11.3 39. 0. 0. 

20 56.3 0. 1.3 19. 0. 0. 61.5 0. 0. 15.7 0. 0. 

30 36.9 0. 0. 8.8 0. 0. 33.8 0. 0. 5.5 0. 0. 

200 5 100. 22.5 57.5 54.7 2.5 15. 94.6 23.3 40. 56. 1.7 8.3, 

W - Letters IdentifiedKW - Completely Identified Words. PW - Partially Identified Words.Nw - Not Identified 

Word0 - Total No. of Writings to Memory. 

Table 2 

Percentage of identifications, Averaged over number of words, HE and FO. Note: Since the majority of trials 

were made in the last two (20.30) categories of nW, the figures are biased towards the heavy-lOad 
performance characteristics 

Way l-WAY ZWAY 

distance d=O d=4 d=O d=4 

nR Ll CW PW Ll cw PW LI cw PW LI CW PW 

0 99.6 59.4 36.7 67.8 24.6 20.2 100. 62.1 28.5 68.3 29.2 18.1 

100 55.2 2.7 7.3 21.3 I. 2.1 55.3 2.9 5.2 18.4 1.2 1.3 

Table 3 

Percentage of identifications, averaged over way, HE, FO 

DiStSJICe d=O 
nR nW T Ll CW PW NW 

5 109 100.0 63.8 32.5 3.1 
0 10 119 100. 69.4 24.4 6.2 

20 139 99.9 63.2 30.6 6.2 

30 159 99.7 55.8 36.7 7.5 

5 209 98.4 33.8 50. 16.2 

100 10 219 86.1 1.3 14.4 84.3 

20 239 58.9 0. 0.6 99.4 

30 259 35.4 0. 0. 100. 

200 5 309 97.3 22.9 48.8 28.3 

d=4 
LI CW PW NW 

74.1 35. 26.3 38.7 
71.4 36.3 15. 48.7 
69.5 29.1 17.5 53.4 
65.5 21.1 20.4 595 

64.5 13.8 20. 66.2 
40.7 0. 1.3 98.7 

17.4 0. 0. 100. 

7.2 0. 0. 100. 

55.3 2.1 11.7 86.2 
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Table 4 
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Percentage of identifications, averaged over way, distance, HE and FO 

I nR=o 

nW W cw PW NW 

5 87. 49.4 29.4 21.2 
10 85.7 52.8 19.7 27.5 
20 84.7 46.1 24.1 29.8 
30 82.3 38.5 28.5 33. 

5. Discussion 

(I) 

(II) 

(III) 

Look, for example, at Table 4, where the performance in the standard task is 
measured by LI, and that of the multi-level by CW and PW. In the not-too-loaded 
conditions, the sum of CW + PW is pretty close to LI. As loading increases, there 
appears a sharp decrease in the multilevel performance. 

(IV) In analyzing the interactions among factors in our experiment, the most interesting 
is the strong mutual enhancement of the load parameters nR, nW. The combined 
effect of general and local loads is much greater than the sum of each one of them 
alone. This is clearly seen in Table 4. 

(V) The critical factor in loading is not the number of writings (T) to memory per se, 
but rather clustering - local density of close patterns. (In the context of the present 
work this is not so obvious, since one could expect that local density will affect 
only a specific stage of the process, while overall loading will harm every stage 
independently). The crucial role of clustering was revealed through: 
(i) The relatively great effect of nW (as opposed to nR), that is, the local load at 
the high level elements region. 
(ii) In earlier version of the I-Way translation, we did not store the character 
patterns of the source language at their codes MAGNIFY. That is, if we translated 
from Hebrew to English we did not need a way to reconstruct Hebrew characters 

The potential of the model was experimentally demonstrated. Multilevel processing 
can be done in principle and in practice. 
The results were sensitive both to load and to noise in the input stimulus; at least 
part of the reason for this is due to the limitations of the implementation and the 
nature of the test items (i.e. small scale and highly correlated input). Further 
discussion follows below. 
The l-way and 2-way versions achieved approximately the same level of perfor- 
mance; the differences are insignificant. This illustrates the flexibility and richness 
of the model. That is, changing the task somewhat was simple and did not affect 
performance. 
When the loading is not very close to the memory capacity limits, the performance 
of the multilevel task is in the same order of magnitude as the performance of the 
standard (single item), low level pattern recognition task. Obviously it must be 
lower, since the accomplishment of the multi-level task depends on many single 
level tasks. 
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from a word. In the final l-WAY version we made that store only to make a fair 
comparison between the l-WAY and the Z-WAY. So we have earlier results in 
which there were 23 writings less - writings which both their address (MAG- 
NIFied codes) and their data (characters) are heavily crowded. 

Comparison of the results of this early version with the later l-WAY yields that these 
23 writings had a dramatic effect: e.g. in the earlier version, for nR = 100, nW = 30, 
d = 4, 60% of the words were partially or completely identified (vs. none even with 
d = 0 in the final version); with d = 0, we still found a considerable performance at the 
nR = 200, nW = 30 conditions and nR = 300, nW = 5 conditions. So it turns out that 
these 23 writings had a very serious effect. 

Now this sensitivity at the Mg(B) area deserves closer attention. It seems to be an 
artifact of the particular technical choice of JOIN and MAGNET. 

The code is the most vulnerable part of the described mechanism, due to its small 
dimensions and because it does not take part in the rehearsals (TRUNCed away). The 
codes in our implementation were of size c = 8, and the nearest neighbours between 
them were 2 bits apart. (This was inevitable since 50 codes were needed and the 
maximal number of 8-bit codes which are not less than-3 bits apart is only 16.) 

M+GNIFY was chosen so that if two codes, B, /? are k bits apart then Mg(B), 
Mg( /3>. are km/c apart, which seems to be too close (in our case, 16 bits). Similarly, if 
$ and & are two sequences of m/c codes each, separated by a total distance d, then 
JOIN Eand JOIN ($1 are also separated by distance d. 

However, different choice of these functions could have been made which increases 
the separation of close codes. (The major constraint is to choose JOIN so that its inverse 
BREAK is easily calculated.) 

6. Summary 

The idea of using a single homogeneous SDM memory to carry out multilevel 
information processing, was successfully demonstrated by a translation task. The model 
also proved to be flexible - changing the task somewhat did not affect performance. The 
performance of the model near its capacity limits was experimentally investigated, and 
local density seems to play the most critical role. 
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Appendix A: List of input words 

1. LETTER 

2. JOKE 

3. BIG 

4. FIREFLY 

5. MODEL 

6. MEMORY 

7. CAT 

a. NATURE 

9. RELATION 

10. STAR 

11. HEART 

12. BRAIN 

13. COMPUTER 

14. CAR 

15. POLITE 

16. GUM 

17. POINT 

18. THRESHOL(D) 

19. ON 

20. EVENING 

21. OPEN 

22. COLOR 

23. FROG 

24. SET 

25. WIZZARD 

26. BOX 

27. VISION 

28. VARIETY 

29. QUESTION 

30. CELL nn 
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Appendix B: Translation output examples 

The four examples below shows two cases of complete word identification (one with 
exact input, i.e. d = 0, the other three with damaged input, d = 41, one case of partial 
word identification, and one case of identification failure. In each example, the first 
word shown (using the ‘#’ character) is the input - the bit pattern sequence fed into the 

Example 1. Hebrew ( 3n’r) to English (MEMORY); exact stimulus (d = 0); complete word identification. 

88 888 

88 888 

88 888 

88 888 

888 888 

888 888 

##### 888 

8888 888 

00 aaa 
aa OOQ 

aa aaa 

aa aaa 

aaa aaa 

aaa aaa 

aaaaa 000 

aaaa aaa 

8888 

88##### 

888 888 

88 88 

8 

88 

888 

88 

8888 

8###### 

88 88 

88 

88 

88 888 

8#####8 

8#### 

aaaa aaaa 
aaaaaaa 

aaa cad a8 aa 

aa aa a# 

a aa 

aa aa aaa 

a80 aaaaaaa 

aa aaaaa 

6HEBREyLETl%R6 ID6llYIPIED. 0 IIM. WORD IDEITIPIED C0HPLEI'EX.Y 

ss :s :stss: ss ss 
MS sss SSSSSS t:: :st 
MS sst ss sss sss 
:8:s:sss sst:ss ttssssss 
s: St :s MSSSS t: SS s: 
SS ts ss ss ss 
:s 0 ssssss ss St 

ssssss 

88 

88 

88 

8888 

88 

88 88 

88 88 

8888 

aa 

#a 

aa 

aa 

aa aa 

aa aa 

aaaa 

sstt 
ss sssss 

tttt ss ss 
:s ss SSSSS 

ss ss ssss 
ts St ss s: 
stss ss ss 
ss ss ss 

ss ss 
ss ss 
SS ss :ssts#s 
ss :s sssss:sS 

SSSS ssssStSs 

s: SSWSSS 

ss 
ss 
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translation process. The second sequence (using ‘@’ character) is the result of the first 
READ and rehearse - the ordinary SDM pattern recognition task. The last patterns 
sequence (using the ‘$’ character) is the output of the translation process. Hebrew words 
were reversed before printing, in accordance with the direction of the Hebrew writing. 

Example 2. English (STAR) to Hebrew ( 3”‘) damaged stimulus (d = 4); complete word identification. 

#888 

8 8 

88 

881 

8888 

88 

88 8 

8888 

aaaa 

QOQO 

00 

0000 

aaa 

00 OQ 

oa a 

0000 

8 

8888888 888 

8888 888 88 88 

8 888 8 

8 8888888 

88 8888888 

88 888 8 

88 88 88 

8888 

8888 

88 88 

8888 

8888 

88 88 

8 88 

8 88 

0 OOOQ 

oaooooao ooa oaaaa 

000omo8 aaaa 00 00 

00 00 00 QIQQO 

00 aoaaao8 OOOQ 

00 aaoaaoo a0 aa 

00 00 a0 oa aa 

oa oa aa 00 oa 

3 EIIGLISH LElTER3 IDEIITIPIED. 1 NOT. WORD IDEIIYIPIED COHPLZ'IZLY 

SW 

$$$$SS 

Stttt$tt t:: ts 
t$M:s:: :: ts 
t:#t$ts $S 

s:$$:$:s 0s :t 

stt:OC 

w w 

tsst 
$$$$$SS 

ts ts 
ss 
SS 

St stt 
$WSW 

SW$ 
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&ample 3. Hebnw ( vlnn) to English (CAT); damaged stimulus (d = 4); partial word identification [2 letters 

of 31. 

8888 

at 88 
at 

ttttt 

8888 
88 8 

tttttt 
8888 

OWO 

00 00 

00 

awoo 

oooa 

woo 

00 00 

ooao 

888 8 

at 

888 

888 8 

8888 

888 

tat 

888 

oooao 

oooo0 

00 

0000 

ooo 

w 

ooooa 

oawo 

8 

ttttt 

tttttt 

8 88 

88 8 

888 88 

888 888 

888 88 

00 

oooo0 

ooao 

woo 

ooo a0 

oooo oao 

ooa OQ 

88 88 

ttttttt 

888 888 

at 88 
88 at 
88 88 

tat at 

at 88 

aooa 

woo 

00 00 

00 00 

00 oa 
ooao 

a0 00 

3 HEBREW LElTBFS IDEllTIPIED. 1 ROY. WORD PARTIALLY IDENTIFIED. 

WWS :t:t 

$$$W$ $W$# $$MW$ 

$: tt $$ SMMW ttS$t$tt 

$t tt tt :$ $#W$$ 

$$ tt 1s :$ ttttmt 

tt 0 $$ 0 $¶$$$$O 

$$$S$$ MW $$ 

WW SW $t 
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Example 4. English (MODEL) to Hebrew ( IX7 ); damaged stimulus (d = 4); word identification failed [I 
letter &t of 31. - 

tt 8 88 

88 88 

888 888 

tttttttt 

88 88 88 

88 8 

88 88 

QQ 00 

ooa 000 

aaa a00 

QWOOQOQ 

oa 00 a0 

oa m 

oa 00 

88 

8888 

8 88 

88 888 

88 88 

888 

8 88 

OO 

aoaa 

00 oa 

00 oa 

a0 00 

0000 

QQ 

88 

88 8 

88888 

88 88 8 

88 88 

88 

88 

00 

oooo 
OOWQ 

QO a0 

00 00 

0000Q 

ooao 

00 

tttttt 

tttttt 

88 8 

tttttt 

tttttt 

888 

ttttttt 

8888 8 

oaaoaa 

OO@OoO 

a0 0 

aaaaaa 

oaoaao 
Qa 

88 8 

88 8 

88 

88 

88 8 

88 

ttt#tt 

888 88 

00 

00 

00 

00 

00 

00 

000004 

6 ENGLISB LEnEns IDlWTIPIED. 0 UOT. WORD ID? IDEWTIPIED. 

ttttttts 
SWSW 

$$S$S$$$ 

:S$$tt$t 

WS 

$S ss 
$8 

:t:: 

SW 

s :$ 

$ ss 
stts 
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