
Consensus Optimizing Both Distance Sum and

Radius

Amihood Amir1, Gad M. Landau?2, Joong Chae Na??3,
Heejin Park? ? ?4, Kunsoo Park5, and Jeong Seop Sim6

1 Bar-Ilan University, 52900 Ramat-Gan, Israel
2 University of Haifa, Haifa 31905, Israel, and

Polytechnic Institute of NYU, NY 11201-3840, USA
3 Sejong University, Seoul 143-747, South Korea

4 Hanyang University, Seoul 133-791, South Korea
5 Seoul National University, Seoul 151-742, South Korea

6 Inha University, Incheon 402-751, South Korea

Abstract. The consensus string problem is finding a representative string

(consensus) of a given set S of strings. In this paper we deal with the con-

sensus string problems optimizing both distance sum and radius, where

the distance sum is the sum of (Hamming) distances from the strings

in S to the consensus and the radius is the longest (Hamming) distance

from the strings in S to the consensus. Although there have been results

considering either distance sum or radius, there have been no results

considering both as far as we know.

We present two algorithms to solve the consensus string problems op-

timizing both distance sum and radius for three strings. The first algo-

rithm finds the optimal consensus string that minimizes both distance

sum and radius, and the second algorithm finds the bounded consensus

string such that, given constants s and r, the distance sum is at most s

and the radius is at most r. Both algorithms take linear time.

1 Introduction

The multiple string comparison problem is one of fundamental research topics
in computational biology and combinatorial pattern matching [1, 9, 10]. Finding
? This work was partially supported by the Israel Science Foundation grant 35/05, the

Israel-Korea Scientific Research Cooperation and Yahoo.
?? Corresponding author, E-mail: jcna@sejong.ac.kr

? ? ? This work was supported by the Korea Foundation for International Cooperation

of Science & Technology(KICOS) through a grant provided by the Korean Ministry

of Education, Science & Technology(MEST) in 2009 (No. K20717000007-09B0100-

00710).

2 Authors Suppressed Due to Excessive Length

a representative string of a given set S of strings, called a consensus string (or
closest string or center string), is a major problem in multiple string comparison,
which is closely related to the motif recognition problem. Among the conditions
that a string should satisfy to be accepted as a consensus, the two most important
conditions are

1. to minimize the sum of (Hamming) distances from the strings in S to the
consensus, and

2. to minimize the longest distance (or radius) from the strings in S to the
consensus.

In this paper we deal with two related but different problems about finding a
consensus string. The first one is finding an optimal consensus string minimizing
both distance sum and radius as follows.

Problem 1. Optimal consensus
Given a set S = {S1, . . . , Sk} of k strings of length n, find a string X (if any)
that minimizes both

∑
1≤i≤k d(X, Si) and max1≤i≤k d(X, Si) where d(A,B) is

the Hamming distance between strings A and B.

If such an optimal consensus string exists, it can be accepted as a consen-
sus string of S. However, sometimes such a string does not exist and a string
satisfying loose conditions may be sought for as follows.

Problem 2. Bounded consensus
Given a set S = {S1, . . . , Sk} of k strings of length n and two positive inte-
gers s and r, find a string X (if any) satisfying both

∑
1≤i≤k d(X, Si) ≤ s and

max1≤i≤k d(X, Si) ≤ r.

Although minimizing both distance sum and radius from a consensus is im-
portant, researchers have only focused on finding a consensus minimizing either
the distance sum or the radius. Minimizing the distance sum is rather easy. We
can find a string X that minimizes the distance sum by selecting the character
occurring most often in each position of the strings in S. However, minimizing the
radius is a hard problem in general. For general k, the problem of finding a string
X such that max1≤i≤k d(X,Si) ≤ r is NP-hard even when characters in strings
are drawn from the binary alphabet [4]. Thus, attention has been restricted to
approximation solutions [2, 5, 6, 11–14] and fixed-parameter solutions [7, 8, 14,
15].

For fixed-parameter solutions, Stojanovic [15] proposed a linear-time algo-
rithm for r = 1. Gramm et al. [7, 8] proposed the first fixed-parameter algorithm
running in O(kn+krr+1) time for finding a string X such that max1≤i≤k d(X, Si) ≤

Consensus Optimizing Both Distance Sum and Radius 3

r. Ma and Sun [14] presented another algorithm running in O(kn + kr(16|Σ|)r)
time, where Σ denotes the alphabet. Furthermore, there have been some algo-
rithms for a small constant k. Gramm et al. [7] proposed a direct combinatorial
algorithm for finding a string X that minimizes the radius for three strings. Sze
et al. [16] showed a condition for the existence of a string whose radius is less
than or equal to r. Boucher et al. [3] proposed an algorithm for finding a string
X such that max1≤i≤4 d(X,Si) ≤ r for four binary strings. For brief surveys on
approximation solutions, readers are referred to [3, 14]. However, as far as we
know, there have been no results on finding a consensus string minimizing both
distance sum and radius.

In this paper we present the first algorithms to solve the consensus string
problems minimizing both distance sum and radius for the set of three strings
(i.e., when k = 3).

– We present an algorithm to solve the optimal consensus string problem
(Problem 1). The algorithm finds a string X that minimizes both distance
sum (

∑
1≤i≤3 d(X, Si)) and radius (max1≤i≤3 d(X,Si)) if such a string ex-

ists. Otherwise, the algorithm returns a string with the minimum distance
sum among the strings whose radii are minimum. On top of the powerful
functionalities of the algorithm, the algorithm is very efficient. It takes only
O(n) time to do all the computation above.

– We present an algorithm to solve the suboptimal consensus problem (Prob-
lem 2). The algorithm returns a string X (if any) satisfying both

∑
1≤i≤3

d(X, Si) ≤ s and max1≤i≤3 d(X,Si) ≤ r for given s and r. This algo-
rithm runs in O(n) time. In addition, the algorithm can be modified for
faster execution if input strings are given in advance and r and s are given
later. The modified algorithm computes the minimum of

∑
1≤i≤3 d(X, Si) +

max1≤i≤3 d(X, Si) for any string X. The minimum can be computed from
the input strings even before r and s are given. Later, when r and s are given,
the problem can be solved in O(1) by using the minimum. This is very useful
when r and s are given later or when several problems with different pairs
of r and s are asked on the same input strings.

This paper is organized as follows. In Section 2, we give some definitions and
notations. We present our algorithms for the consensus problems in Section 3.
Finally we give concluding remarks in Section 4.

2 Preliminaries

For a string S, let S[i] denote the ith character of S. For two strings X and
Y , d(X, Y) is defined as the Hamming distance between X and Y . Let S =

4 Authors Suppressed Due to Excessive Length

Type 0 Type 1 Type 2 Type 3 Type 4

S1: ¯ ¯ × × × × × ¯ ¯ ¯ ¯ ¯ × × ×
S2: ¯ ¯ ¯ ¯ ¯ ¯ ¯ × × × ¯ ¯ × × ×
S3: ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ × × × × ×

c0 = 2 c1 = 5 c2 = 3 c3 = 2 c4 = 3

Fig. 1. Types of columns in the alignment of 3 strings, where ¯ and × represent match

and mismatch characters at each position, respectively.

{S1, . . . , Sk} be a set of k strings of equal length n. Given a string X, the (con-
sensus) radius of X for S, denoted by RS(X), is defined as max1≤p≤k d(X, Sp)
and the (consensus) distance sum of X for S, denoted by ES(X), is defined as∑

1≤p≤k d(X,Sp). We omit the set notation S if not confusing. Then, Problem
1 is finding a string X that minimizes both E(X) and R(X), and Problem 2
is finding a string Y such that E(Y) ≤ s and R(Y) ≤ r. We call a solution of
Problem 1 an optimal consensus string and a solution of Problem 2 a bounded
consensus string.

Consider the alignment of a string X and the strings in S. Because the
Hamming distance allows only substitutions, X[i] is aligned with Sp[i]’s (1 ≤
p ≤ k). Thus, S can be regarded as a k × n character matrix, where the ith
column consists of the ith characters of the k strings. For each column, we call
the majority the character occurring most often and the minority the character
occurring most seldom.

If we only consider the distance sum, that is, we want to find a string X with
the minimum distance sum, X can be found easily by choosing the majority in
each column. However, the problem of finding a string Y such that R(Y) ≤ r is
NP-hard even when restricted to a binary alphabet [4]. Thus, Problems 1 and 2
are also NP-hard in general.

3 Consensus string for three strings

In this section we consider the consensus string problems for S = {S1, S2, S3}.
We first describe an algorithm for computing a string X with the minimum
radius and show that X computed by the algorithm also minimizes the distance
sum (Problem 1). Then, we show how to compute a bounded consensus string
Y from X (Problem 2).

Consensus Optimizing Both Distance Sum and Radius 5

3.1 String with the minimum radius

Consider the alignment of the three strings S1, S2, and S3. The column in every
position i is divided into the following five types. See Figure 1.

– Type 0: S1[i] = S2[i] = S3[i] (all matches).
– Type 1: S1[i] 6= S2[i] = S3[i] (S1[i] is the minority).
– Type 2: S2[i] 6= S1[i] = S3[i] (S2[i] is the minority).
– Type 3: S3[i] 6= S1[i] = S2[i] (S3[i] is the minority).
– Type 4: S1[i] 6= S2[i], S2[i] 6= S3[i], and S3[i] 6= S1[i] (all mismatches).

Let cj (0 ≤ j ≤ 4) denote the number of columns for type j. Without loss of
generality, we assume that c1 ≥ c2 ≥ c3.

Let Emin be the smallest sum of Hamming distances of S1, S2, S3 from
any string X ′, i.e., Emin = minX′

∑
1≤p≤3 d(X ′, Sp). Obviously, the minimum

distance sum Emin = c1+c2+c3+2c4. Let Rmin be the smallest max of Hamming
distances of S1, S2, S3 from any string X ′. i.e., Rmin = minX′ max1≤p≤3 d(X ′, Sp).
The following lemma gives a lower bound for the minimum radius Rmin.

Lemma 1. Rmin ≥ max(L1, L2), where L1 = (c1 + c2 + c4)/2 and L2 = (c1 +
c2 + c3 + 2c4)/3.

Proof: First, Rmin is greater than or equal to half of the distance between two
farthest strings (i.e., S1 and S2) by Hamming distance. That is, Rmin ≥ (c1 +
c2 + c4)/2 = L1. Moreover, Rmin ≥ Emin/3 = L2. Indeed if there exists a string
X ′ such that R(X ′) < Emin/3, then E(X ′) < Emin, which is a contradiction. 2

Remark. Because Rmin is an integer, L1 is exactly d(c1 + c2 + c4)/2e and L2

is d(c1 + c2 + c3 + 2c4)/3e. Throughout the paper, the ceiling function or the
floor function should be applied to all fractional expressions including L1 and
L2. For simplicity, however, we assume that values of all fractional expressions
are integers.

By comparing the two lower bounds L1 and L2, we get the following.

Corollary 1. Rmin ≥ L2 if c1 + c2 ≤ 2c3 + c4, and Rmin ≥ L1 otherwise.

Thus, if an algorithm computes a string whose radius is L2 when c1+c2 ≤ 2c3+c4

and L1 when c1 + c2 > 2c3 + c4, the algorithm always computes a string with
the minimum radius.

Now we describe how to compute a string X with the minimum radius and
show that the radius of X is max(L1, L2). Basically, we select one of S1[i], S2[i],
and S3[i] in each position i. We always select the majority in every column of

6 Authors Suppressed Due to Excessive Length

type 0. In columns of other types, we select characters in the following way. We
have two cases.

I. When c1 + c2 ≤ 2c3 + c4, i.e., L1 ≤ L2.

Let c41 = (c4 + 2c1 − c2 − c3)/3, c42 = (c4 + 2c2 − c1 − c3)/3, and c43 =
(c4 +2c3− c1− c2)/3. Obviously, c41 + c42 + c43 = c4. Then, we compute a string
X in the following way.

– In every column of Types 0-3, select the majority.
– In columns of type 4, select c41 characters of S1, c42 characters of S2, and

c43 characters of S3.

Now, we prove (1) that c41, c42, and c43 are nonnegative and (2) that the
string X is a string with the minimum radius by showing that its radius is L2.

– c41, c42, and c43 are nonnegative.
• c43 is nonnegative by the condition c1 + c2 ≤ 2c3 + c4.
• c42 is nonnegative if inequality c1 + c3 ≤ 2c2 + c4 is satisfied. Since we

assume that c3 ≤ c2, c1 + c3 ≤ c1 + c2 and 2c3 + c4 ≤ 2c2 + c4, and thus
c1 + c3 ≤ 2c2 + c4 by the condition c1 + c2 ≤ 2c3 + c4.

• The proof that c41 is nonnegative is similar to the proof that c42 is
nonnegative.

– The radius of X is L2.
The distances of strings S1, S2, and S3 from X are as follows:
• d(S1, X) = c1+c42+c43 = c1+(c4+2c2−c1−c3)/3+(c4+2c3−c1−c2)/3

= (c1 + c2 + c3 + 2c4)/3 = L2.

• d(S2, X) = c2+c41+c43 = c2+(c4+2c1−c2−c3)/3+(c4+2c3−c1−c2)/3
= (c1 + c2 + c3 + 2c4)/3 = L2.

• d(S2, X) = c3+c41+c42 = c3+(c4+2c1−c2−c3)/3+(c4+2c2−c1−c3)/3
= (c1 + c2 + c3 + 2c4)/3 = L2.

Since d(S1, X) = d(S2, X) = d(S3, X) = L2, the radius (i.e. max1≤p≤3 d(X, Sp))
is L2.

II. When c1 + c2 > 2c3 + c4, i.e., L1 > L2.

We separate this case into two subcases c1 − c2 < c4 and c1 − c2 ≥ c4.

(a) When c1 − c2 ≤ c4.

Let c41 = (c4 + c1 − c2)/2, c42 = (c4 − c1 + c2)/2, and c43 = 0. Obviously,
c41 + c42 + c43 = c4. Then, we compute a string X in the following way.

Consensus Optimizing Both Distance Sum and Radius 7

– In every column of Types 0-3, select the majority.
– In columns of type 4, select c41 characters of S1, c42 characters of S2, and

c43 characters of S3.

Now, we prove (1) that c41 and c42 are nonnegative and (2) that the string X is
a string with the minimum radius by showing that its radius is L1.

– c41, c42, and c43 are nonnegative.
• c41 is nonnegative by the assumption c1 ≥ c2.
• c42 is nonnegative by the condition c1 − c2 ≤ c4.

– The radius of X is L1.
The distances of strings S1, S2, and S3 from X are as follows:
• d(S1, X) = c1 + c42 + c43 = c1 +(c4− c1 + c2)/2 = (c4 + c1 + c2)/2 = L1.

• d(S2, X) = c2 + c41 + c43 = c2 +(c4 + c1− c2)/2 = (c4 + c1 + c2)/2 = L1.

• d(S3, X) = c3+c41+c42 = c3+c4 < L1. (One can show L1−(c3+c4) > 0
using the condition c1 + c2 > 2c3 + c4.)

Thus the radius of X is L1.

(b) When c1 − c2 > c4.

Let c11 = (c1 + c2 + c4)/2 (nonnegative trivially) and c12 = (c1 − c2 − c4)/2
(nonnegative due to c1− c2 > c4). Then, we compute a string X in the following
way.

– In every column of Types 0, 2, and 3, select the majority.
– In columns of type 1, select c11 majority characters and c12 minority char-

acters (i.e. characters of S1).
– In every column of type 4, select the character of S1.

Now, we prove that the string X is a string with the minimum radius by showing
that its radius is L1.

– d(S1, X) = c11 = (c1 + c2 + c4)/2 = L1.

– d(S2, X) = c12 + c2 + c4 = (c1− c2− c4)/2+ c2 + c4 = (c1 + c2 + c4)/2 = L1.

– d(S3, X) = c12+c3+c4 = (c1−c2−c4)/2+c3+c4 = (c1−c2+2c3+c4)/2 ≤ L1.

(One can show L1− (c1−c2 +2c3 +c4)/2 ≥ 0 using the assumption c2 ≥ c3.)

Thus, the radius of X is L1.

Conclusively, the algorithm computes a string with the minimum radius.

Lemma 2. Given the string set S, a string with the minimum radius for S can
be found in O(n) time.

8 Authors Suppressed Due to Excessive Length

Proof: We have already shown that the radius of string X computed by the
algorithm is minimum. Consider the time complexity. The types of columns and
ci (0 ≤ i ≤ 4) can be determined by scanning three strings once. Furthermore,
other computations can be done in constant time and character selections in
every column can be done by scanning the strings once. Thus, the algorithm
takes O(n) time. 2

3.2 Optimal consensus string

Consider the relation between the radius and the distance sum. In cases I and II
(a), X is a string with the minimum distance sum as well as with the minimum
radius because we select the majority in every column. In case II (b), however,
X is not a string with the minimum distance sum. We can decrease the distance
sum by reducing the number of minority selections in columns of type 1. If
so, however, the radius increases as much as the distance sum decreases. The
following lemma shows the relation between the radius and the distance sum in
case II (b).

Lemma 3. In case of II (b), R(Z) + E(Z) ≥ Rmin + Emin + M for any string
Z, where M = (c1 − c2 − c4)/2.

Proof: Recall that Rmin = L1 = (c1 + c2 + c4)/2 and Emin = c1 + c2 + c3 + 2c4.
Let Z be a string such that E(Z) = Emin + t, where t is the number of minority
selections in all columns when constructing Z. Then, we prove this lemma by
showing that R(Z) ≥ Rmin + M − t = c1 − t. Let mj (1 ≤ j ≤ 3) be the
number of minority selections (i.e., characters of Sj) in columns of type j when
constructing Z. Obviously, m1 + m2 + m3 = t. Let m4j (1 ≤ j ≤ 3) be the
number of characters of Sj selected in columns of type 4 when constructing Z.
Then,

d(S1, Z) = c1 −m1 + m2 + m3 + m42 + m43

= c1 − t + 2m2 + 2m3 + m42 + m43 (using m1 = t−m2 −m3)

≥ c1 − t.

Thus, R(Z) = max(d(Z, S1), d(Z, S2), d(Z, S3)) ≥ c1 − t. 2

Corollary 2. The string X computed by the above algorithm is a string that
minimizes R(X) + E(X).

Lemma 4. The above algorithm computes an optimal consensus string if exists.

Consensus Optimizing Both Distance Sum and Radius 9

Proof: We have already shown that the radius of string X is minimum. In cases
I and II (a), X is also a string with the minimum distance sum. In case II (b),
there is no optimal consensus string by Lemma 3 because c1 − c2 − c4 > 0. 2

Lemma 5. There is no optimal consensus string if and only if both c1 + c2 >

2c3 + c4 and c1 − c2 > c4 (case II (b)).

Lemma 6. If there is no optimal consensus string, the above algorithm com-
putes a string X whose distance sum is smallest among all strings with the
minimum radius.

Proof: The radius of string X is minimum. By Corollary 2, the distance sum of
X is smallest among strings whose radius is R(X). 2

3.3 Bounded consensus string

We show how to compute a bounded consensus string Y from X (Problem 2). In
cases I and II (a), a solution is easy. Because R(X) = Rmin and E(X) = Emin,
X is a bounded consensus string if R(X) ≤ r and E(X) ≤ s, and there is no
bounded consensus string otherwise. Consider case II (b). If R(X) > r, E(X) >

s, or R(X) + E(X) > r + s (by Corollary 2), there is no bounded consensus
string. Otherwise, we can find a bounded consensus string by decreasing the
number of minority selections when constructing X.

Lemma 7. A bounded consensus string can be found in O(n) time if exists.

Lemma 8. Let M = (c1− c2− c4)/2 if c1 + c2 > 2c3 + c4 and c1− c2 > c4 (case
II (b)), and M = 0 otherwise. Then, there exists a bounded consensus string if
and only if Rmin ≤ r, Emin ≤ s, and Rmin + Emin + M ≤ r + s,

By Lemmas 2, 4 and 8, we get the following theorem.

Theorem 1. Problems 1 and 2 for three strings can be solved in O(n) time.

4 Concluding Remarks

We considered the consensus string problem optimizing both distance sum and
radius, and proposed a linear-time algorithm for three strings. Moreover, we
studied the conditions for which there exists an optimal consensus string or a
bounded consensus string for three strings. It remains an open problem to find a
consensus string for k ≥ 4 strings. Another open problem is to find a consensus
string when strings are compared by the edit distance. This problem doesn’t
look easy even for three strings.

10 Authors Suppressed Due to Excessive Length

References

1. S. Altschul and D. Lipman. Trees, stars, and multiple sequence alignment. SIAM

Journal on Applied Mathematics, 49:197–209, 1989.

2. A. Ben-Dor, G. Lancia, J. Perone, and R. Ravi. Banishing bias from consensus se-

quences. In Proceedings of the 8th Symposium on Combinatorial Pattern Matching,

pages 247–261, 1997.

3. C. Boucher, D. Brown, and S. Durocher. On the structure of small motif recog-

nition instances. In Proceedings of the 15th Symposium on String Processing and

Information Retrieval, pages 269–281, 2008.

4. M. Frances and A. Litman. On covering problems of codes. Theory of Computing

Systems, 30(2):113–119, 1997.

5. L. Gasieniec, J. Jansson, and A. Lingas. Efficient approximation algorithms for

the Hamming center problem. In Proceedings of the 10th ACM-SIAM Symposium

on Discrete Algorithms, pages 905–906, 1999.

6. L. Gasieniec, J. Jansson, and A. Lingas. Approximation algorithms for Hamming

clustering problems. Journal of Discrete Algorithms, 2(2):289–301, 2004.

7. J. Gramm, R. Niedermeier, and P. Rossmanith. Exact solutions for closest string

and related problems. In Proceedings of the 12th International Symposium on

Algorithms and Computation, pages 441–453, 2001.

8. J. Gramm, R. Niedermeier, and P. Rossmanith. Fixed-parameter algorithms for

closest string and related problems. Algorithmica, 37(1):25–42, 2003.

9. D. Gusfield. Algorithms on Strings, Tree, and Sequences. Cambridge University

Press, Cambridge, 1997.

10. R.M. Karp. Mapping the genome: some combinatorial problems arising in molec-

ular biology. In Proceedings of the 25th Annual ACM Symposium on Theory of

Computing, pages 278–285, 1993.

11. K. Lanctot, M. Li, B. Ma, S. Wang, and L. Zhang. Distinguishing string selec-

tion problems. In Proceedings of the 10th ACM-SIAM Symposium on Discrete

Algorithms, pages 633–642, 1999.

12. M. Li, B. Ma, and L. Wang. Finding similar regions in many strings. In Proceedings

of the 31st Annual ACM Symposium on Theory of Computing, pages 473–482, 1999.

13. M. Li, B. Ma, and L. Wang. On the closest string and substring problems. Journal

of the ACM, 49(2):157–171, 2002.

14. B. Ma and X. Sun. More efficient algorithms for closest string and substring

problems. In Proceedings of the 12th Annual International Conference on Research

in Computational Molecular Biology, pages 396–409, 2008.

15. N. Stojanovic, P. Berman, D. Gumucio, R. Hardison, and W. Miller. A linear-time

algorithm for the 1-mismatch problem. In Proceedings of the 5th International

Workshop on Algorithms and Data Structures, pages 126–135, 1997.

16. S. Sze, S. Lu, and J. Chen. Integrating sample-driven and pattern-driven ap-

proaches in motif finding. In Proceedings of the 4th Workshop on Algorithms in

Bioinformatics, pages 438–449, 2004.

