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Abstract. Given an input string S and a target string T when S is a
permutation of T , the interchange rearrangement problem is to apply on
S a sequence of interchanges, such that S is transformed into T . The
interchange operation exchanges the position of the two elements on
which it is applied. The goal is to transform S into T at the minimum cost
possible, referred to as the distance between S and T . The distance can be
defined by several cost models that determine the cost of every operation.
There are two known models: The Unit-cost model and the Length-cost
model. In this paper, we suggest a natural cost model: The Element-
cost model. In this model, the cost of an operation is determined by the
elements that participate in it. Though this model has been studied in
other fields, it has never been considered in the context of rearrangement
problems. We consider both the special case where all elements in S
and T are distinct, referred to as a permutation string, and the general
case, referred to as a general string. An efficient optimal algorithm for
the permutation string case and efficient approximation algorithms for
the general string case, which is NP-hard, are presented. The study
is broadened to include the transposition rearrangement problem under
the Element-cost model and under the other known models, in order to
provide additional perspective on the new model.

Keywords: strings rearrangement distances, rearrangement cost mod-
els, interchange rearrangement.

? partially supported by the Israel Science Foundation grant 35/05 and the Israel-
Korea Scientific Research Cooperation.

?? Corresponding author



1 Introduction

The problem of defining the distance or similarity between two strings S
and T has been studied extensively over the years. There are many known
and established methods, such as the Edit distance and the Hamming
distance [13]. The Edit distance allows three operations (substitution,
insertion or deletion) upon the input string. There are several general-
izations of the basic Edit distance (also referred to as the Levenshtein
distance), which defines a unit-cost for every operation. One is the the
operation-weight edit distance, which gives a unit-cost for every type of
operation. Another is the alphabet-weight edit distance, which defines a
cost for every operation depending on the elements participating in the
specific operation.

These string metrics deal with errors of data appearing in the text and
give a measure of either similarity or distance between an input string S
and a target string T . The order of the elements is assumed to be correct.
However, address errors may also be considered ([1–4]). In these types of
errors, elements in S may only be mispositioned. It is commonly assumed
that the input string is a permutation of the target string in order to
have a finite distance. In the rearrangement problem, it is assumed that
only address errors have occurred. The goal is to apply a sequence of legal
operations on S, such that S is transformed into T at the minimum cost
possible, referred to as the distance between S and T .

The interchange rearrangement problem was studied by Cayley [9].
Cayley solved this problem for permutation strings under the Unit-cost
model and left the problem of general strings as an open problem. Re-
cently, Amir et al. solved Cayley’s open problem by showing it isNP-hard
and giving a 1.5-approximation algorithm. In addition, they extended this
problem by examining it under the Length-cost model [4]. In this paper,
we further extend this problem on both permutation strings and general
strings by examining it under the Element-cost model.

Formal Definitions. We begin with formal definitions of the interchange
operator and the Element-cost model.

Definition 1. Let S = s1, . . . , sn be a string. An interchange
of elements si and sj, i < j, transforms S into S′ =
s1, . . . , si−1, sj , si+1, . . . , sj−1, si, sj+1, . . . , sn.

Cost Models. There are two known cost models in the context of re-
arrangement problems. In the Unit-cost model (UCM) each operation is



given a unit cost, so the problem is to transform S into T with a minimum
number of operations. In the Length-cost model (LCM), the cost of an op-
eration depends on its length characteristic. Other characteristics may be
considered in the rearrangement problem. For example, some elements
may be heavier than other elements. In such cases, moving light elements
is preferable to moving heavy elements. This observation motivated re-
searchers to explore the Element-cost model (ECM). In [12], Gupta and
Kumar considered the problem of sorting and selection in the compari-
son model for structured costs. In their work, they assumed that every
element has a weight and that the cost of a comparison is defined by a
function applied to the weight of the elements that participate in the com-
parison. They gave approximations for the optimal solution for families of
structured functions such as summation, multiplication, etc. Recently, [5]
addressed the same problem of sorting and selection for random costs.
However, this paper is the first to consider the ECM for dealing with
rearrangement problems.

Definition 2. Let w : Σ → R+ be a weight function, which assigns a
non-negative weight to every element in Σ. Let g : Σ × Σ → R+ be a
function defining the interchange cost. The function g is called a general
function if it satisfies the following conditions:

1. ∀x, y ∈ Σ : g(x, y) = g(y, x).
2. ∀x, y, z ∈ Σ : w(y) ≤ w(z)⇔ g(x, y) ≤ g(x, z).

The summation function g(x, y) = w(x) + w(y) and the multiplication
function g(x, y) = w(x) ·w(y) are two examples of intuitive general func-
tions. The technique used in the interchange rearrangement problem un-
der the ECM is different than the one used under the UCM. Consider
the example shown in Figure 1. In this example, an optimal rearrange-
ment is given when the UCM is used - S is transformed into T using 3
interchanges (Figure 1(a)). When the ECM is used, the same sequence of
interchanges costs 900, whereas the alternative sequence of interchanges
suggested performs 5 interchanges and costs only 850 (Figure 1(b)).

If all elements in S are distinct, a unique bijection f : S → {1, . . . , n}
can be defined such that f(si) equals the position of the element si in
T . Thus S can be represented by π = f(s1), f(s2), . . . , f(sn) and T by
1, . . . , n. For this case the term permutation string is used. The input
string is then assumed to be π, i.e, a permutation of 1, . . . , n. Under this
assumption the rearrangement problem is simply a sorting problem, i.e.
the distance is the minimum cost for sorting π. Problems of sorting a
permutation string have been studied extensively [6–8, 10, 14, 15]. For the
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Fig. 1. In both (a) and (b), every row represents a stage in the rearrangement. The
elements marked with circles are the elements interchanged to establish the next stage.
In (a), the goal is to transform S into T with a minimum number of interchanges
(UCM ). This is done by applying 3 interchanges. In (b), the ECM is used. Every
element has a weight and the cost of an interchange is the sum of the weights. The
sequence of interchanges applied in (a) costs 900, whereas the sequence of 5 interchanges
applied in (b) costs 850.

general case in which S may have repetitions of elements, the term general
string is used.

Results. Our main results are:

1. O(n) time algorithm for the interchange rearrangement problem for
permutation strings for any general function.

2. NP-hardness for the interchange rearrangement problem for general
strings:
(a) O(n) time 3-approximation algorithm for any general function.
(b) O(n · lg |Σ|) time 1.72-approximation algorithm for the summation

function.

We also broaden the study to include the transposition rearrangement
problem under the ECM, UCM and the LCM for general strings and
permutation strings. Table 1 summarizes the known and new results.

The paper is organized as follows. Section 2 gives additional prelimi-
naries and notations. Section 3 presents an algorithm for the interchange
rearrangement problem for permutation strings for any general function.



Section 4 presents an approximation algorithm for the interchange rear-
rangement problem for general strings for any general function and an
improved approximation algorithm for the summation function. Finally,
Section 5 presents a simple extension of the transposition rearrangement
problem under the ECM, UCM and the LCM in order to give additional
perspective on the new model.

Table 1. A Summary of Results

UCM ECM LCM

Interchanges

Permutation O(n) [9] O(n) for a general function O(n) [4]
Strings

General NP-hard [4] NP-hard O(n) [4]
Strings O(n · lg |Σ|) 1.5-approx. [4] O(n) 3-approx.

for a general function
O(n · lg |Σ|) 1.72-approx.

for the summation function

Transpositions

Permutation O(n lgn) [14] O(n lgn) O(n lgn)
Strings

General O(n2) O(n2) O(n lgn)
Strings

2 Preliminaries and Notations

Given an input string S and a target string T , we define a multi-graph
GS,T = (V,E) (see Fig. 2) in the following way: V = {v ∈ Σ : v appears
in S and T} and E = {(ti, si), 1 ≤ i ≤ n}. In other words, every dis-
tinct character has a vertex and for every index 1 ≤ i ≤ n there is an
edge connecting the vertex representing ti with the vertex of si, meaning
that by the end of the rearrangement process, si will be moved and re-
placed by a ti character. Since S and T have the same quantities of each
element of Σ, the number of incoming edges of every vertex equals the
number of its outgoing edges, which is the number of occurrences of the
vertex’s character in S (and hence in T ). Therefore, each of the strongly
connected components of G(S, T ) is an Eulerian directed graph and by
definition can be decomposed into edge-disjoint directed cycles. If S is
a permutation string, every vertex has exactly one incoming edge and
one outgoing edge and therefore, GS,T can be uniquely decomposed into



edge-disjoint directed cycles. This fact is not true for general strings. Fur-
thermore, there might be an exponential number of ways to decompose
GS,T into edge-disjoint directed cycles. However, once such a decompo-
sition of GS,T is given, it uniquely defines a labeling of the elements of
S and T such that every element appears exactly once. An edge-disjoint
directed cycle in a given decomposition is also called a permutation cycle.
A permutation cycle represents a subsequence of a permutation whose
elements trade places cyclically. We use the following notations:

• d(pi): The distance in the permutation string case (the minimum cost
for sorting π) and d(S, T ) in the general string case (the minimum
cost for transforming S into T ).
• e↔ f : Denotes the operation of interchanging elements e and f . Note

that if e and f appear in the same cycle, interchanging them splits
their cycle into two cycles. If e and f appear in different cycles, inter-
changing them unites their cycles into one cycle (see Fig. 2 (a),(b)).
• Smin: Denotes the minimum cost element in S. If the input string is

a permutation string we substitute this notation with πmin.
• S̃: Denotes the multi-set of elements that are not in place. For exam-

ple, if T = abcab and S = bbaca then S̃ = {a, a, b, c}.

The following notations apply directly to a permutation string. However,
given a decomposition of GS,T into edge-disjoint directed cycles in the
case of a general string, these notations may be also applied. We use the
notation Gπ instead of GS,T for the case of a permutation string :

• For a cycle C:
◦ |C|: Denotes the number of elements in C (the size of C). We use

the term `-cycle for a cycle of size `.
◦ Cmin: Denotes the minimum cost element in C.

• c(π): Denotes the number of cycles in Gπ.

3 Sorting a Permutation String

In this section we demonstrate an algorithm for the interchange rear-
rangement problem when the input string is a permutation string for any
general function under the ECM. This problem is defined as follows:

Definition 3. Let π be a permutation string and let g : Σ × Σ → R+

be a general function. Compute the minimum cost for sorting π by in-
terchanges when the cost of interchanging elements x and y is defined by
g(x, y).
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Fig. 2. In (a) and (b), S is a permutation string. Thus, every vertex in Gπ has exactly
one incoming edge and one outgoing edge and Gπ is in fact the unique edge-disjoint
directed cycles decomposition. Interchanging 3 ↔ 8 in (a) splits their cycle into two
cycles as shown in (b). The same interchange in (b) unites their two cycles into one
cycle, as shown in (a). In (c), S is a general string and is a permutation of T . Therefore,
the number of incoming edges equals the number of outgoing edges and equals the
number of occurrences in S (or in T ). Hence, GS,T is an Eulerian directed graph, and
can be decomposed into edge-disjoint directed cycles. However, this decomposition is
not unique.

Cayley [9] studied this problem under the UCM. He showed that given
a permutation π, the minimum number of interchanges needed for sort-
ing π, is n − c(π). This is achieved by interchanging only elements that
share a cycle until there are no such elements (the permutation is sorted).
When the ECM is used, one might also be inclined to apply a minimum
number of interchanges. This inclination implies that one would be mak-
ing interchanges only within cycles. Any interchange between elements of
different cycles would result in an increase in the number of interchanges
needed for sorting π and probably in the total cost for sorting π. However,
this inclination is incorrect. Moreover, there might be cases in which the
optimal solution would be to increase the number of interchanges needed



for sorting π in order to decrease the total cost. We will describe an algo-
rithm for sorting a permutation string by interchanges under ECM, and
then prove that it yields the optimal cost, i.e., the distance d(π).

3.1 The O(n) time algorithm

The basic idea of the CEAps algorithm (Fig. 4) is quite simple. In order to
sort the permutation π at a minimum cost, either the cheapest element in
some cycle is used to sort all the other elements including itself, or (if the
cheapest element in the cycle is not cheap enough) the cost for introducing
the cycle to the cheapest element in π is ”paid” by interchanging it with
the cheapest element of the cycle. Doing so unites the cycle with the cycle
of the minimum cost element of π. Then the cheapest element of π can
be used to sort all the other elements in the cycle. We call this algorithm
”The Cheapest Employee Algorithm” (CEA).

Definition 4. Let C be a cycle in Gπ, define:

• αin(C) =
∑

x∈C\{Cmin} g(Cmin, x) =
∑

x∈C g(Cmin, x) −
g(Cmin, Cmin)

This represents the case in which a cycle C is sorted within itself, i.e. by
using only interchanges of elements within C. This is done by repeatedly
interchanging Cmin with the other elements in C as shown in Fig. 3(a)
until all C’s elements including Cmin are sorted.

• αout(C) =
∑

x∈C g(πmin, x) + g(πmin, Cmin)

This represents the case in which in order to sort the elements of
C, πmin is introduced to C by interchanging Cmin with πmin. The
result of this interchange is that the elements of C in the new united
cycle form a connected path and πmin is positioned at the tail of
this path. Then πmin is interchanged with all the elements of C in or-
der to sort them in the same manner described for αin(C) (see Fig. 3(b)).

• α(C) = min{αin(C), αout(C)}
The minimum cost method for sorting C.

Step 1 of the CEAps algorithm (Fig. 4) computes the permutation
cycles of π. This is done by a left to right traversal of π. In addition,
the minimum cost element for every cycle and for the whole permutation
string is computed. Then, in steps 3− 13, each cycle is tested separately
for the cheapest sorting method and this method is applied.
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Fig. 3. In (a) the sorting is done within the cycle using its minimum cost element,
Cmin. In (b) the sorting is done by introducing the cycle to the minimum cost element,
πmin. Note that after the interchange Cmin ↔ πmin the elements of C form a connected
path in the new cycle (the black vertices path) and πmin is positioned at the tail of
this path (white vertex).

3.2 Correctness of the algorithm

In this subsection we show that the CEAps algorithm is optimal, i.e,
returns the distance d(π). The cost returned by the CEAps algorithm



CEAps algorithm

Data : A permutation string π, a general function g : Σ ×Σ → R+

Result : Sorts π and returns the cost
begin

1. Compute C1, . . . , Cc(π) and πmin,C1min , . . . , Cc(π)min

2. cost← 0
3. For 1 ≤ i ≤ c(π) do
4. Compute αin(Ci) and αout(Ci)
5. If αin(Ci) ≤ αout(Ci)
6. While ∃e ∈ Ci with an edge (e, Cimin) and |Ci| 6= 1 do
7. Cimin ↔ e
8. cost ← cost+αin(Ci)
9. Else

10. Cimin ↔ πmin
11. While ∃e ∈ Ci with an edge (e, πmin) do
12. πmin ↔ e
13. cost← cost+αout(Ci)
14. return cost

end

Fig. 4. Algorithm for sorting a permutation string by interchanges under ECM.

defines an upper bound for the distance, which is:

d(π) ≤
∑

1≤i≤c(π)

α(Ci)

We now show that it matches the lower bound.

Lemma 1. Let π be a permutation string and let C1, . . . , Cc(π) be the
cycles of Gπ, then:

d(π) ≥
∑

1≤i≤c(π)

α(Ci)

Proof. By induction on the number of interchanges performed by the
optimal solution. The case in which the optimal solution performs 0 op-
erations is trivial (a sorted permutation). Assume that the lemma applies
for a permutation that can be optimally sorted in k− 1 interchanges. We
prove that the lemma also applies for a permutation that can be optimally
sorted in k interchanges. Let π be a permutation of 1, . . . , n with cycles
C1, . . . , Cc(π), which can be optimally sorted in k interchanges. Suppose
that the first interchange of this solution is e ↔ f . Then the resulting
permutation after performing this interchange is a permutation π′, which



can be optimally sorted in k−1 operations. Thus π′ satisfies the induction
hypothesis. The cost for sorting π is: d(π) = d(π′) + g(e, f). There are
two cases to consider:

π

'π

1C 2C 3C )(πcC

A 3C )(πcC

e f

e

f

π

'π

1C 2C 3C )(πcC

A 2C 3C )(πcCB

e

f

e f

)(a )(b

Fig. 5. In case 1 - (a), e, f ∈ C1 and after the interchange e↔ f : e ∈ A and f ∈ B. In
case 2 - (b), e ∈ C1 and f ∈ C2 and after the interchange e↔ f : e, f ∈ A.

Case 1: e and f in π belong to the same cycle. Assume w.l.o.g. that
e, f ∈ C1 and after performing the interchange, e ∈ A and f ∈ B (see
Fig. 5 (a)). The distance is:

d(π) = d(π′) + g(e, f) ≥ α(A) + α(B) +
∑

2≤i≤c(π)

α(Ci) + g(e, f)

In order to prove the lemma for this case, we need to show that α(A) +
α(B) + g(e, f) ≥ α(C1). We use the following simple arguments:

1. w(πmin) ≤ w(C1min) ≤ w(Amin) ≤ w(x), ∀x ∈ A
w(Bmin) ≤ w(x), ∀x ∈ B

2. A ∪B = C1, A ∩B = ∅

There are three subcases to consider:
Case 1.1: α(A) = αin(A) and α(B) = αin(B). If both A and B are
sorted within themselves then obviously C1 is sorted using only inter-
changes inside C1. Since either A or B might be a cycle with a minimum
cost element that is more expensive than C1min , the cost for sorting A
and B in addition to the interchange of elements e and f might be more
expensive, but never cheaper than sorting C1 within. Assume w.l.o.g. that



Amin = C1min . Thus:

αin(A) + αin(B) + g(e, f) =
∑

x∈A\{Amin} g(Amin, x) +
∑

x∈B\{Bmin} g(Bmin, x) + g(e, f)
≥
∑

x∈C1\{Amin,Bmin} g(C1min , x) + g(C1min , Bmin})
=
∑

x∈C1\{C1min
} g(C1min , x)

= αin(C1) ≥ α(C1)

Case 1.2: W.l.o.g. α(A) = αin(A) and α(B) = αout(B). This case
implies that the extra cost for introducing B to πmin is being paid. In-
troducing C1 to πmin will result in a cheaper cost because A may also
benefit from it. Thus:

αin(A) + αout(B) + g(e, f) =
∑

x∈A\{Amin} g(Amin, x) +
∑

x∈B g(πmin, x) + g(πmin, Bmin) + g(e, f)
≥
∑

x∈C1\{Amin} g(πmin, x) + g(πmin, C1min) + g(πmin, Amin)
= αout(C1) ≥ α(C1)

Case 1.3: α(A) = αout(A) and α(B) = αout(B). This case implies that
an extra cost is paid for both A and B for introducing them to πmin.
Instead of paying that extra cost for two cycles, it would be cheaper to
pay this extra cost only once for one cycle. Thus:

αout(A)+ αout(B)+g(e, f)=
∑

x∈A g(πmin, x)+g(πmin, Amin)+
∑

x∈B g(πmin, x) + g(πmin, Bmin)+g(e, f)
≥
∑

x∈C1
g(πmin, x) + g(πmin, C1min)

= αout(C1) ≥ α(C1)

Case 2: e and f in π belong to different cycles. Assume w.l.o.g.
that e ∈ C1 and f ∈ C2 and after performing the interchange e, f ∈ A
(see Fig. 5 (b)). The distance is:

d(π) = d(π′) + g(e, f) ≥ α(A) +
∑

3≤i≤c(π)

α(Ci) + g(e, f)

In order to prove the lemma for this case, we need to show that α(A) +
g(e, f) ≥ α(C1) + α(C2). In the two subcases below we assume w.l.o.g.
that Amin = C1min and we use the following simple arguments:

1. w(πmin) ≤ w(Amin)
= w(C1min) ≤ w(x), ∀x ∈ C1

≤ w(C2min) ≤ w(x), ∀x ∈ C2

2. C1 ∪ C2 = A, C1 ∩ C2 = ∅

There are two subcases to consider:
Case 2.1: α(A) = αin(A). This case implies that A is being sorted within
itself. The only cycle that may benefit from the union is C2, because its



minimum cost element, C2min , might be more expensive than C1min =
Amin. Since C1min may be more expensive than πmin, C2 may benefit
more from uniting with the cycle of πmin. Thus:

αin(A) + g(e, f) =
∑

x∈A\{Amin} g(Amin, x) + g(e, f)
≥
∑

x∈C1\{C1min
} g(C1min , x) +

∑
x∈C2

g(πmin, x) + g(πmin, C2min)
= αin(C1) + αout(C2) ≥ α(C1) + α(C2)

Case 2.2: α(A) = αout(A). This case implies that the extra cost for
introducing A to πmin is being paid. There are two interchanges performed
here, which result in uniting the cycles C1 and C2 with the cycle of πmin.
These two operations cost us exactly g(Amin, πmin) + g(e, f). However,
the same result can be achieved with perhaps a cheaper cost (but never
more expensive). Simply unite C1 with the cycle of πmin and C2 with the
cycle of πmin separately. This will cost g(C1min , πmin) + g(C2min , πmin)
and may only be cheaper. Thus:

αout(A) + g(e, f) =
∑

x∈A g(πmin, x) + g(πmin, Amin) + g(e, f)
≥
∑

x∈C1
g(πmin, x) +

∑
x∈C2

g(πmin, x) + g(πmin, C1min) + g(πmin, C2min)
= αout(C1) + αout(C2) ≥ α(C1) + α(C2)

ut

Theorem 1 immediately follows from the upper bound of the algorithm
and Lemma 1.

Theorem 1. Let π be a permutation string and let C1, . . . , Cc(π) be the
cycles of Gπ. Then the minimum cost for sorting π by interchanges under
ECM for any general function is:

d(π) =
∑

1≤i≤c(π)

α(Ci).

Complexity: By Theorem 1, the CEAps algorithm computes the distance
d(π). Computing the permutation cycles can be done in linear time by a
left to right traversal. Also, testing all the cycles is done in linear time,
since the first element e in the adjacency list of Cimin (or πmin) can be
taken in O(1) time. The interchange (e, Cimin) (resp. (e, πmin)) then sorts
e and the original cycle is shortened by one element, but Cimin (or πmin)
are still in the cycle, so this process can be repeated until all elements in
the cycle are sorted. Therefore, the CEAps algorithm runs in linear time.



4 Rearranging General Strings

In the previous section we showed a linear time algorithm that computes
the distance in the interchange rearrangement problem when the input
string is a permutation string and for every general function. In this sec-
tion we consider the following problem:

Definition 5. Let S be the input string and T be the target string, when
S is a permutation of T and let g : Σ × Σ → R+ be a general function.
Compute the minimum cost for transforming S into T by interchanges
when the cost of interchanging elements x and y is defined by g(x, y).

The interchange rearrangement problem under the UCM for general
strings is NP-hard [4]. Hence, as the UCM is a special case of ECM
where all elements have equal weights, Corollary 1 follows:

Corollary 1. The interchange rearrangement problem under ECM for
general strings is NP-hard.

In the following subsection we present an O(n) time, 3-approximation
algorithm for any general function. In addition, we present an O(n·lg |Σ|)
time 1.72-approximation algorithm for the summation function.

4.1 O(n) time 3-approximation algorithm for general
functions

The hardness of this problem is due to the difficulty of pairing each ele-
ment in S with an identical element in T (converting the problem into a
permutation string problem) in a way that gives the minimum distance.
As explained in Section 2, pairing elements from S with elements in T
is equivalent to performing an edge-disjoint decomposition of GS,T into
directed cycles. Since S is a permutation of T , each of the strongly con-
nected components the graph graph GS,T is an Eulerian directed graph
and such a decomposition exists. The CEAgs algorithm (Fig. 6) arbitrar-
ily decomposes GS,T into cycles and then applies the CEAps algorithm
(Fig. 4). We prove the following theorem:

Theorem 2. The CEAgs algorithm gives a 3-approximation ratio for
any general function.

Proof. We first observe that any solution for the problem implies a de-
composition of GS,T into edge-disjoint directed cycles. This is true be-
cause any solution implies a pairing of the elements of S and T , which is



CEAgs algorithm.

Data : Input string S, target string T , a general function g : Σ ×Σ → R+

Result : Transform S into T
begin

1. Compute GS,T .
2. Compute a decomposition D of GS,T as follows:
3. D ← ∅.
4. Add to D all the 1-cycles of GS,T and remove their edges.
5. Add to D an arbitrary decomposition of the remaining edges.
6. Apply the CEAps algorithm on D.

end

Fig. 6. 3-approximation algorithm for the interchange rearrangement problem under
ECM for general strings for a general function g.

equivalent to performing such a decomposition. Assume that the optimal
solution implies a decomposition of GS,T into cycles C1, . . . , Ck. Then by
Theorem 1:

d(S, T ) =
∑k

i=1 α(Ci)
=
∑k

i=1 min{
∑

x∈Ci g(Cimin , x)− g(Cimin , Cimin) ,
∑

x∈Ci g(Smin, x) + g(Cimin , Smin) }

Since w(Smin) ≤ w(Cimin) then by decreasing the weight of Cimin ,∀1 ≤
i ≤ k to w(Smin) the total cost may only decrease:

d(S, T ) ≥
∑k

i=1(
∑

x∈Ci g(Smin, x)− g(Smin, Cimin))

Define Z =
∑

x∈S̃ g(Smin, x) =
∑k

i=1

∑
x∈Ci g(Smin, x). The expression∑k

i=1 g(Smin, Cimin) is bounded by the case when all cycles are 2-cycles.
Since for every 2-cycle, C, with elements x and Cmin: g(Smin, Cmin) ≤
1
2(g(Smin, x) + g(Smin, Cmin)), it follows that

∑k
i=1 g(Smin, Cimin) ≤ 1

2Z.
Therefore, a lower bound for the distance of the optimal solution is:

d(S, T ) ≥ Z − 1
2Z = 1

2Z

We now show an upper bound on the distance computed by the CEAgs
algorithm, denoted by dalg. Consider a modified version of the CEAgs
algorithm that sorts each cycle in the decomposition D with the αout
sorting method. Since the CEAps applied in step 6 of the CEAgs is opti-
mal, the distance computed by the CEAgs algorithm may only be lower
than the distance computed by the modified version. Let C1, . . . , Cl be



the cycles arbitrarily decomposed by the CEAgs algorithm. We therefore
have:

dalg ≤
∑l

i=1(
∑

x∈Ci g(Smin, x) + g(Smin, Cimin))
≤ Z + 1

2Z = 11
2Z

The ratio between dalg and d(S, T ) is: dalg
d(S,T ) ≤

1 1
2
Z

1
2
Z

= 3. ut

Complexity: Since a GS,T computation and an arbitrary decomposition
of GS,T can be computed in linear time and since the CEAps algorithm
is a linear time algorithm, the CEAgs algorithm runs in linear time.

4.2 O(n · lg |Σ|) time 1.72-approximation algorithm for the
summation function

In this subsection we consider the special case of the summation function,
i.e, g(x, y) = w(x) + w(y). The αin(C), αout(C) for a given cycle are
therefore defined as follows:

• αin(C) =
∑

x∈C\{Cmin} g(Cmin, x) =
∑

x∈C w(x) + (|C| − 2) ·w(Cmin)
• αout(C) =

∑
x∈C g(Smin, x) + g(Smin, Cmin) =

∑
x∈C w(x) + (|C| +

1) · w(Smin) + w(Cmin)

We show that applying the CEAps algorithm on the decomposition pre-
sented by [4] gives a 1.72-approximation ratio. The decomposition pre-
sented by [4] is basically the same as the decomposition of the CAEgs
except that it contains a maximum number of 2-cycles. This difference is
represented by step 5 of the CAE+

gs (Fig. 7). We use the following lemma,
proved by [4]:

Lemma 2. [4] Given an Eulerian directed graph G = (V,E), then for
every 2-cycle, C, in G there exists a decomposition of E into a maximum
number of edge-disjoint directed cycles, in which C appears as a cycle in
the decomposition.

By Lemma 2 there exists a decomposition of GS,T into a maximum num-
ber of edge-disjoint directed cycles that contains a maximum number of
2-cycles. This can be shown inductively by repeatedly finding a 2-cycle
and removing it from GS,T until there are no more 2-cycles. By Lemma 2
in every stage, there exists a decomposition into a maximum number of
edge-disjoint directed cycles that contains the chosen 2-cycle. Removing
it results in a new graph G′, for which all its strongly connected compo-
nents are Eulerian directed graphs. Therefore, the same can be applied
for G′. We prove the following theorem:



Theorem 3. The CEA+
gs algorithm gives a 1.72-approximation ratio.

Proof. We begin by giving a lower bound for the distance. Denote by #c2
the maximum number of 2-cycles that can be decomposed from GS,T , by
m the number of edges that remain after removing all the 1-cycles and a
maximum number of 2-cycles from GS,T . Clearly |S̃| = m+ 2 ·#c2. Since
the maximal number of cycles that can be decomposed from the remaining
m elements is m

3 (when the remaining m elements are decomposed into
3-cycles), #c2 + m

3 is an upper bound for the maximum number of edge-
disjoint directed cycles of any decomposition of GS,T . Assume that the
optimal algorithm implies a decomposition of GS,T into cycles Co1 , . . . , C

o
k

(k ≤ #c2 + m
3 ). Thus, by Theorem 1:

d(S, T ) =
∑

1≤i≤k α(Coi )
=
∑

x∈S̃ w(x) +
∑

1≤i≤k min{ w(Coimin) · (|Coi | − 2) , w(Smin) · (|Coi |+ 1) + w(Coimin) }
≥
∑

x∈S̃ w(x) +
∑

1≤i≤k(w(Smin) · (|Coi | − 2))

Note that the cost for every 2-cycle is exactly the sum of the cost of its
two elements since for a 2-cycle Coi , |Coi | − 2 = 0. Assume w.l.o.g. that
the l last cycles are 2-cycles. The number of elements in the remaining
k − l cycles is exactly |S̃| − 2l. Thus:

d(S, T ) ≥
∑

x∈S̃ w(x) + w(Smin) ·
(∑

1≤i≤k−l |Coi | − 2(k − l)
)

=
∑

x∈S̃ w(x) + w(Smin) · (|S̃| − 2k)

As |S̃| = m+ 2 ·#c2 and since k ≤ #c2 + m
3 then:

d(S, T ) ≥
∑

x∈S̃ w(x) + w(Smin) · (m+ 2 ·#c2 − 2(#c2 + m
3 ))

=
∑

x∈S̃ w(x) + m·w(Smin)
3

We now prove the 1.72-approximation ratio of the CEA+
gs algorithm

(Fig. 7). Consider a modified version of the CEA+
gs algorithm that instead

of step 7, which applies the CAEps algorithm, sorts small cycles (cycles
of size 3− 7) with the αin sorting method and large cycles (cycles of size
greater than 7) with the αout sorting method. As the CEAps algorithm
is optimal, the cost of the CEA+

gs algorithm may only be lower than the
cost of the modified version. Denote the number of small cycles by #c7
and the number of large cycles by #c8. Denote the set of all elements that
belong to 2-cycles, small cycles and large cycles by C2, C7, C8 respectively.
Denote the number of elements that belong to small cycles and large cycles
by m7,m8 respectively. Note that m = m7 + m8 and that

∑
x∈S̃ w(x) =



CEA+
gs algorithm.

Data : Input string S, target string T
Result : Transform S into T
begin

1. Compute GS,T .
2. Compute a decomposition D of GS,T as follows:
3. D ← ∅.
4. Add to D all the 1-cycles of GS,T and remove their edges.
5. Add to D a maximum number of 2-cycles from GS,T and remove their edges.
6. Add to D an arbitrary decomposition of the remaining edges.
7. Apply the CEAps algorithm on D.

end

Fig. 7. 1.72-Approximation algorithm for the interchange rearrangement problem un-
der ECM for general strings for the summation function.

∑
x∈C2

w(x)+
∑

x∈C7
w(x)+

∑
x∈C8

w(x). The lower bound of the problem
can be rewritten as:∑
x∈S̃

w(x)+
m · w(Smin)

3
=
∑
x∈C2

w(x)︸ ︷︷ ︸
a

+
∑
x∈C7

w(x) +
m7

3
· w(Smin)︸ ︷︷ ︸

b

+
∑
x∈C8

w(x) +
m8

3
· w(Smin)︸ ︷︷ ︸

c

The CEA+
gs algorithm pays exactly the cost for invariant a. We now

analyze the cost for invariants b and c. We use the following arguments:

1. For a cycle Ci: w(Cimin) ≤
∑
x∈Ci

w(x)

|Ci|
2. #c8 ≤ m8

8
3.
∑

x∈C8
w(x) ≥ m8 · w(Smin)

4. ∀x, y, z ≥ 0: x+y
x+z ≥ 1 and 0 ≤ x′ ≤ x ⇒ x+y

x+z ≤
x′+y
x′+z

Denote by balg the cost for sorting all the small cycles (using αin). Assume
that the small cycles are Cs1 , . . . , C

s
#c7

Using argument 1, balg is bounded
by:

balg =
∑
x∈C7

w(x) +
∑

1≤i≤#c7

w(Csimin) · |Csi | − 2 ≤ 1
5
7

∑
x∈C7

w(x)

The ratio between balg and invariant b is:

balg
b
≤

15
7

∑
x∈C7

w(x)∑
x∈C7

w(x) + m7
3 · w(Smin)

≤ 1
5
7
≤ 1.72



Denote by calg the cost for sorting all the large cycles (using αout). Assume
that the large cycles are C l1, . . . , C

l
#c8

. Using arguments 1, 2, 3, calg is
bounded by:

calg =
∑

x∈C8
w(x) + w(Smin) ·

∑
1≤i≤#c8

(|C li |+ 1) +
∑

1≤i≤#c8
w(C limin)

=
∑

x∈C8
w(x) + w(Smin) ·m8 + w(Smin) ·#c8 +

∑
1≤i≤#c8

w(C limin)
≤ 11

8

∑
x∈C8

w(x) + 11
8m8 · w(Smin)

Using arguments 3 and 4, the ratio between calg and c is:

calg
c ≤

1 1
8

∑
x∈C8

w(x)+1 1
8
m8·w(Smin)∑

x∈C8
w(x)+

m8
3
·w(Smin)

=
1
8

∑
x∈C8

w(x)∑
x∈C8

w(x)+
m8
3
·w(Smin)

+
∑
x∈C8

w(x)+1 1
8
m8·w(Smin)∑

x∈C8
w(x)+

m8
3
·w(Smin)

≤ 1
8 + m8·w(Smin)+1 1

8
m8·w(Smin)

m8·w(Smin)+
m8
3
·w(Smin)

≤ 1
8 + 2 1

8

1 1
3

≤ 1.72

Therefore,

dalg ≤ aalg + balg + calg ≤ 1.72 · (a+ b+ c) ≤ 1.72 · d(S, T )

ut

Complexity: The CEA+
gs algorithm differs from the CEAgs algorithm

only in step 5 of CEA+
gs. Finding a maximum number of 2-cycles in GS,T

can be done in O(n · lg(|Σ|)) time in the following way. For each edge (of
total n edges) in the graph check if there exists an edge in the opposite
direction. Since there are |Σ| nodes and the nodes can be kept ordered
in the adjacency lists, this check can be done in O(log |Σ|) time for each
edge. As a corollary of Lemma 2 repeatedly finding and removing 2-cycles
this way gives a maximum number of 2-cycles. Therefore, the CEA+

gs

algorithm runs in O(n · lg(|Σ|)) time.

5 The Transposition Rearrangement Problem

In this section we briefly discuss the transposition rearrangement problem
in order to have a broadened view on the cost models. We refer to a single
element transposition and not to a block transposition as referred to in [6]
and [11]. We define the transposition operator as follows:

Definition 6. Let S = s1, . . . , sn be a string. A transposition of an el-
ement si, ` positions forward transforms the string S into the string
S′ = s1, . . . , si−1, si+1, . . . , si+`, si, si+`+1, . . . , sn and a transposition of
an element si, ` positions backward transforms the string S into the string
S′ = s1, . . . , si−`−1, si, si−`, . . . , si−1, si+1, . . . , sn.

Subsection 5.1 considers the problem under the UCM and under the ECM
for both permutation strings and general strings. Subsection 5.2 considers
the problem under the LCM.



5.1 Element-Cost and Unit-Cost Models

In this subsection the following problem is discussed:

Definition 7. Let S be the input string and T be the target string and
let w : Σ → R+ be a weight function. Compute the minimum cost for
transforming S into T by transpositions when the cost of transposing an
element x is defined by w(x).

This definition generalizes all the sub-problems presented in Table 2. If
S is a permutation string, π, the problem is to sort π at minimum cost.
If ∀x, y ∈ Σ, w(x) = w(y), the problem is to transform S into T with a
minimum number of transpositions, i.e, UCM. For this set of problems,
we use the following lemma:

Lemma 3. In the transposition rearrangement problem under UCM or
under ECM, each element is transposed at most once.

Proof. Assume to the contrary that there exists an optimal solution OPT ,
such that dOPT = d(S, T ) and OPT transposes an element x (w(x) > 0)
more than once. Consider the solution OPT ′ that applies all OPT trans-
positions except for those applied on x and finally transposes x once to
its position. Therefore, dOPT ′ < dOPT in contradiction to the minimality
of dOPT . ut

Lemma 3 implies that in the optimal solution for the problems defined
in this subsection the elements of S are divided into two sets: the set A of
elements that are transposed exactly once and the set B of elements that
are not transposed at all. Therefore, the distance is defined as follows:

d(S, T ) =
∑
x∈A

w(x) =
∑
x∈S

w(x)−
∑
x∈B

w(x)

Since B contains elements that are not transposed at all, these elements
construct a common subsequence of S and T . Since d(S, T ) is minimized
when

∑
x∈B w(x) is maximized, B is a common subsequence of highest

cost. The details for the various problems are presented in Table 2. The
Measure column indicates the relevant subsequence of the specific prob-
lem.

5.2 Length-Cost Model

In the interchange rearrangement problem under the LCM presented
in [4], the cost of every operation was defined by applying a length func-
tion to the interchange length. They considered the f(`) = `α length func-
tions for every α. In this section we discuss only the case where α = 1 (the



Table 2. Transposition rearrangement problem under UCM and ECM

Cost String Measure Description Distance∗ Time
Model Type Complexity

Permutation LIS Longest Increasing n− LIS(π) [14] O(n lgn)
UCM String Subsequence

General LCS Longest Common n− LCS(S, T ) O(n2)
String Subsequence

Permutation MWIS Maximum Weighted
∑n
i=1 w(πi)−MWIS(π) O(n lgn)

ECM String Increasing
Subsequence

General MWCS Maximum Weighted
∑n
i=1 w(si)−MWCS(S, T ) O(n2)

String Common
Subsequence

∗ LIS and LCS refer to the size of the subsequence. MWIS and MWCS refer to the
sum of the weights of the subsequence’s elements.



case where α > 1 implies only transpositions of size 1 as shown below for
α = 1, and is, therefore, the same). We consider the following problem:

Definition 8. Let S be the input string and T be the target string. Com-
pute the minimum cost for transforming S into T by transpositions when
the cost of transposing an element ` positions is `.

Permutation Strings. In this case, the input is a permutation string
π and the problem is to sort π at a minimum cost. Given a permutation
string π, we say that πi and πj are reversed iff i < j and πi > πj . Let Rπ

be the set of pairs {i, j}, such that πi and πj are reversed. For example,
in the string: S = D,A,C,B, we have Rπ = {{1, 2}, {1, 3}, {1, 4}, {3, 4}}.
Lemma 4. Let π be a permutation string. Then the cost for sorting π by
transpositions under LCM is d(π) = |Rπ|.

Proof. A lower bound of the distance is |Rπ|, since for every reversed pair,
{i, j}, 1-length unit must be paid (either πi must ”jump” over πj or vice
versa), d(π) ≥ |Rπ|. This bound is achieved by a simple algorithm (sim-
ilar to the max sort algorithm), which transposes the maximal element
to the rightmost position, then transposes the remaining elements from
the maximum to the minimum, by transposing each element to the left of
the previous transposed element. Since the transpositions are performed
from the maximum element to the minimum element, every transposed
element only ”jumps” over elements that are reversed with it and, there-
fore, d(π) ≤ |Rπ|. The lemma follows. ut

Complexity: Computing |Rπ| can be done in O(n lg n) time by using a
balanced search tree supporting position queries.

General Strings. The difficulty for a general string input is to pair the
elements of S with the elements of T in a way that gives the minimum
cost. In the interchange rearrangement problem, this task is NP-hard.
Here, however, an optimal pairing can be defined, as stated by Lemma 5
(which can be easily verified).

Lemma 5. Let S be the input string and T be the target string. Let πo
be the labeling that for any a ∈ Σ and k, labels the kth a in S as the
position of the kth a in T (πo pairs the kth a in S with the kth a in T ).
Then the cost for transforming S into T by transpositions under LCM is
d(S, T ) = d(πo).

Complexity: Since finding the labeling described in Lemma 5 can be done
in O(n lg n), the total time complexity is O(n lg n).
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