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Abstract. The haplotype inference problem (HIP) asks to find a set of haplotypes which resolve a
given set of genotypes. This problem is of enormous importance in many practical fields, such as the
investigation of diseases, or other types of genetic mutations. In order to find the haplotypes that
are as close as possible to the real set of haplotypes that comprise the genotypes, two models have
been suggested which by now have become widely accepted: The perfect phylogeny model and the
pure parsimony model. All known algorithms up till now for the above problem may find haplotypes
that are not necessarily plausible, i.e. very rare haplotypes or haplotypes that were never observed
in the population. In order to overcome this disadvantage we study in this paper, for the first time,
a new constrained version of HIP under the above mentioned models. In this new version, a pool of
plausible haplotypes H̃ is given together with the set of genotypes G, and the goal is to find a subset
H ⊆ H̃ that resolves G. For the constrained perfect phylogeny haplotyping (CPPH) problem we provide
initial insights and polynomial-time algorithms for some restricted cases that help understanding the
complexity of that problem. We also prove that the constrained parsimony haplotyping (CPH) problem
is fixed parameter tractable by providing a parameterized algorithm that applies an interesting dynamic
programming technique for solving the problem.

1 Introduction

Genetic information in living organisms is encoded in DNA sequences that are organized into
chromosomes. Diploid organisms such as humans have two copies of every chromosome, which
are not necessarily identical, with each copy called a haplotype. Identifying the common genetic
variations that occur in humans are valuable in understanding diseases [1]. The genetic sequences
of the population are almost totally identical, except from some bases that differ from one person
to another with a frequency of more than some threshold (1% for example). Those differences are
the common genetic variations and they are known as single nucleotide polymorphisms (SNPs).

The data described in each haplotype may be the full DNA, but it is more common to consider
only the data of the SNPs since the other sites are assumed to be identical. A genotype is the
description of the two copies (haplotypes) together. When the two haplotypes agree, the site in the
genotype has the agreed base. Such a site is called a homozygous site. When the two haplotypes
disagree, the genotype has both bases, yet it does not tell which base occur in which haplotype.
This type of site is called heterozygous.
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Current biological technologies give us an easier and cheaper way to obtain genotype data in
comparison to haplotype data. However, the haplotype information is the one of greater use [16]. For
this reason, it is necessary to computationally infer the haplotype information from the genotype
data. An important biological fact is that almost always there are only two bases at a SNP, which
can be marked as 0 and 1. A genotype will have 0 or 1 if the two haplotypes both have 0 or 1 in
the same site respectively, or 2 otherwise.

In view of that, a set of genotypes and a set of haplotypes can be represented as matrices. A
genotype matrix is a matrix over {0, 1, 2} where each row is a genotype and each column represents
SNP, and a haplotype matrix is a matrix over {0, 1}, where each row is a haplotype and each column
represents SNP.
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Fig. 1. (a) Example of two haplotypes and the corresponding genotype. (b) The same haplotypes and genotype using
the 0,1,2 representation where a=0, t=1, c=0, g=1.

For the rest of the paper, let g(i) represent the data at site i of genotype g, and h(i) the data
at site i of haplotype h.

Definition 1 (Resolution). A pair of haplotypes {h, h′} is said to resolve g if for each i: g(i) =
h(i) where h(i) = h′(i), and g(i) = 2 otherwise. We extend this and say that a set of haplotypes H
resolves a set of genotypes G, if for each g ∈ G, there is a pair {h, h′} ∈ H which resolves g. The
pair {h, h′} is called a resolution of g, and H is resolution of G.

Definition 2 (Haplotype Inference Problem (HIP)). Given a set of n genotypes G, each of
length m, find a resolution of G.

Note that if a genotype has d ≤ m heterozygous sites (sites marked with 2), then the number of
possible resolving pairs is 2d−1. The goal is to find the set of pairs which as close as possible to the
real set of haplotypes that created the genotype. Currently, there are two models used in practice
that give two different biologically motivated heuristics on how to determine this:

1. Perfect Phylogeny: The perfect phylogeny model is a coalescent model which assumes no
recombination. This means that the history of the haplotypes is represented as a tree where
two haplotypes from two individuals have at most one recent common ancestor [16] (see [14, 16,
21, 29] for further information). Formally, a set of haplotypes (binary sequences) of length m
defines a perfect phylogeny if the haplotypes appear as labels of a rooted tree which obeys the
following properties [10]:
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– Each vertex of the tree is labeled by a binary sequence of length m representing a possible
haplotype;

– Every edge (u, v) is marked with i, where the base at site i in sequence u is different from
the one in sequence v. Every coordinate i labels at most one edge.

A common way of checking whether a set of haplotypes defines a perfect phylogeny is to check
whether it obeys the four gamete test, i.e. the corresponding haplotype matrix does not contain,
in any two columns, the forbidden gamete submatrix(

0 1
1 0
0 0
1 1

)
.

See Figure 2 for an example of a perfect phylogenetic tree, and the corresponding haplotype
matrix. The Perfect Phylogeny Haplotyping (PPH) problem is the problem of finding for a
given set of genotypes a resolution which defines a perfect phylogeny, if such resolution exists.
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Fig. 2. Example of a perfect phylogenetic tree for the haplotypes h1 = (01000), h2 = (01010), h3 = (10100), h4 =
(10001). H is the haplotype matrix of the above haplotypes, which obeys the four gamete test.

2. Pure Parsimony: The pure parsimony model seeks the minimum set of haplotypes that re-
solves a given set of genotypes. The biological motivation behind this is the statistical obser-
vation that the number of distinct haplotypes in the population is vastly small [15, 16]. The
Parsimony Haplotyping (PH) problem is the problem of finding a resolution of smallest size
possible for a given set of genotypes.

In [14], Gusfield showed that the PPH problem is solvable in O(nmα(nm)) time, where α is
the inverse Ackerman function. Gusfield also showed a linear-time algorithm to build, once the
first solution is found, a linear-space data structure that represents all PPH solutions. However, his
work is based on complex graph-theoretic algorithms which are difficult to implement [16]. In [3,
10], algorithms fine-tuned to the actual combinatorial structure of the PPH problem were shown.
These algorithms run in O(nm2) time and are easy to understand and implement. They also give a
representation of all PPH solutions. More recent work developed O(nm) time algorithms: In [8], the
algorithm is graph-theoretic and uses a directed rooted graph called a “shadow tree”, and in [27],
the algorithm is based on interdependencies among the pairs of SNPs, and builds a data structure
called “FlexTree” to represent all PPH solutions. Other works have researched different variations
of PPH [4, 7, 11, 20].

The parsimony haplotyping (PH) problem was first suggested and proved to be NP-hard by
Earl Hubell (unpublished). Gusfield formally introduced the problem in [15], and proposed an
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integer linear programming solution. More integer linear programming solutions following this were
proposed in [5, 15, 18, 24]. Approximation algorithms for the problem were presented in [24, 25], and
in [30], a branch-and-bound algorithm was proposed. Other theoretical results were shown in [22,
24, 28]. Most notably is the work of Sharan et. al [28], who characterized restricted instances of PH
under the term (α, β)− bounded, where α and β stand for the maximum number of heterozygous
sites per row and column of the genotype matrix. Sharan et al. also showed that the PH problem
is fixed parameter tractable (see [9] for formal definition) when parameterized by the number of
k haplotypes in the resolution of G. Many other works have researched other variations of the
haplotyping problem [12, 13, 17, 19, 23, 26].

Iersel et al. continued in [22] to explore the bounded instances of the PH problem and of another
related problem Minimum Perfect Phylogeny Haplotyping (MPPH), which looks for the minimum
number of haplotypes that resolve a given set of genotypes and also define a perfect phylogeny.
The MPPH problem was proved to be NP-hard [2]. The known results up till now are: For the PH
problem the (3,*) instance is APX-hard [24], the (4,3) instance is APX-hard [28], the (3,3) instance
is APX-hard [22], the (2,*) instance is polynomial-time solvable [6, 25] and the (*,1) instance is
also polynomial-time solvable [22]. For the MPPH problem the (3,3) instance is APX-hard and the
(2,*) and (*,1) instances are polynomial-time solvable [22]. In both problem the (*,2) instance was
left as open problem but it was shown that it polynomial-time solvable in a special structure of the
genotype matrix [22, 28].

All known algorithms up till now for haplotype inference under the perfect phylogeny model
find resolutions for a given set of genotypes from the superset of all possible haplotypes (i.e. all m-
length binary vectors). However, these algorithms may find resolutions that include binary vectors
representing haplotypes that do not actually occur in the population, or are otherwise very rare.
It is therefore biologically interesting to force the resolving haplotypes to be chosen only from
a specific pool that contains only plausible haplotypes, i.e. haplotypes which have already been
observed in relatively high frequencies in previous experiments. This pool can be determined by
empirically setting up some statistical threshold, or by any other reasonable method.

In view of all this, we study here for the first time, a new constrained variant of the haplotype
inference problem, in which a pool of plausible haplotypes H̃ is given alongside the set of genotypes
G, and the goal is to find a resolution of G which is a subset of H̃.

Definition 3 (Constrained Haplotype Inference Problem (CHIP)). Given a set of ` dis-
tinct genotypes G, each of length m, and a pool of n distinct plausible haplotypes H̃ for G, each of
length m, find a resolution H ⊆ H̃ of G.

The constrained perfect phylogeny haplotyping (CPPH) problem and the constrained parsimony
haplotyping (CPH) problem are defined accordingly. Note that if ` > n(n−1) in the above definition,
there is no solution automatically, since taking the entire pool of n plausible haplotypes we can
resolve at most n(n − 1) genotypes. On the other hand, there is no inequality necessarily in the
other direction. We therefore assume ` ≤ n(n− 1) throughout the paper.

Note that while the complexity of CPH can easily be inferred from the complexity of PH, this is
not the case for CPPH. Indeed, while the PPH problem is, as stated, linear-time solvable, it is still
open whether CPPH is even polynomial-time solvable. Most of the current techniques for solving
PPH are based on dependencies and constraints between pairs of sites, and the property that these
can be expressed as a set of linear equations over GF[2] (see Eskin et al. [10]). The new dependencies
between sites that arise from the given pool of plausible haplotypes are of a different type, and
there seems to be no easy way to express them over GF[2]. On the other hand, all attempts of
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showing that CPPH is NP-hard by standard straightforward reductions from PH or MPPH [10]
(Minimum Pure Parsimony Haplotyping - the problem of finding a perfect phylogenic resolution of
minimal size) eventually fail due to the fact that H̃ is given alongside the input (and therefore is
required to be polynomial), and since any solution (not necessarily minimal) is acceptable.

In this paper, we provide an initial insight to determining the complexity of CPPH. We present a
framework which helps partially answer this question, and allows polynomial-time solutions for the
CPPH (α, β) bounded cases of (*,1), (2,*), (5,2), and (3,3). As is the case for the PH problem [10,
28] these cases can be very useful for speeding up implementations of CPPH, but they also give a
glimpse into the complexity of the problem. For example, while it was proved in [10] that MPPH and
PH for (3,3)-bounded genotype matrices are both APX-hard, we show that CPPH is polynomial-
time solvable in this case.

In the second part of the paper we turn to consider CPH. We show that like PH [10], CPH
is fixed-parameter tractable when parameterized by the number of haplotypes k in a minimum
resolution H ⊆ H̃ of G. The parameterized algorithm for CPH, is however much more involved
than the one for PH, and it applies an interesting dynamic programming technique for solving the
problem. Proofs are omitted due to space considerations.

2 Constrained Perfect Phylogeny Haplotyping

In this section we describe polynomial-time algorithms for CPPH with genotype matrices of specific
structures. In [28], bounded cases of genotype matrices were introduced in order to explore the
complexity of PH. The bounded cases were defined as follows:

Definition 4 ((α,β)-bounded [28]). A genotype matrix G is (α,β)-bounded if it has at most α
2’s per row and at most β 2’s. α and β might be * which means there is no bound on the number
of 2s per row or column, respectively.

Here we use the same term of (α,β)-bounded to present polynomial-time algorithms for special
cases of CPPH. We will present algorithms for the following cases: (*,1), (2,*), (5,2) and (3,3).

We begin with the following lemma which lists ten matrices that we can assume G does not
include, since including any one of them implies that all resolutions of G necessarily include the
forbidden gamete submatrix. Its proof is left to the reader.

Lemma 1. If G includes one of the following 2× 3 submatrices:(
2 0
0 2
1 1

)
,
(

2 1
1 2
0 0

)
,
(

2 0
1 2
0 1

)
,
(

2 1
0 2
1 0

)
,
(

2 1
0 0
1 0

)
,
(

1 2
0 0
0 1

)
,
(

2 0
1 1
0 1

)
, or

(
0 2
1 1
1 0

)
,

or one of the following 2×2 submatrices: ( 2 0
2 1 ) or ( 0 2

1 2 ) , then G does not have a perfect phylogenic
resolution.

As in Eskin et al. [10], we will be working with pairs of columns in G. Pairs of sites of a genotype
can be split into two types, according to the data in those sites. Type I includes the pairs of sites
that have only one possible resolution. Those pair of sites are (00), (01), (10), (11), (20), (21), (02)
and (12). The resolutions of those sites are described in the following list:

1. (00)→ ( 0 0
0 0 ) 2. (01)→ ( 0 1

0 1 ) 3. (10)→ ( 1 0
1 0 )

4. (11)→ ( 1 1
1 1 ) 5. (20)→ ( 0 0

1 0 ) 6. (21)→ ( 0 1
1 1 )

7. (02)→ ( 0 0
0 1 ) 8. (12)→ ( 1 0

1 1 )
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Type II includes pairs of sites with (22) (22-columns). A 22-columns have two potential resolutions:
(22) → ( 0 0

1 1 ), which will be called equal resolution, or (22) → ( 0 1
1 0 ), which will be called unequal

resolution.
Determining whether there is a perfect phylogenic resolution of G boils down to deciding the

resolution type, equal or unequal, for any pair of 22-columns. For some 22-columns, the type of the
resolution is determined by the given set of genotypes, for others it determined by the given set of
haplotypes, and for the rest we need algorithms that will find the proper resolution.

2.1 Preprocessing

We next present a preprocessing stage which is performed before all algorithms regardless of the
specific structure of the input sets of genotypes or haplotypes.

A 22-columns ij must be resolved equally if the given set of genotypes G includes at least one
of the following submatrices in columns ij: ( 0 0

1 1 ) , ( 2 0
1 2 ) or ( 2 1

0 2 ) , since any resolution of G must
include the combinations ”00” and ”11” in this case (see Fig. 3). For the same reason columns ij
must be resolved unequally when G includes at least one of the submatrices ( 0 1

1 0 ) , ( 2 0
0 2 ) or ( 2 1

1 2 ) .
We will call this type of constraints on the resolution type genotypes constraints. In addition, a
22-columns ij must be resolved equally (unequally) if the haplotypes set includes for some genotype
only equal (unequal) resolutions. This type of constraints will be called haplotypes constraints.

0 0 
1 1

2 0 
1 2

2 1 
0 2

0 0 
1 1

0 0
1 0
1 0
1 1

0 1 
1 1
0 0
0 1

0 1 
1 0

2 0 
0 2

2 1 
1 2

0 1 
1 0

0 0 
1 0
0 0
0 1

0 1
1 1
1 0
1 1

Fig. 3. Example of genotypes and their resolutions. Note that on the three cases on the left, the combinations ”00”
and ”11” appear in the resolutions, and on the three cases on the right the combinations ”01” and ”10” are those
who appear.

The preprocessing ensures that haplotype-pairs which violate the above constraints will not
be chosen. For each genotype gi ∈ G, we use H̃(gi) to denote all possible resolutions of gi in H̃,
i.e. H̃(gi) = {{h, h′} |h, h′ ∈ H̃, h and h′ resolve gi}. The preprocessing step includes the following
four steps:

1. Check whether the genotype matrix G can be resolved in a perfect phylogenic way (use any
algorithm from [3, 8, 10, 27]). If not, report there is no solution.

2. For each genotype gi ∈ G, 1 ≤ i ≤ `, go over all pairs of haplotypes from H̃ and compute H̃(gi).
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3. For each genotype constraint, delete from the sets H̃(g1), . . . , H̃(g`) all haplotype pairs that
violate the constraint, i.e. resolve the relevant sites in a different way than the constraint
indicates.

4. For each haplotype constraint, delete from the sets H̃(g1), . . . , H̃(g`) all the haplotype pairs
that violate it. Note that the deletion of haplotypes may create a new haplotype constraints.
Repeat Step 4 until there is no change in the haplotype constraints.

After each step of steps 2 to 4 in the preprocessing stage, if one of the haplotypes sets
H̃(g1), . . . , H̃(g`) becomes empty, it means there is no solution and we done. Once the prepro-
cessing is complete, our goal is to find a resolution H ⊆ H̃ of G, by selecting one pair of haplotypes
from each H̃(g), g ∈ G. From here on out, we will only be concerned with resolutions of this type.
Note that even after the preprocessing stage, not all resolutions of this type will define a perfect
phylogeny. This is because we are still left with 22-columns that have yet been resolved, as there
might be two different genotypes g and g′ which share a common pair of 22-columns ij, and H̃(g)
and H̃(g′) includes both resolutions for ij (i.e. equally and unequally). Such a pair of resolution
is said to be conflicting, and more generally, any pair of resolutions {h1, h

′
1} and {h2, h

′
2} are con-

flicting if {h1, h
′
1, h2, h

′
2} does not define a perfect phylogeny. We have the following two important

lemmas:

Lemma 2. After the preprocessing stage, {h1, h
′
1}, . . . , {hr, h

′
r} are pairwise non-conflicting reso-

lutions of r genotypes in G iff H =
⋃

1≤i≤r{hi, h
′
i} defines a perfect phylogeny.

Proof. Let G′ ⊆ G denote the subset of r genotypes which H resolves. If H defines a perfect phy-
logeny, then clearly {h1, h

′
1}, . . . , {hr, h

′
r} are pairwise non-conflicting. To prove the other direction

of the lemma, it suffices to show that any four haplotypes in H define a perfect phylogeny. Suppose
in way of contraction that this is not the case. Then there are four haplotypes ha,hb,hc, and hd in
H, such that {ha, hb, hc, hd} do not define a perfect phylogeny. This means that there is a pair of
sites i, j ∈ {1, . . . ,m} such that {ha, hb, hc, hd} will have the forbidden gamete matrix at ij. There
are three possible cases:

– The four haplotypes belong to two different resolutions in {h1, h
′
1}, . . . , {hr, h

′
r}. But this

contradicts the assumption that {h1, h
′
1}, . . . , {hr, h

′
r} are pairwise non-conflicting.

– The four haplotypes belong to three different resolutions in {h1, h
′
1}, . . . , {hr, h

′
r}. Then, w.l.o.g.,

{ha, hb} is resolution of some genotype g ∈ G′, and ij is a pair of 22-columns in g, since
ha(i) 6= hb(i) and ha(j) 6= hb(j). Suppose w.l.o.g. (the other case is symmetric) that ha and hb

resolve ij equally, i.e. ha(i) = ha(j) and hb(i) = hb(j), and let g′, g′′ ∈ G′ be the two genotypes
that hc and hd resolve. Then it is not hard to verify that G must include one of the following
five submatrices at rows g′g′′ and columns ij:

( 0 1
1 0 ) , ( 2 0

0 2 ) , ( 2 1
1 2 ) , ( 2 0

2 1 ) , or ( 0 2
1 2 ) .

If G includes the last two submatrices, then G does not have a perfect phylogenic resolution in
the first place (Lemma 1), and so the preprocessing stage would have reported “no solution”.
If G includes the first three submatrices, then there is a genotype constraint on ij stating that
it must be resolved unequally, and so {ha, hb} would have been removed from H̃ at step 3 of
the preprocessing stage. In both cases we reach a contradiction.
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– The four haplotypes belong to four different resolutions in {h1, h
′
1}, . . . , {hr, h

′
r}. Consider the

four genotypes ga, gb, gc, gd ∈ G′ that ha,hb,hc, and hd resolve. If ij is a pair of 22-columns
in one of these genotypes, then this case is similar to the previous case. Otherwise, it is not
difficult to verify that G must include one of the forbidden submatrices of Lemma 1, and so the
preprocessing stage would have halted at its first step – contradiction.

In all three cases we have reached a contradiction, and so the lemma is proven. ut

Lemma 3. The preprocessing stage takes O(m4n2 + m2n4) time.

Proof. The first step of the preprocessing takes O(`m2)-time by using one of the polynomial-
time algorithms for PPH. The second step takes O(`mn2)-time, since checking whether a specific
haplotype pair resolves a specific genotype takes O(m)-time, and there are ` genotypes, and O(n2)
haplotype pairs. The third step takes O(m2n2)-time, since finding one genotype constraint and
deleting all violating haplotype pairs takes O(` + n2) = O(n2)-time (` ≤ n2) and it done for all
pairs of columns. The last step takes O(m2n2 ·min(m2, n2)), since finding all haplotype constraints
and delete all violating haplotype pairs take O(m2n2)-time and we repeat it at most m2 times since
each pair of columns may create a new constraint only once, or at most n2 times since we cannot
delete more than n2 haplotype pairs. In summary, the total running time of the preprocessing stage
is O(m2n2 ·min(m2, n2) + `mn2) = O(m4n2 + m2n4). ut

2.2 The dependency graph

This brings us to the notion independency and dependency between genotypes. Loosely speaking,
a dependency between two genotypes g, g′ ∈ G arises when the decision on how to resolve g affects
the decision on how to resolve g′. This obviously happens when there is a resolution {h1, h

′
1} ∈ H̃(g)

conflicting with a resolution {h2, h
′
2} ∈ H̃(g′). In this case we say that g and g′ are directly dependent.

If there is no resolution in H̃(g) conflicting with a solution in H̃(g′), we say that g and g′ are
independent.

We next introduce the dependency graph DG(G) of our given set of genotypes G, after they have
been preprocessed by the algorithm in the previous section. Later on, we will use the properties of
the dependency graph in our polynomial algorithms.

Definition 5 (dependency graph). The dependency graph DG(G) of a set of genotypes G is a
graph which has a vertex for each genotype g ∈ G, and edge between vertices representing directly
dependent genotypes (see Fig. 4).

g1 = 1 2 2 0  

g2 = 2 2 2 0 

g3 = 2 1 2 0

g4 = 1 2 2 2

g1

g3

g2

g4

Fig. 4. Example of four genotypes and their corresponding dependency graph
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Lemma 4. After the preprocessing stage, two genotypes that do not have any pair of 22-columns
in common are independent.

Proof. Consider two genotypes g, g′ ∈ G that don’t have any common pair of 22-columns. Suppose
by way of contradiction that there is a resolution {hx, hy} ∈ H̃(g) conflicting with a {hx′ , hy′} ∈
H̃(g′). This means that there is a pair of columns ij of {hx, hy, hx′ , hy′} that has the forbidden
gamete matrix. But this can only happen when G includes (in the rows gg′, and in columns ij) one
of the two 2× 2 forbidden submatrices of Lemma 1. ut

Lemma 5. Let G1 and G2 be two connected components in DG(G). If H1 ⊆ H̃ and H2 ⊆ H̃
are perfect phylogenic resolutions of G1 and G2 respectively, then H1 ∪H2 is a perfect phylogenic
resolution of G1 ∪G2.

Proof. Consider any pair of resolutions in H1 ∪ H2 of two genotypes g, g′ ∈ G1 ∪ G2. If g and g′

are not both in G1, nor in G2, then there is no edge between them in DG(G), meaning that they
are independent. Hence, the pair of resolutions is non-conflicting by definition. If g, g′ ∈ G1 or
g, g′ ∈ G2, then by Lemma 2, the pair of resolutions is non-conflicting as both H1 and H2 define
a perfect phylogeny. It follows that all resolutions in H1 ∪H2 are pairwise non-conflicting, and so
again by Lemma 2, H1 ∪H2 defines a perfect phylogeny. ut

In view of lemma 5, every connected component can be resolved individually, and the union
of the chosen haplotypes will give the desirable resolution of G. As mentioned in definition 4, a
genotype matrix G is (k-`)-bounded when it has at most k 2s per row and at most ` 2s per column,
where k or ` might be * to indicate there is no such limitation. The following algorithms refer to
different k and `, as the headlines indicate.

2.3 (*,1)- and (2,*)-bounded cases

We next turn to show how to use the properties of the dependency graph DG(G) to solve various
bounded-cases of CPPH. We begin with the simple cases of (1,*)-bounded and (*,2)-bounded
genotype matrices.

Lemma 6. Any pair of genotypes g1 and g2 in a (*,1)-bounded genotype matrix are not directly
dependent.

Proof. Since there is at most one 2 per column, g1 and g2 cannot have a 2 in the same column.
Due to this, g1 and g2 can never share a pair of 22-columns, which according to Lemma 4, means
they cannot be directly dependent. ut

According to Lemma 6, if G is a (*,1)-bounded genotype matrix, then the dependency graph
DG(G) has no edges, and its connected components are of size one. The algorithm will choose for
H ′ one pair of haplotypes from every set Hi, 1 ≤ i ≤ n, and H ′ will define a perfect phylogeny
according to Lemma 5.

Lemma 7. If g1 and g2 are two genotypes in a (2,*)-bounded genotype matrix, then w.l.o.g. they
are not directly dependent.
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Proof. According to Lemma 4, two genotypes are directly dependent only if they have a pair of
22-columns in common. If g1 and g2 are different genotypes in a (2,*)-bounded genotype matrix,
and they have a pair of 22-columns in common, it means that G contains at least one of the two
2× 2 forbidden submatrices of Lemma 1, and so at the first step of the preprocessing stage we will
determine that there is no solution. ut

According to claim 7, if G is a (2,*)-bounded genotype matrix, then the dependency graph
DG(G) has no edges, and its connected components are of size one. The algorithm for solving the
(2,*)-bounded case is similar to the above algorithm for (*,1)-bounded case, to choose for H ′ one
pair of haplotypes from every set Hi (1 ≤ i ≤ n). And again, according to lemma 5, H ′ will define
a perfect phylogeny.

Theorem 1. CPPH with (*,1)- or (2,*)-bounded genotype matrices is polynomial-time solvable.

Proof. According to lemma 6 and 7 all connected components of the dependency graph in the
case of (*,1)- or (2,*)-bounded genotype matrices are of size one, which means that according to
lemma 5, any set of haplotypes that includes one resolution for each genotype will define a perfect
phylogeny. Finding such a set can be done in O(`) time. ut

2.4 (5,2)-bounded case

It is convenient to mark every edge {g, g′} in the dependency graph DG(G) with the indices of the
2-columns g and g′ share. Observe that in the (*,2)-bounded case, a specific index will appear only
on one edge of the dependency graph, since there are no more than two genotypes that have 2 in
the same column. Thus, for the (5,2)-bounded case, we have the following important property:

Lemma 8. If G is a (5,2)-bounded genotype matrix then DG(G) has maximum degree 2.

Proof. Consider a genotype g ∈ G with five 2s. According to Lemma 4, if g is directly dependent
with any other genotype then they share a pair of 22-columns. There are two cases of direct
dependency with g:

1. g shares four columns with another genotype g′ ∈ G. In this case, neither g nor g′ can be directly
dependent with other genotypes in G, as they both have at most one column left with a 2 that
can be shared with other genotypes.

2. g shares three or two columns with another genotype g′ ∈ G. In this case, g can be directly
dependent with no more than one other genotype, since it does not have four columns that can
be directly dependent with other genotypes in G.

In both cases g has degree of at most 2 in DG(G), and so the lemma is proven. ut

The lemma above implies, that if G is a (5,2)-bounded genotype matrix then every connected
component in DG(G) is either a path or a cycle. Furthermore, in the first case of the lemma, the
connected component is of size 2, and all solutions for it can be determined trivially. We therefore
focus on the second case of the lemma, where each edge in a given component is marked with at
most 3 indices. We will initially assume that the component is a path with all edges labeled by two
indices, and then show how to easily extend our ideas to the case of edges labeled by three indices,
and to the case of a cycle.
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Consider a connected component G′ in DG(G) which is a path comprised of r genotypes
g1, . . . , gr, where g1 and gr are vertices of degree 1, and gi is connected to gi+1, 1 ≤ i < r, by
an edge which is marked with two indices. We partition the internal genotypes of the path G′ into
three types, depending on the number of possible resolutions available for them. Let gi ∈ G′ be
genotype in G′ for some 1 < i < r, where {gi−1, gi} is labeled with two indices ab in DG(G),
1 ≤ a < b ≤ m, and {gi, gi+1} is labeled with two indices cd, 1 ≤ c < d ≤ m:

– Genotypes of type I have all four possible resolutions of ab and cd in H̃(gi).
– Genotypes of type II have only three out of four possible resolutions of ab and cd in H̃(gi).
– Genotypes of type III have only two out of four possible resolutions of ab and cd in H̃(gi).

Note that these are the only possible cases, since we assume that any pair of columns label an edge
can be resolved either equally or unequally, otherwise there is only one way to resolve it and we
can remove this edge from the graph.

Lemma 9. In the case of a component which is a path with all edges labeled by two different indices
there is always a perfect phylogenic resolution in H̃.

Proof. In order to prove the lemma we show how to obtain an actual solution: Consider a path
g1, ..., gr where the edge {g1, g2} is labeled with the indices ab, and the edge {g2, g3} is labeled
with the indices cd. Start with g1 and choose any resolution for columns ab, for example an equal
resolution. Continue resolving the next pair of columns cd according to g2’s type:

– If g2 is of type I then cd can be resolved either equally or unequally. Choose any resolution
(equally, for example) and continue to the next edge.

– If g2 is of type II then if ab was resolved in a way that leaves the two options to resolve cd, choose
any one of them and continue. Otherwise, choose the only possible resolution and continue.

– If g2 is of type III then there is only one way to resolve cd, choose this resolution and continue.

Note that in any of the three mentioned cases there is always a way of resolving the next pair of
columns which proves that the above algorithm finds a perfect phylogenic resolution. ut

Lemma 10. A path with all edges labeled by two different indices represents all perfect phylogenic
resolutions in H̃.

Proof. All perfect phylogenic resolutions may be obtained by choosing each time a different reso-
lution for an edge that connected to a genotype of type I or II. It follows that if t is the number of
genotypes of type I or II in the connected component then the number of all possible resolutions is
bounded by 2t+1. ut

We now move on to the case where some edges are labeled with three indices in the path.
Consider an edge {g, g′} labeled with three indices abc, 1 ≤ a < b < c ≤ m in DG(G). First we
check that H̃(g) includes only pairs of haplotypes that have a non-conflicting resolution in H̃(g′)
and vice versa. We do so by checking all possible resolutions for columns abc in H̃(g) and H̃(g′)
and deleting the resolutions that appear only in one of those sets. This step ensures that if neither
of the sets remains empty (which means there is no solution), then the algorithm will choose for
abc a perfect phylogenic resolution. Note that the deletion of haplotype pairs may require deletion
of other haplotype pairs in H̃(g1), .., H̃(g`). Since that we will repeat step 4 of the preprocessing
described in section 2.1. Observe that in the (5,2)-bounded case, the other edges connected to g
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and g′ are labeled with at most two indices (since g and g′ have at most five 2s each). According
to that there are at most eight possible resolutions available for g and g′, which means we can use
the same path algorithm from lemma 9 while this time the algorithm may have more resolution
options to choose from for the three indices edges.

We are left to show how to extend the above path algorithm to the case of a cycle. Consider
a cycle of r genotypes. The extension can be easily done by pulling out one edge from the cy-
cle, for example, w.l.o.g., the edge {gr, g1} what leaves us with a path comprises of r genotypes
g1, g2, ..., gr−1, gr. We now check what are the possible resolutions for that path according to the
way they resolve the columns label the edges {g1, g2} and {gr−1, gr}. Note that there are exactly
four types of possible resolutions according to this definition. The way of checking whether there
exist any resolution of a specific type, for example the type that resolves the columns label {g1, g2}
and {gr−1, gr} equally, is to run the path algorithm twice, in the first time starting from g1 by
choosing an equal resolution to the columns label {g1, g2} and continue until reaching an edge with
two possible resolutions. The second run will start from gr and do the same on the opposite direc-
tion. If any of those runs reach the end of the path with the wrong resolution that means there is
no resolution of the specific type. After knowing what types of resolutions exists, it is only left to
check whether the columns label the removed edge {gr, g1} have a resolution that does not conflict
with any of those types.

Theorem 2. CPPH with (5,2)-bounded genotype matrices is polynomial-time solvable.

Proof. According to lemma 8 solving CPPH with (5,2)-bounded genotype matrix is composed
of resolving genotypes from connected components of size two, which can be trivially done in
polynomial-time, and resolving genotypes that place on a path or a cycle. Solving a path or a cycle
includes finding all possible resolutions for each genotype, which can be done in O(n2), and than
choosing a resolution for each edge in O(m). ut

2.5 (3,3)-bounded case

In a (3,3)-bounded genotype matrix there are three cases of direct dependency for every genotype
g ∈ G.

1. g is directly dependent with two other genotypes sharing the same 22-columns. In this case any
genotype of the three cannot be dependent with any other genotype since it left with at most
one 2 to share, and so the corresponding connected component in DG(G) is of size 3.

2. g is directly dependent with three other genotypes. In this case all four genotypes cannot
be dependent with any other genotypes since they have at most one 2 to share, and so the
corresponding connected component is of size 4.

3. g is directly dependent with exactly one other genotype g′, and they have exactly one pair of
22-columns in common. In this case, g′ can be directly dependent with another genotype g′′,
and so forth. The corresponding connected component in this case is a path, where each edge
is labeled with two indices.

In the first two cases, we can determine whether the connected component has a prefect phy-
logeny resolution in H̃ by simple exhaustive search. In the last case, we know by lemma 9 that
the connected component necessarily has a perfect phylogenic resolution in H̃, and we can use the
algorithm described in that lemma for finding an actual solution. Observe that the algorithm will
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work correctly since in the third case described above, any pair of columns labels at most one edge
across the path.

Theorem 3. CPPH with (3,3)-bounded genotype matrices is polynomial-time solvable.

3 Constrained Parsimony Haplotyping

We next consider the CPH problem. In [28], Sharan et al. showed that PH is fixed parameter
tractable (see [9] for a formal definition) when parameterized by the size k of the resolution of G
(i.e. there are k distinct haplotypes in the resolution). Here, we show an analogous result for CPH.
Our algorithm will perform relatively efficiently (in comparison to brute-force type algorithms) in
cases of ` << n. Our approach involves solving a dynamic program to determine whether there is
any H ′ ⊆ H of size κ ≤ k which resolves G. Throughout the section we use Gi, 1 ≤ i ≤ `, to denote
the subset of genotypes {g1, . . . , gi} ⊆ G.

Probably the first dynamic-programming solution to come to mind for CPH, is to compute all
possible resolutions H ′ ⊆ H∗ of Gi from the resolutions of Gi−1. However, the number of k-subsets
resolving Gi might be Ω(nk), which is too much. We therefore take an alternative route. Instead
of computing the actual subsets which resolve Gi, we will compute abstract “blueprints” of these
subsets, formally defined as follows:

Definition 6 (κ-plan). Let κ be an integer in {1, . . . , k}. A κ-plan is a string of length i ≤ ` over
the alphabet {{x, y} | 1 ≤ x ≤ y ≤ κ}.

Let H ′ = {h1, . . . , hκ} be a resolution of Gi = {g1, . . . , gi}, with some of the haplotypes in H ′

possibly equal. A κ-plan p is associated with H ′ if when {x, y} is the j’th letter in p, 1 ≤ x ≤ y ≤ κ
and 1 ≤ j ≤ i, then hx and hy resolve gj . We will say that p is valid for Gi if there is a resolution of
Gi associated with p. In this way, a valid κ-plan does not describe the actual resolution of Gi, but
it does provide all relevant information concerning which genotypes are resolved using the same
haplotypes.

Definition 7 (DP[κ, i], DP[κ, i]). Let κ be an integer in {1, . . . , k}, and i be an integer in
{1, . . . , `}. We denote by DP[κ, i] the set of all κ-plans of length i, and by DP[κ, i] ⊆ DP[κ, i]
the set of all valid κ-plans for Gi = {g1, . . . , gi}.

Lemma 11. |DP[κ, i]| ≤ |DP[κ, i]| ≤ kO(k2) for any κ ≤ k and i ≤ `.

Proof. To prove the lemma, recall that ` ≤ k2. The number of distinct strings of length at most k2

over an alphabet of size at most
(
κ
2

)
< k2 is bounded by kO(k2). ut

Our algorithm proceeds by computing DP[κ, i] in increasing values of κ and i. The base-cases
of this computation are

1. DP[κ, 1] = DP[κ, 1] for all 1 ≤ κ ≤ k, and
2. DP[1, i] = DP[2, i] = ∅ for all 2 ≤ i ≤ `.

Clearly, G can be resolved using κ ≤ k haplotypes if and only if G` = G has at least one valid κ-plan.
Hence, assuming we can correctly compute DP[κ, i] for all 1 ≤ κ ≤ k and 1 ≤ i ≤ `, the correctness
of our algorithm is immediate. What remains to be described is the dynamic-programming step for
computing DP[κ, i].
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For this, we will first need to introduce some terminology. Let p be some κ-plan which is valid
for Gi, and let h ∈ H be some haplotype. For a given x ∈ {1, . . . , κ}, we say that the assignment of
hx = h is compatible with p if there is a resolution H ′ = {h1, . . . , hκ} of Gi associated with p such
that hx = h. We extend this terminology also for assignments of pairs of haplotypes hx = h and
hy = h′, h, h′ ∈ H and x 6= y ∈ {1, . . . , κ}. The dynamic-programming step for computing DP[κ, i]
is as follows:

1. DP[κ, i]← DP[κ−1, i].
2. For each p ∈ DP[κ−2, i−1]:

– Concatenate {κ, κ−1} to the end of p, and add this new κ-plan to DP[κ, i].
3. For each h, h′ ∈ H resolving gi, for each p ∈ P [κ−1, i−1], and for each x ∈ {1, . . . , κ−1}:

– Check whether the assignment of hx = h is compatible with p. If so, concatenate {x, κ} to
the end of p, and add this new κ-plan to DP[κ, i].

4. For each h, h′ ∈ H resolving gi, for each p ∈ DP[κ, i−1], and for each x 6= y ∈ {1, . . . , κ}:
– Check whether the assignment of hx = h and hy = h′ is compatible with p. If so, concatenate
{x, y} to the end of p, and add this new κ-plan to DP[κ, i].

Correctness of the dynamic programming step is straightforward. Indeed, any valid κ-plan p0

of Gi is either a κ′-plan of Gi for some κ′ ≤ κ (Line 1), or it can be decomposed into either:

– A valid (κ− 2)-plan p of Gi−1 concatenated to a new letter {κ, κ− 1} (Line 2). In this case, in
any resolution H ′ = {h1, . . . , hκ} associated with p0, we know that hκ and hκ−1 resolve gi, and
that H ′ \ {hκ, hκ−1} resolves Gi−1.

– A valid (κ − 1)-plan p of Gi−1 concatenated to a new letter {κ, x} for some 1 ≤ x ≤ κ − 1
(Line 3). In this case, in any resolution H ′ = {h1, . . . , hκ} associated with p0, hκ and hx resolve
gi and H ′ \ {hκ} resolves Gi−1.

– A valid κ-plan p of Gi−1 concatenated to a letter {x, y} for some 1 ≤ x < y ≤ κ (Line 4). In
this case, in any resolution H ′ = {h1, . . . , hκ} associated with p0, hx and hy resolve gi and H ′

also resolves Gi−1.

Note that as we know p is associated with some resolution of Gi−1, we can determine in
polynomial-time whether assignments are compatible with p. This can be done as follows: Suppose
we want to determine whether hx = h is compatible with p. We mark all positions j, 1 ≤ j ≤ i− 1,
with a letter {x, y} in p. For each such position j, we compute hy = h′ from gj and h. Here, there
are three possible outcomes – (i) we have reached a contradiction with a previous assignment, or
(ii) we have discovered a new haplotype, or (iii) none of the previous two happens. In the first
case we determine incompatibility. In the second case we continue with the checking process. In
the third case, since we know that p is a κ-plan for Gi−1, we can safely determine compatibility.
Checking whether hx = h and hy = y is compatible with p is done similarly. The entire process is
performed in O(κ) rounds, with each round requiring O(`m) time, and so its total time complexity
is O(κ`m) = O(k3m).

Theorem 4. CPH parameterized by k = |H| is fixed-parameter tractable.
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