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Abstract

In this paper, we address a new version of dynamic pattern matching. The dynamic text
and static pattern matching problem is the problem of finding a static pattern in a text that
is continuously being updated. The goal is to report all new occurrences of the pattern in the
text after each text update. We present an algorithm for solving the problem, where the text
update operation is changing the symbol value of a text location. Given a text of length n and a
pattern of length m, our algorithm preprocesses the text in time O(n log logm), and the pattern
in time O(m

√
logm). The extra space used is O(n+m

√
logm). Following each text update, the

algorithm deletes all prior occurrences of the pattern that no longer match, and reports all new
occurrences of the pattern in the text in O(log logm) time. We note that the complexity is not
proportional to the number of pattern occurrences since all new occurrences can be reported in
a succinct form.

1 Introduction

Historical pattern matching had been motivated by text editing (e.g. [22, 19, 23]). Some later
motivation stemmed from molecular biology (e.g. [27]). While initially automated string processing
needed to handle texts whose change was mainly a very slow growth (for example, [1, 2]), recent
advances in digital libraries (such as news, medical, etc.) and the advent of the World Wide Web,
pitted the area of combinatorial pattern matching against rapidly changing and highly dynamic
texts.

The static pattern matching problem has as its input a given text and pattern and outputs all text
locations where the pattern occurs. The first linear time solution was given by Knuth, Morris and
Pratt [19] and many more algorithms with different flavors have been developed for this problem
since.
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Considering the dynamic version of the problem, three possibilities need to be addressed.

1. A static text and dynamic pattern.

2. A dynamic text and a static pattern.

3. Both text and pattern are dynamic.

The static text and dynamic pattern situation is a traditional search in a non-changing database,
such as looking up words in a dictionary, phrases is a book, or base sequences in the DNA. This
problem is called the indexing problem. An efficient solution to the problem, using suffix trees,
was given by Weiner [30]. Additional algorithms were presented in [24, 28, 11]. For a finite fixed
alphabet, Weiner’s algorithm preprocesses the text T in time O(|T |). Subsequent queries seeking
pattern P in T can be solved in time O(|P | + tocc), where tocc is the number of occurrences
of P in T . Weiner’s paper was succeeded by a myriad of algorithms for suffix tree and suffix
array construction (e.g. [18]), handling infinite alphabets, improving the space constants, handling
real-time constraints, and more.

Generalizing the indexing problem led to the dynamic indexing problem where both the text and
pattern are dynamic. This problem is motivated by making queries to a changing text. The problem
was considered by [15, 13, 25, 4]. The Sahinalp and Vishkin algorithm [25] achieves the same time
bounds as the Weiner algorithm for initial text preprocessing (O(|T |)) and for a search query for
pattern P (O(|P | + tocc)), for bounded fixed alphabets. Changes to the text are either insertion
or deletion of a substring S, and each change is performed in time O(log3 |T | + |S|). The data
structures of Alstrup, Brodal and Rauhe [4] support insertion and deletion of characters in a text,
and movement of substrings within the text, in time O(log2 |T | log log |T | log∗ |T |) per operation. A
pattern search in the dynamic text is done in O(log |T | log log |T |+ |P |+ tocc).

Surprisingly, there is no direct algorithm for the case of a dynamic text and static pattern, as could
arise when one is seeking a known and unchanging pattern in data that keeps updating. Imagine a
database that is continuously updated in a multi-user environment which we desire to protect from
viruses. One common method of virus detection software is signature-based virus detection. In this
setting we are given a collection of patterns (the virus signatures) which we want to detect-online.
This is exactly the dynamic text and static pattern problem.

Another setting is SDI scenarios (selective dissemination of information), e.g. news clippings, where
incoming news are searched looking for a set of patterns extracted from user profiles. Another
example of SDI scenarios is in a financial markets database where users predefine what information
they are looking for. We note that while mentioning this motivation we view our paper primarily
as a theoretical result.

The Dynamic Text and Static Pattern Matching Problem is defined as follows:

Input: Text T = t1, ..., tn, and pattern P = p1, ..., pm, over alphabet Σ, where Σ = {1, . . . ,mc},
for an arbitrary1 constant c.

Preprocessing: Preprocess the text efficiently, allowing the following subsequent operation:
1We note that in section 4.1.1 we change the alphabet assumption to Σ = {1, . . . ,m}, and explain there why this

can be done without loss of generality.
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Replacement Operation: 〈i, σ〉, where 1 ≤ i ≤ n and σ ∈ Σ. The operation sets ti = σ.

Output: Initially, report all occurrences of P in T . Following each replacement, report all new
occurrences of P in T , and discard all old occurrences that no longer match.

Using the dynamic indexing algorithm of Sahinalp and Vishkin [25], a text update can be performed
in O(log3 n) time, and all occurrences of P can be reported in O(m+ aocc) time, where aocc is the
number of all pattern occurrences in the text (including those that were present in both the old
and updated text). Given the fact that the pattern does not change, it seems a waste to pay the
O(m) penalty for every query, as well as reporting all occurrences, even those that did not change.
In addition, one would like a more efficient way for handling text updates, considering the facts
that the pattern is static and the text length does not change. The algorithm of [4] offers a slight
improvement, since the text updates can be performed in O(log2 n log log n log∗ n) time and the
pattern search in time O(log n log logn+ aocc).

In this paper we provide a direct answer to the dynamic text and static pattern matching problem,
where the text update operation is changing the symbol value of a text location. After each
change, both the text update and the reporting of new pattern occurrences are performed in
only O(log logm) time. The text preprocessing is done in O(n log logm) time, and the pattern
preprocessing is done in O(m

√
logm) time. The extra space used is O(n + m

√
logm). We note

that the complexity for reporting the new pattern occurrences is not proportional to the number
of pattern occurrences found since all new occurrences are reported in a succinct form.

We begin with a high-level description of the algorithm in Section 2, followed by some preliminaries
in Section 3. In Sections 4 and 5 we present the detailed explanation of the algorithm. Section 6
contains the description of the data structures that are used for the pattern. We conclude with a
summary in Section 7 and open problems in Section 8.

2 Main Idea

2.1 Text Covers

The central theme of our algorithm is the representation of the text in terms of the static pattern.
The following definition captures the notion that we desire.

Definition 1 (cover) Let S and S′ = s′1 · · · s′n be strings over alphabet Σ. A cover of S by S′ is a
partition of S, S = τ1τ2 . . . τv, each τi, i = 1, ..., v − 1, satisfying -
(1) substring property: τi is a substring of S′,
(2) maximality property: The concatenation of τiτi+1 is not a substring of S′.

When the context is clear we call a cover of S by S′ simply a cover. We also say that τh is an
element of the cover. A cover element τh is represented by a triple [i, j, k] where τh = s′i · · · s′j , and
k, the index of the element, is the location in S where the element appears, i.e. k =

∑h−1
l=1 |τl|+ 1.

A cover of T by P captures the expression of the text T in terms of the pattern P . We note
that a similar notion of a covering was used by Landau and Vishkin [21]. Their cover had the
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substring property but did not use the maximality notion. The maximality invariant states that
each substring in the partition must be maximal in the sense that the concatenation of a substring
and its neighbor is not a new substring of P . Note that there may be numerous different covers for
a given P and T .

2.2 Algorithm Outline

Initially, when the text and pattern are input, any linear time and space pattern matching algorithm,
e.g. Knuth-Morris-Pratt [19], will be sufficient for announcing all matches. The challenge of the
dynamic text and static pattern matching problem is to find the new pattern occurrences efficiently
after each replacement operation. Hence, we focus on the on-line part of the algorithm which
consists of the following.

On-line Algorithm

1. Delete old matches that are no longer pattern occurrences.

2. Update the data structures for the text.

3. Find new matches.

Deleting the old matches is straightforward as will be described later. The challenge lies in finding
the new matches. Clearly, we can perform any linear time string matching algorithm. Moreover,
using the ideas of Gu, Farach and Beigel [15], as we describe in Section 5.2, it is possible find the
new matches in O(logm + pocc) time, where pocc are the number of pattern occurrences. The
main contribution of this paper is the reduction of the time to O(log logm) time per change. We
accomplish this goal by using the cover of T by P . After each replacement, the cover of T must
first be updated to represent the new text. We will split and then merge elements to update the
cover.

Once updated, the elements of the cover can be used to find all new pattern occurrences efficiently.

Observation 1 Due to their maximality, at most one complete element in the cover of T by P
can be included in a single pattern occurrence.

It follows from Observation 1 that all new pattern occurrences must begin in one of three elements
of the cover, the element containing the replacement, its neighbor immediately to the left, or the
one to the left of that. Let the three elements under consideration be labeled τx, τy, τz, in left to
right order. The algorithm Find New Matches finds all pattern starts in a given element in the text
cover, and it is performed separately for each of the three elements, τx, τy, and τz.

To find all new pattern starts in a given element of the cover, τx, it is necessary to check each suffix
of τx that is also a prefix of P . We use the data structure of [15], the border tree, to allow checking
many locations at once. In addition, we reduce the number of checks necessary to a constant.
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3 Preliminaries

3.1 Definitions

In this section we review some known definitions on string periodicity, which will be used throughout
the paper. Given a string S = s1s2 . . . sn, we denote the substring of S, si . . . sj , by S[i : j]. A
proper prefix of S is a prefix of S that does not equal S, inclusive of the empty string. (A proper
suffix is defined in the same way.) S[1 : j] is a border of S if it is both a proper prefix and proper
suffix of S. We refer to the index of the suffix part of the border as the start of the border in S.
Let x be the length of the longest border of S. S is periodic, with period size n − x, if x ≥ n/2.
Otherwise, S is non-periodic.

A string S is cyclic in string π if it is of the form πk, k > 1. In other words, a cyclic string is a
periodic string with an integral number of periods. A primitive string is a string which is not cyclic
in any string. Let S = π′πk, where |π| is the period size of S and π′ is a (possibly empty) suffix
of π. S can be expressed as π′πk for one unique primitive π, called the period of S. A chain of
occurrences of S in a string S′ is a substring of S′ of the form π′πq where q ≥ k.

3.2 Succinct Output

In the on-line part of the algorithm, we can assume without loss of generality that the text is of
size 2m. This follows from the simple observation that the text T can be partitioned into n/m
overlapping substrings, each of length 2m, so that every pattern match is contained in one of the
substrings. Each replacement operation affects at most m locations to its left, thus at most two
text substrings of size 2m must be dealt with. The cover can be divided to allow constant time
access to the cover of a given substring of length 2m.

In the following lemma we show that for a text of length 2m, all of the output can be stored in
O(1) space.

Lemma 1 Let P be a pattern of length m and T a text of length 2m. All occurrences of P in T
can be stored in constant space.

Proof: If P is non-periodic, there are at most two pattern occurrences in the text, since the
overlap of occurrences, by definition, is < m/2. If P is periodic with period size |π| then we store
information about the chains of occurrences of P . A chain consists of a sequence of overlapping
occurrences of P at jumps of |π|. We store the beginning of each chain, its length, and the period
size. There are at most two chains of P in a text of size 2m. ut

4 The Algorithm

The algorithm has two stages, the static stage and the dynamic stage. The static stage consists of
constructing the data structures for the pattern and the text, and reporting all initial occurrences
of P in T .
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The second stage of the algorithm, the dynamic stage, consists of the processing necessary fol-
lowing each replacement operation. Its main idea was described in Section 2. The technical and
implementation details are discussed in Sections 4.2 and 5.

4.1 The Static Stage

The first step of the static stage is to use any linear time and space pattern matching algorithm,
e.g. Knuth-Morris-Pratt [19], to announce all occurrences of the pattern in the original text. Then,
several data structures are constructed for the pattern and the text to allow efficient processing in
the dynamic stage.

4.1.1 Pattern Preprocessing

Without loss of generality, we can assume that Σ = {1, . . . ,m}. In the problem definition, P is
a string of length m over the alphabet Σ = {1, . . . ,mc}. Thus, although |Σ| = mc, there are at
most m distinct characters in P , and since P is static, these are the only characters of interest.
We can construct a perfect deterministic hash function to map the m distinct characters in P to
the numbers {1, . . . ,m}. The hash function h : {1, . . . ,mc} → {1, . . . ,m} can be created in linear
time, and evaluated in O(log logm) time.

To create the desired hash function it is sufficient to have a static predecessor structure over
the alphabet Σ = {1, ...,mc}, which can be created in linear time and which supports queries in
O(log logm) time. The reason is as follows. For each of the (at most) m distinct characters of P
we save h(x) as satellite data within the static predecessor structure. Then, when given y for which
we desire to compute h(y), we ask for the predecessor of y + 1. If it is y, then h(y) is obtainable
from the satellite data. If it is not y, then y is not a character of P and we return m+ 1.

The details of the static predecessor structure are included in Section 6.2.1, see the section on Static
Predecessors. Henceforth, we assume an alphabet Σ = {1, . . . ,m}.

Several known data structures are constructed for the static pattern P . Note that since the pattern
does not change, these data structures remain the same throughout the algorithm. The purpose
of the data structures is to allow the following queries to be answered efficiently. The first two
queries are used in the text update step and the third is used for finding new matches. We defer
the description of the data structures to Section 6 since the query list is sufficient to enable further
understanding of the paper.

Query List for Pattern P

Longest Common Prefix Query (LCP ): Given two substrings, S′ and S′′, of the pattern P .
Is S′ = S′′? If not, output the position of the first mismatch.

Query Time [21]: O(1).

Substring Concatenation Query: Given two substrings, S′ and S′′, of the pattern P . Is the
concatenation S′S′′ a substring of P? If yes, return a location j in P at which S′S′′ occurs.
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Query Time [9, 3, 31]: O(log logm).

Range Maximum Prefix Query: Let Sufi denote the suffix of the pattern P that begins at
location i. Given a range of suffixes of the pattern P , Sufi . . . Sufj . Find the suffix which
maximizes the LCP (Suf`, P ) over all i ≤ ` ≤ j.
Query Time [14]: O(1).

4.1.2 Text Preprocessing

In this section we describe how to construct the initial cover of T by P for the input text T . After
constructing the initial cover, it is stored in a van Emde Boas [29] data structure, sorted by the
indices of the elements in the text, to handle the changes to the cover that will occur from the
replacement operations. The van Emde Boas tree maintains an ordered set over a bounded universe
{1, . . . , U}. In our case |U | = 2m, since we assume that the text size is 2m (see section 3.2), and the
keys in the tree are the indices into the text. The van Emde Boas tree implements the operations:
insertion (of an element from the universe), deletion, and predecessor, each in O(log log |U |) time
using O(|U |) space.

Algorithm Construct the Initial Cover

Input: A pattern P = p1, . . . , pm preprocessed for the queries listed in Section 4.1.1, and a text
T = t1, . . . , tn.

Output: A cover of T by P . (Definition 1)

Begin Algorithm

1. Create an array A, of size m, containing the first location in P of each character in Σ. If an
element 1 ≤ i ≤ m does not appear in P , set A[i] = m+ 1. Thus, if A[i] = j, then either pj = i
or j = m+ 1. Since Σ = {1, . . . ,m}, one pass over P is sufficient to fill A.

2. For each location in the text, 1 ≤ i ≤ n,
identify a location of P , say pj , where ti appears. Set j = m + 1 if ti does not appear in P .
Create τi = [j, j, i].

3. i = 1 (Set the current element to τ1.)
While i < n do
Take the current element (τi) and the element to its right (τi+1) and merge them, if possible, by
performing a substring concatenation query. If the substrings do not concatenate, set i = i+ 1.

4. Store the cover in a van Emde Boas tree with elements sorted by their indices in the text.

End Algorithm

Time Complexity: The algorithm for constructing the cover runs in deterministic O(n log logm)
time. The amount of extra space used is O(n). Since we assume that the alphabet is {1, . . . ,m},
creating an array of the pattern elements takes O(m) time and identifying the elements of T takes
O(n) time. If we assume that Σ = {1, . . . ,mc} then labeling the text would take O(n log logm)
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time (see Section 4.1.1). O(n) substring concatenation queries are performed, each one takes
O(log logm) time. The van Emde Boas data structure costs O(n log logm) time and O(n) space
for its construction [29].

4.2 The Dynamic Stage

In the on-line part of the algorithm, one character at a time is replaced in the text. Following each
replacement, the algorithm must achieve the following three goals.

On-line Algorithm

1. Delete old matches that are no longer pattern occurrences.

2. Update the data structures for the text.

3. Find new matches.

In this section we describe the first two steps of the dynamic stage. In Section 5 we describe the
third step, finding the new matches.

4.2.1 Delete Old Matches

If the pattern occurrences are saved in accordance with Lemma 1 then deleting the old matches is
straightforward. If P is non-periodic, we delete the one or two pattern occurrences that are within
distance -m of the change. If P is periodic, we truncate the chain(s) according to the position of
the change.

4.2.2 Update the Text Cover

Each replacement operation replaces exactly one character in the text. Thus, it affects only a
constant number of elements in the cover. In this section we describe how to update the cover of
T by P after each replacement operation. Updating the cover consists of the following four steps.

Algorithm: Update the Cover

1. Locate the element in the current cover in which the replacement occurs.

2. Break the element into three parts.

3. Concatenate neighboring elements to restore the maximality property.

4. Update the van Emde Boas tree which stores the text cover.

Step 1: Locate the desired element
Recall that the cover is stored in a van Emde Boas tree [29] indexed by the start of each element
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in the text. Let x be the location in T at which the character replacement occurred. Then, the
element in the cover in which the replacement occurs will be the element in the van Emde Boas
tree indexed by the largest number that is smaller than or equal to x, i.e. the predecessor of x+ 1.

Step 2: Break operation
Let [i, j, k] be the element in the cover which covers the position x at which a replacement occurred.
The break operation divides the element [i, j, k] into three parts: (1) the part before the replacement,
(2) the replaced character, (3) the part after the replacement. Calculating the indices of parts 1
and 3 are trivial. To find the position of the replaced text character in the pattern we access the
array of distinct characters of P that was created in step 1 of Algorithm Construct the Initial Cover
(Section 4.1.2). Let q be a position in the pattern of the new text element. The following are the
three new elements in the text cover:

1. [i, i+ x− k − 1, k], the part of the element [i, j, k] prior to position x.

2. [q, q, x], position x, the position of the replacement.

3. [i+ x− k + 1, j, x+ 1], the part of the element after position x.

Example 1: The pattern P and text T are shown with their characters numbered. (Although
Σ = {1, . . . ,m}, we use characters for the pattern and text, and numbers as indices, to ease
exposition.)

1 2 3 4 5 6
P = a b b a c b

1 2 3 4 5 6 7 8 9 10 11 12
T = c b a b b a b b b a c b

Cover = [5, 6, 1] [1, 4, 3] [2, 3, 7] [3, 6, 9]

The array of distinct pattern characters is:

a b c

1 2 5

Let a replacement occur in the text at location 4, changing the b to a c. During the break operation,
the element of the cover [1, 4, 3] is broken into 3 parts:
1. [1,1,3] = “a”
2. [5,5,4] = “c”
3. [3,4,5] = “ba”

Step 3: Restore maximality property
The maximality property is a local property, it holds for each pair of adjacent elements in the
cover. We show in the following lemma that each replacement affects the maximality property of
only a constant number of pairs of elements. Thus, to restore the maximality it is necessary to
attempt to concatenate a constant number of neighboring elements. This is done using the substring
concatenation query.

Lemma 2 Following a replacement and break operation to a cover of T , at most four pairs of
elements in the new partition violate the maximality property.
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Proof: The four pairs of elements that possibly violate the maximality property are the pairs of
adjacent elements in which the left element of the pair is either one of the three new elements (the
parts created by the break operation) or the element to their immediate left. If any other element
is non-maximal, then it contradicts the maximality of the cover prior to the break. ut

Referring back to Example 1, the element [1,1,3] is combined with [5,5,4] to give [4,5,3] = “ac”.
Thus, the maximality is restored to the text cover.

Step 4: Update the van Emde Boas tree
The cover is stored in a van Emde Boas tree, which must be updated to reflect the change. At
most three deletions are necessary, one for the element with the change, and one for its neighbor to
the right and to the left. At most three insertions are necessary for the new elements of the cover.

Time Complexity of Updating the Cover: The van Emde Boas tree implements the operations:
insertion (of an element from the universe), deletion, and predecessor, each in O(log log |U |) time
using O(|U |) space [29]. In our case, since the text is assumed to be of length 2m, and since
elements of the cover are stored in the van Emde Boas tree by their indices in the text, we have
|U | = 2m. Thus, the predecessor, insertions and deletions of Steps 1 and 4 can be performed in
O(log logm) time. Step 2, the break operation, is done in constant time. Step 3, restoring the
maximality property, performs a constant number of substring concatenation queries. These can
be done in O(log logm) time. Overall, the time complexity for updating the cover is O(log logm).

5 Find New Matches

In this section we describe how to find all new pattern occurrences in the text, after a replacement
operation is performed. The new matches are extrapolated from the elements in the updated cover.

Any new pattern occurrence must include the position of the replacement. In addition, a pattern
occurrence may span at most three elements in the cover (due to the maximality property). Thus,
all new pattern starts begin in three elements of the cover, the element containing the replacement,
its neighbor immediately to the left, or the one to the left of that. Let the three elements under
consideration be labeled τx, τy, τz, in left to right order. The algorithm Find New Matches finds all
pattern starts in a given element in the text cover, and it is performed separately for each of the
three elements, τx, τy, and τz. We describe the algorithm for finding pattern starts in τx.

The naive approach would be to check each location of τx for a pattern start (e.g. by performing
O(m) LCP queries). The time complexity of the naive algorithm is O(m). In this section we
describe two improved algorithms for finding the pattern starts in τx. The algorithms use the
border tree of [15], which we describe in detail in Section 5.1. The first algorithm, described in
Section 5.2, has time O(logm). Our main result is presented in Section 5.3, where the total time
for announcing all new pattern occurrences is O(log logm).

5.1 Border Groups and Border Trees

In the classical KMP algorithm, an automaton is constructed for the given pattern P [1 : m]. The
KMP automaton has three components: (1) nodes, one for each prefix of P , numbered 1 through
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m, (2) success links, pointing from node i to node i + 1, and (3) failure links that point from a
node i, to the node that represents the longest border of P [1 : i]. The failure links of the KMP
automaton form a tree called the failure tree of P , denoted by FTP (for e.g., see figure 1). A path
in the failure tree of P to a node i represents all of the borders of the prefix P [1 : i].

In our algorithm, we would like to consider all borders of a given pattern prefix. However, given a
single prefix of P , P [1 : i], the number of borders of P [1 : i] can be as large as O(i) (e.g., P = ai).
We would like a way to compress this information. Using the definition of Cole and Hariharan [10]
we will impose a grouping on the borders of a single pattern prefix into O(log i) groups.

Definition 2 (border groups [10]) The borders of a given string P [1 : i] can be partitioned into
g = O(log i) groups B1, B2, . . . , Bg. The groups preserve the left to right ordering on the suffixes of
P [1 : i], i.e. the suffixes in group Bj are to the left of the suffixes in group Bj+1 for all 1 ≤ j < g.
For each Bj, either Bj = {π′jπ

kj

j , . . . , π
′
jπ

3
j , π
′
jπ

2
j } or Bj = {π′jπ

kj

j , . . . , π
′
jπj} where kj ≥ 1 is

maximal, π′j is a proper suffix of πj, and πj is primitive.2

The border groups divide the borders of a string P [1 : i] into disjoint sets, in left to right order on
the suffixes of P [1 : i]. Each group consists of borders that are all (except possibly the rightmost
one) periodic with the same period. The groups are constructed as follows. Suppose π′πk is the
longest border of P [1 : i]. {π′πk, . . . , π′π3, π′π2} are all added to group B1. π′π is added to B1 if and
only if it is not periodic. If π′π is not periodic, it is the last element in B1, and its longest border
begins group B2. Otherwise, π′π is periodic, and it is the first element of B2. This construction
continues inductively, until π′ is empty and π has no border.

The log i bound on the number of groups follows from the fact that the leftmost element in each
group has length no more than 2/3 the length of the last element in the previous group (since
|π′| ≤ |π′π|/2 and |π′π| ≤ 2

3 |π
′π2|.)

Example 2: The string S=bababbababcbababbabab has four borders: {bababbabab, babab, bab, b}.
The division into border groups will create three groups, {bababbabab}, {babab, bab} and {b}. For
the first group, π = babab and π′ is empty, for the second group, π = ab and π′ = b, and for the
third group, π = b, π′ is empty.

We can now use this grouping to compress the failure tree into a data structure called the border
tree3, introduced by Gu-Farach-Beigel [15]. The advantage of the border tree is that it provides
the border groups for every prefix P [1 : i] of a given pattern P [1 : m]. The border tree is derived
from the failure tree by essentially compressing each group of borders into a single node. The node
of the shortest border in each group will represent the group. First, we label each node i in the
failure tree FTP as follows.

1: If P [1 : i] is periodic, then P [1 : i] = π′πk and the label is (|π′|, |π|, k).

2a: If P [1 : i] is non-periodic, then it can be denoted as π′π, where π′ is its longest border. The
label is (|π′|, |π|, 1).

2The definition of Cole and Hariharan [10] includes a third possibility, Bi = {π′jπ
kj

j , . . . , π′jπj , π
′
j} when π′j is the

empty string. In the current paper we do not list the empty string as a border.
3A conference proceedings with the results of Cole and Hariharan [10] preceeded the results of [15].
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2b: There is one exception to rule 2a. For a non-periodic prefix P [1 : i], with a child with k = 2,
the label is (|π′|, |π|, 1) with π equal to that of the child with k = 2.

The labeling can be done in linear time in two rounds. First, all nodes with k ≥ 2 are labeled. A
node P [1 : i] has k ≥ 2 if the length of its parent (i.e. its longest border) is longer than i/2. The
period size of P [1 : i] is i−|parent(i)|. When a node with k = 2 is encountered, we label its parent
according to rules 2a and 2b. In the second round, all remaining nodes are labeled according to
rule 2a. Rule 2b states that if a node π′π is non-periodic, and its child is π′π2, its label should
be (|π′|, |π|, 1) whether or not it has a border longer than |π′|. This will ensure that the nodes are
both included in the same group. This is illustrated in the following example.

Example 3. Let π′ = aba and π = dabacabadaba. Then, π′π = abadabacabadaba, and its longest
border is abadaba.

The border tree results from a compression of the failure tree. The general rule is: remove all
periodic nodes, i.e. all nodes having k ≥ 2. The knowledge about the periodic nodes can be
included in the nodes’ ancestor that is non-periodic. This corresponds to representing an entire
border group by its shortest element, and the length of the longest element. The one exception
is the case where the border group’s shortest element has k = 2. In this case, we would like the
periodic node to remain in the border tree. According to the construction of the border groups, a
group includes π′π2 as its shortest element iff π′π is periodic. Thus, any node with k = 2 whose
parent is periodic, is also included in the border tree.

Formally, the border tree BTs = (R,E,L) for a string S, is a tree with:

1. Node set R which is a subset of the nodes of FTs. Let v be a node in FTs with label (i, j, k).
v ∈ R iff k < 2, or k = 2 and parent(v) is periodic.

2. Edge set E derived by setting parent(v) = u if u is the closest ancestor of v in FTs which is
included in BTs. (Note that u is a border of v, and there is no node w ∈ R such that u is a
border of w and w is a border of v.)

3. Node label L(v) = (|π′|, |π|, k), where π and π′ are the same as in FTs, and k is the maximum
integer, 0 < k ≤ n, such that π′πk is a prefix of S.

Remark. We note that the meaning of the label k in the failure tree differs from the label k in
the border tree. In the failure tree, k is simply the number of periods of a pattern prefix. In the
border tree, k is maximal over all pattern prefixes with a given period.

While constructing the border tree it is trivial to store a pointer for each node not included in BTs
to its closest ancestor in the failure tree that is included in BTs. This allows us to refer to the node
in the border tree of a given pattern prefix. See figure 1 for an example of a border tree and the
groups represented by each node.

Observation 2 A path from the root to a given node v in BTs represents the groups of borders of
the node v.
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Let w be an ancestor of a node v, with label (|π′|, |π|, k). Although w represents a border group
of v, the value of the label k is not necessarily correct for v since k represents the longest pattern
prefix with period π. For our purposes, the correct k for a given prefix is not needed; only the
largest k is of interest. However, if it is necessary to determine the appropriate k value for w in
relation to v, then it can be done by performing one LCP query between the reverse of πk and the
reverse of v, and then dividing the result by |π|. For example, consider node 10, in figure 1. Its
parent, with label (0, 2, 3), represents prefix 6, ababab. The longest common suffix of prefix 10 and
prefix 6 gives the longest border of 10 with period ab, which has length 2.

Time Complexity: The border tree for P can be built in time and space O(m) and it has depth
O(logm) [15].

5.2 Algorithm 1: Check each border group

Let τx be the element of the text cover in which we are searching for new pattern starts. τy and τz
are the following two elements in the cover. The main idea of the first algorithm was first used in
[15]: It is necessary to check only the positions in τx which represent a prefix of P . Furthermore, it
is possible to group all prefixes which belong to the same border group, and to check them together.
We show how to check a given border group for pattern starts in the following algorithm. This
algorithm is applied once for each border group which is a suffix of τx. The border groups of τx
can be retrieved from the border tree of P [15] (described in Section 5.1). If τx = P [i : j], then
the path in the border tree of the node representing P [1 : j] gives all borders of τx. Only borders
that begin after position i will be checked. There are at most O(logm) border groups of any given
pattern prefix, which correspond to the nodes on the path of the given prefix.

The following algorithm checks all possible pattern starts in a single border group of a pattern
prefix. If the border group has one or two borders, we can check each border separately in constant
time. The difficult situation is when a border group contains several pattern prefixes that are
periodic with the same period. Given a border group of a pattern prefix, {π′πj , π′πj−1, . . .}, its
node in the border tree of P has a label, (|π′|, |π|, k). The label k represents the largest integer
such that π′πk is a prefix of P . Thus, the first step of this algorithm will be to check how many
times the period π recurs in the text by comparing πk+1 to τyτz.

Since P begins with π′πk and it does not begin with π′πk+1 there are two possible cases. The first
is that P has a period size |π| (i.e. P = π′πkπ′′, π′′ is a prefix of π). The second case is that
there exists a location |π′πk| < q ≤ |π′πk+1| at which point the periodicity of size |π| is broken, i.e.
pi 6= pq−|π|. By comparing P with itself at position |π|+ 1 we can determine which case is true for
the given P .

Algorithm: Check One Border Group for Pattern Starts

Input: (1) A border group Bg of a pattern prefix with node label (|π′|, |π|, k).

(2) ti which is the start in the text of the leftmost border of Bg that is covered by element τx.
(The two elements in the cover that follow τx are τy and τz.)

Output: All pattern starts in τx that begin with a border in Bg.
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Failure Tree: Border Tree:

0

8 1 2

9 3 12 10

1311

(0,8,1)

(0,1,1)
(0,2,3)

(1,8,1) (1,2,3) (4,8,1) (2,8,1)

(3,8,1) (5,8,1)

KMP Automaton states:

Pattern with length 13:

0 1 2 3 4 5 6 7 8 9 10 11 12 13

b a b a b a b c b a b a b

Node/ Label in Failure Tree Label in Border Tree
Prefix Length π′ π k

1 b 1 (0,1,1)
2 ba 1 (0,2,3)
3 b ab 1 (1,2,3)
4 ba 2
5 b ab 2
6 ba 3
7 b ab 3
8 babababc 1 (0,8,1)
9 b abababcb 1 (1,8,1)
10 ba bababcba 1 (2,8,1)
11 bab ababcbab 1 (3,8,1)
12 baba babcbaba 1 (4,8,1)
13 babab abcbabab 1 (5,8,1)

Figure 1: The failure tree and border tree for S = babababcbabab.
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text

ti

π’ π π π

Figure 2: A chain of recurring π’s begins at position ti in the text. If P is periodic in π, then we
can report matches at all positions ti, ti+|π|, ti+2|π|, . . ., as long as the match following the starting
position has length longer than m.

Begin Algorithm

1. Match πk+1 to τyτz. πk can be matched against τyτz by an LCP query between P [|π′|+1 . . .m]
and τy, followed by an LCP query between the continuation of P and τz. In the event that πk

matches a prefix of τyτz, we use P [|π′|+ 1 . . .m] in a third LCP query to check for πk+1.

2. Match P [1 . . .m] to P [|π|+ 1 . . .m] using an LCP query. We use this to determine whether P
is periodic in |π|.

3. Case 1: P is periodic in |π|.
Report matches beginning at ti and at jumps of π, as long as the remaining match is longer than
m.

Case 2: P is not periodic in |π|, i.e. ∃ a location q, |π′πk| < q ≤ |π′πk+1|, such that pq 6= pq−|π|.
There is only one possible pattern start in border group Bg of τx since the border group is periodic
in π and P is not. The only location necessary to check is the location of the rightmost occurrence
of π′πk beginning in τx, which was determined in step 1. We check this location against the pattern
by performing one or two LCP queries (between P [|π′πk|+ 1 . . .m] and the appropriate location
in τyτz.)

End Algorithm

Lemma 3 It is sufficient to compare πk+1 to the text to find all pattern starts in the group Bg.

Proof: Since π′πk is the longest border in Bg, then π′πk+1 is not a proper prefix of the pattern.
We are looking for pattern starts within τx, thus, it is not necessary to check any further than
|πk+1| characters to the right of τx. ut

Time Complexity: The time complexity of the algorithm for checking one border group is O(1)
since the LCP query (Section 4.1.1) is done in constant time. In addition, we can report many
matches in O(1) time, by Lemma 1. The algorithm for finding all pattern starts in τx has time
O(logm) since there are at most O(logm) border groups for every prefix of P (definition 2).

5.3 Algorithm 2: Check O(1) Border Groups

Our algorithm improves upon this further. The idea is that it is not necessary to check all O(logm)
border groups. Indeed, we can achieve the same goal by checking only a constant number of border

15



groups. We use the algorithm for checking one border group to check the leftmost border group in
τx, and at most two additional border groups.

Algorithm: Find New Matches

Input: An element in the cover, τx = [i, j, k].
Output: All starting locations of P in the text between tk and tk+j−i.

1. Find the longest suffix of τx which is a prefix of P . Let ` be the length of the desired suffix.

2. Using the Algorithm Check One Border Group (described in previous section), check the group of
P [1 : `].

3. Choose O(1) remaining border groups and check them using the Algorithm Check One Border
Group.

In this paragraph we give a high-level description of Step 1 of Algorithm 2; the following paragraph
specifies the details. Let τx = P [i : j]. Step 1 is to find the longest suffix of P [i : j] that is a prefix
of the pattern P . Suppose that we are given the list of all borders of P [1 : j]. A binary search on
the given list would give the answer in O(logm) time. Furthermore, we can compress the border
list to be a list of the border groups of P [1 : j], of which there are at most O(logm) (def. 2). Then,
since the border groups order the borders from left to right, a binary search on the list of border
groups would answer the query in O(log logm) time.

Given a prefix P [1 : j] of P , its list of border groups is represented by the path of P [1 : j] in the
border tree of P . Thus, it is possible to perform a binary search on the path of P [1 : j] in the border
tree of P . One method for implementing the binary search on trees is to use the level-ancestor
queries from [6], where each level-ancestor query takes O(1) time. Thus, a binary search on a path
in the tree is done in O(log logm) time. Hence, Step 1 has time O(log logm).

Step 2 uses the algorithm explained in the previous section. It remains to describe how to choose
the O(1) border groups that will be checked in Step 3.

For ease of exposition we assume that the entire pattern has matched the text (say τx = P ), rather
than some pattern prefix. This assumption does not limit generality since the only operations that
we perform use the border tree, and the border tree stores information about each pattern prefix.
Another assumption is that the longest border of P is < m/2. This is true in our case, since if
P were periodic, then all borders with length > m/2 would be part of the leftmost border group.
We take care of the leftmost border group separately (Step 2), thus all remaining borders will have
length < m/2.

Thus, the problem that remains is the following. An occurrence of a non-periodic P has been found
in the text, and we must find any pattern occurrence which begins in the occurrence of P . Note
that there is at most one overlapping pattern occurrence since P is non-periodic. The method that
we use to find this occurrence (if it exists) is to choose a constant number of border groups of P ,
and to check these border groups using the Algorithm Check One Border Group. In Section 5.3.1
we describe some properties of the borders/border groups from Cole and Hariharan [10]. We use
these ideas in Section 5.3.2 to eliminate all but O(1) border groups.
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Figure 3: The pattern P matches the text, and its list of borders is shown. The borders are
numbered {x1, x2, . . .} with pattern instances {X1, X2, . . .}. X1 is the pattern instance of the
longest border of P .

5.3.1 Properties of the Borders

A pattern instance is a possible alignment of the pattern with the text, that is, a substring of the
text of length m. The pattern instances that interest us begin at the locations of the borders of
P . Let {x1, x2, . . .} denote the borders of P , with x1 being the longest border of P . Let Xi be the
pattern instance beginning with the border xi.

Note that |x1| < m/2 and P is non-periodic. Thus, although there may be O(m) pattern instances,
only one can be a pattern occurrence. The properties described in this section can be used to
isolate a certain substring of the text, overlapping all pattern instances, which can match at most
three of the overlapping pattern instances. Moreover, it possible to use a single mismatch in the
text to discover which three pattern instances match this “special” text substring.

The following lemma from Cole and Hariharan [10] relates the overlapping pattern instances of the
borders of P .

Definition 3 ([10]) A clone set is a set Q = {S1, S2, . . .} of strings, with Si = π′πki, where π′ is
a proper suffix of primitive π and ki ≥ 0.

Lemma 4 [10] Let Xa, Xb, Xc, a < b < c, be pattern instances of three borders of P , xa, xb, xc,
respectively. ({xa, xb, xc} is a subset of the set of borders of P , {x1, x2, . . .}, with x1 being the
longest border of P .) If the set {xa, xb, xc} is not a clone set, then there exists an index d in X1

with the following properties. The characters in X1, X2, . . . , Xa aligned with X1[d] are all equal;
however, the character aligned with X1[d] in at least one of Xb and Xc differs from X1[d]. Moreover,
m− |xa|+ 1 ≤ d ≤ m, i.e. X1[d] lies in the suffix xa of X1.

Figure 3 accompanies Lemma 4. Shown in the figure is an alignment of the pattern instances which
correspond to the borders of P . The borders, as well as the border groups, are left-to-right ordered.
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Each border group is a clone set by definition, since every border within a group has the same
period. However, it is possible to construct a clone set from elements in two different border
groups. The last element in a border group can have the form π′π2, in which case the borders
π′π and π′ will be in (one or two) different border groups. It is not possible to construct a clone
set from elements included in more than three distinct border groups. Thus, we can restate the
previous lemma in terms of border groups, and a single given border, as follows.

Lemma 5 Let xa be a border of P with pattern instance Xa, and let xa be the rightmost border in
its group (definition 2). At most two different pattern instances to the right of Xa can match xa at
the place where they align with the suffix xa of X1.

Proof: By Lemma 4, at most one border that cannot form a clone set with xa, can match xa
ending at position X1[m]. In addition, since xa is the rightmost element in its group, at most two
shorter borders can form a clone set with xa. Either the borders that form a clone set with xa (of
which there are at most two), or a single border that cannot form a clone set with xa will match
xa aligned with the suffix of X1. ut

Let r = m − |x1| + 1. Note that P [r] is the location of the suffix x1 in P (see figure 3). Since
all pattern instances are instances of the same P , an occurrence of a border xa in some pattern
instance below Xa, aligned with Xa[r], corresponds exactly to an occurrence of xa in P to the left of
P [r]. The following claim will allow us to easily locate the two pattern instances which are referred
to in Lemma 5.

Claim 1 Let xa be a border of P , and let xa be the rightmost border in its group (definition 2).
Let r = m− |x1|+ 1, where x1 is the longest border of P . There are at most two occurrences of xa
beginning in the interval P [r − |xa|, r].

Proof: Let P [r − δ], δ < |xa|, be the location of an occurrence of xa in the specified interval (see
figure 4). The occurrence of xa at P [r − δ] overlaps the xa beginning at P [r]. The overlap is both
a prefix and a suffix of xa and thus is a border to the right of xa with length |xa| − δ. Let xb be
the border of P with length |xa| − δ. The pattern instance Xb is shifted δ characters to the right of
Xa, and hence Xb[r− δ] aligns with Xa[r]. Thus, Xb has an occurrence of xa aligned with location
r of Xa. By Lemma 5 there are at most two such borders to the right of xa. Thus, there are at
most two occurrences of xa in the interval P [r − |xa|, r]. ut

5.3.2 The Final Step

Using ideas from the previous subsection, our algorithm locates a single mismatch in the text in
constant time. This mismatch is used to eliminate all but at most three pattern instances. Consider
the overlapping pattern instances at the mth position of X1. As shown in figure 3, and by Lemma 4,
we have an identical alignment of all borders of P at this location. Each xi is a suffix of all xj
such that i > j, since all xi are prefixes and suffixes of P . Thus, suppose that the algorithm does
the following. Beginning with the mth location of X1, match the text to the pattern borders from
right to left. We start with the shortest border, and continue sequentially until a mismatch is
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Figure 4: Two borders of P are shown with their corresponding pattern instances, Xa and Xb. The
instance Xb begins δ characters to the right of Xa. If Xb has the string xa at position r− δ (where
r = m− |x1|) then it tells of an overlapping occurrence of xa in the pattern beginning at location
r − δ. The length of the overlap between the two xa’s is |xb|.

encountered. Let xa be the border immediately below the border with the mismatch. The first
mismatch tells two things. First, all borders with length longer than |xa| (in figure 3 borders above
xa) mismatch the text. In addition, at most two pattern instances with borders shorter than |xa|
match xa at the location aligned with the suffix xa of X1 (Lemma 5).

The algorithm for choosing the O(1) remaining borders is similar to the above description, however,
instead of sequentially comparing text characters, we perform a single LCP query to match the
suffix x1 with the text from right to left.

Algorithm: Choose O(1) Borders (Step 3 of Algorithm Find New Matches)

A: Match P from right to left to the pattern instance of x1 by performing a single LCP query.

B: Find the longest border that begins following the position of the mismatch found in Step A.

C: Find the O(1) remaining borders referred to in Lemma 5.

D: Check the borders found in Steps B and C using the algorithm for checking one border group.

An LCP query is performed to match the suffix x1 of X1, with the text cover from right to left.
The position of the mismatch is found in constant time (Step A). A binary search on the border
groups will find xa (Step B). Once Xa is found, we know that all pattern instances to its left (above,
in figure 3) mismatch the text. It remains to find the possibilities to the right of Xa which are
referred to in Lemma 5. Claim 1 is used for this purpose.

Step C: Let r = m− |x1|+ 1. The possible occurrences of xa in pattern instances to the right of
Xa correspond to occurrences of xa in the interval P [r − |xa|, r].

By Claim 1 there are at most two occurrences of xa in the specified interval. Since xa is a pattern
prefix, three range maximum prefix queries will give the desired result. The first query returns the
maximum in the range [r − |xa|, r]. This gives the longest pattern prefix in the specified range. If
the length returned by the query is ≥ |xa|, then there is an occurrence of xa prior to position r.

19



Otherwise, there is no occurrence of xa aligned with Xa[r], and the algorithm is done. If necessary,
two more maxima can be found by subdividing the range into two parts, one to the left and one to
the right of the maximum.

Step D: The final step is to check each border group, of which there are at most three, using the
Algorithm Check One Border Group.

Time Complexity of Algorithm Find New Matches: Step 1 is a binary search which takes
O(log logm) time (using level-ancestor queries of [6]). Step 2 is done in constant time. Step 3A
is a constant time LCP query and 3B is a binary search done in O(log logm) time. Steps 3C and
3D are both done in constant time since there are at most three groups to check and the checking
of a group is done in time O(1) using the Algorithm Check One Border Group. Thus, overall, the
Algorithm Find New Matches has time complexity O(log logm).

6 Data Structures for the Pattern

The cover of T by P stores the text in terms of substrings of the pattern. In the course of the
algorithm, it is necessary to perform various operations on these pattern substrings. In order to
perform these operations efficiently, we construct several data structures for the pattern. In this
section we describe the data structures for the pattern and how they are used to answer the queries
listed in Section 4.1.1. In Section 6.1 we describe the longest common prefix query, Section 6.2 the
substring concatenation query, and Section 6.3 the range maximum prefix query.

6.1 The Longest Common Prefix Query

LCP Query: Given two substrings, S′ and S′′, of the pattern P . Is S′ = S′′? If not, output the
position of the first mismatch.

The method used for the longest common prefix query is well known, and it originates in [20]. It
uses the suffix tree of P , defined as follows.

Suffix tree: The suffix tree of a string S = s1s2 . . . sn over alphabet Σ is a compacted trie of all
suffixes of S$ where $ /∈ Σ. The leaves of the tree represent the suffixes of S. We denote the suffixes
of a string of length n with Suf1, . . . , Sufn. Each edge of the tree has a label, w ∈ Σ∗, such that
for each suffix Sufu associated with leaf u the concatenation of the labels on the path of root-to-u
forms the suffix Sufu. Associated with each node v of the suffix tree is a height h(v), which is the
sum of the lengths of the labels on the path root-to-v. The suffix tree can be constructed in linear
time and space [11].

The suffix tree of P is preprocessed for the lowest common ancestor (LCA) queries. To compare
two substrings S′ = P [i : j] and S′′ = P [k : l] we take the LCA of the nodes of the suffixes Sufi
and Sufk. The height of the LCA is exactly the length of the prefix of S′ and S′′ that is a match.

Time Complexity: A suffix tree for an arbitrary alphabet can be constructed in O(m) time using
Farach’s method [11] for alphabets taken from a polynomially bounded range. Preprocessing a tree
for LCA queries is done in O(m) time and the LCA query time is O(1) by the algorithm of Harel
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and Tarjan [17]. Other LCA algorithms appear in [26, 6].

6.2 Substring Concatenation Query

Query: Given two substrings, S′ and S′′, of the pattern P . Is the concatenation S′S′′ a substring
of P? If yes, return a location j in P at which S′S′′ occurs.

The algorithm for the substring concatenation query uses the suffix tree of the pattern, denoted
by ST , and the suffix tree of the reverse of P , Prev, denoted by STR. The idea of the algorithm
is as follows. S′S′′ is a substring of P iff there is a location in Prev at which the reverse of S′

occurs which equals a location in P at which S′′ occurs. To check whether such a position exists,
we locate the node of S′′ in ST and the node of the reverse of S′ in STR. Any element in the
intersection of the leaves of these two nodes is a position in P of the concatenation S′S′′.

Substring Concatenation Algorithm

Input: Two substrings of P , S′ = P [i : j] and S′′ = P [k : l].
Output: A location in P of the concatenation S′S′′ if one exists.

1. Locate the node u in the suffix tree of P which represents the substring S′′. This is done by
performing a weighted ancestor query on the leaf Sufk in ST with weight l − k + 1.

2. Locate the node v in the suffix tree of Prev which represents the reverse of S′. This is done by
performing a weighted ancestor query on the leaf of the reverse suffix Sufj in STR with weight
j − i+ 1.

3. Check the intersection of leaves(u) and leaves(v), by performing a node intersection query. If
non-empty, an element in the intersection is the location of the concatenated substring S′S′′ in
P .

Steps 1 and 2 of the algorithm consist of locating a weighted ancestor in a bounded weighted tree
(to be defined shortly). Step 3 consists of taking the intersection of the leaves of two nodes. In the
following two subsections we describe how each of these operations is performed.

6.2.1 Weighted Ancestors

The weighted ancestor problem was defined in [12] and is a generalization of the level-ancestor
problem [6]. A tree containing m nodes is a weighted increasing tree, or weighted tree for short, if
each node v has an associated positive integer weight w(v) that satisfies: (1) w(parent(v)) < w(v),
where parent(v) is the parent node of v in the tree. Also, w(root) = 0. The tree is said to be
a bounded weighted tree if (2) w(v) ≤ m for all v. In the weighted ancestor problem we wish
to preprocess a weighted, or weighted bounded, tree in order to answer the following subsequent
queries:

Query: Given a node v and a height h, find the ancestor u on the path from v to the root where
w(u) ≥ h and w(parent(u)) < h.
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Here, as in [12], we will be primarily interested in the weighted ancestor problem on bounded
weighted trees. In [12] an O(m) time randomized preprocessing algorithm was suggested support-
ing subsequent queries in O(log logm) time. Also an O(m1+ε) time deterministic algorithm was
suggested supporting queries in O(1) time. We propose an O(m) time deterministic preprocessing
algorithm so that subsequent queries can be answered in O(log logm) time.

Heavy Path Decomposition

We use a variation of one of the solutions in [12], in which the bounded weighted tree T is partitioned
into paths by a heavy path decomposition. In a heavy path decomposition the edge set of T is
decomposed into disjoint paths as follows. Greedily choose a path by walking from the root down
the tree picking, at each step, the child which has the most nodes in its subtree. Once a path is
chosen, we remove its edges and are left with a forest. The process is recursively reiterated in each
of the trees of the forest. The decomposition tree D(T ) is defined by the heavy path decomposition,
with nodes in D(T ) corresponding to paths in the heavy path decomposition. The edges of D(T )
are defined from node vi (corresponding to path pi) to node vj (corresponding to path pj), if the
node v at the head of the path pj also appears on the path pi (in other words, path pj exits from
path pi). A well-known, crucial property of the decomposition tree is that its height is O(logm).
This follows from the greedy choice of the path decomposition.

Let T be a bounded weighted tree and D(T ) its decomposition tree. We maintain with each node
vi of D(T ) a weight, defined to be the weight of the node v in T which is the head of path pi,
the path corresponding to vi. Now, let u be a leaf in T and let h be the height in the weighted
ancestor query. If we perform a weighted ancestor query in D(T ) with the same height h and the
leaf vj (in D(T )) corresponding to path pj which contains u as a tail-node, then the answer is a
node vi corresponding to path pi, where pi contains the node v which is the answer to the weighted
ancestor query on T . Hence, our desire is to answer the weighted ancestor query in D(T ) quickly.

Weighted Ancestor Queries in D(T )

To answer weighted ancestor queries in D(T ), it is sufficient to implement a binary search on
the (upwards) path from vj to the root. Since the height of D(T ) is O(logm) this will yield
an O(log logm) time binary search. To implement the search, we use the level-ancestor queries
from [6], where each level-ancestor query takes O(1) time.

Hence, we can find, in time O(log logm), the node vi in D(T ) which corresponds to path pi in
T which contains the node v that is the answer to the weighted ancestor query problem. So, our
problem is to find the correct node v within path pi. To solve our problem we transform it into a
static predecessor query problem. In the static predecessor problem (see [31, 8]) one preprocesses
a set of integers for subsequent predecessor queries.

The transformation is as follows. Consider a path in the path decomposition. The weights on this
path are bounded by m. Consider each path as a sequence of its weights. Note that there are Θ(m)
paths in the path decomposition (as each ends in a unique leaf) and, although nodes of T may
appear in several paths, the number of nodes in all paths is ≤ 2m (as the decomposition partitions
the edge set). Enumerate the paths of the decomposition p1, ..., pcm in an order of your choice. We
define the weight sequence of pi, p̄i, to be the sequence of weights of the nodes of pi with weight im
added to each of the weights. Now concatenate the sequence p̄1, · · · , ¯pcm to receive an increasing
sequence A of size ≤ 2m with all weights on the sequence bounded by m2. To find the node v on
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path pi which is the answer to the weighted ancestor query on T with h we ask a predecessor query
on A with h+ im from the location where p̄i ends in A.

Static Predecessors

We will use the y-fast trie of Willard [31] to solve the static predecessor query. First, we describe
the x-fast-trie and then extend to the similar data structure of the y-fast-trie. In addition, we
combine the Willard structure with the deterministic perfect hash function construction4 of Alon
and Naor [3]. This is to avoid the random hash functions used in [31].

Willard [31] proposed x-fast tries for the predecessor problem over a universe U = {1, ..., u}. The
x-fast trie over an ordered set S ⊂ U of size m is a trie on the binary representations of S. The
size of the x-fast trie is O(m log u). For fast access, all nodes (more precisely, the locus associated
with the node) are stored using a perfect hash function. Predecessor queries are answered in
O(hq log log u) time, where hq is the hash query time, by binary searching on the height of the
trie. The time it takes to construct the x-fast-trie over an ordered set S is linear in the space
of the trie plus the time it takes to construct the perfect hash function. A perfect hash function
for k elements can be constructed deterministically in O(k log5 k) time and O(k) space such that
subsequent queries are answered in O(1) time [3]. In our case u = m2, log u = O(logm) and hence
k = O(m log u) = O(m logm). Therefore, in O(m log6m) time and O(m logm) space one can
construct the x-fast trie where subsequent queries are answered in O(log logm) time.

To be more space and time efficient we partition S into sets of size O(log6m) each, following the idea
of the y-fast trie data structure [31]. For each set we choose one arbitrary element from the set as
a representative. The overall number of representatives is O( m

log6m
). Hence, for the representatives

an x-fast trie can be constructed in O(m) time with O(log logm) time queries. In addition for
each set (of size O(log6m)) a binary search tree can be constructed in linear time with query time
O(log log6m) = O(log logm). To find a predecessor (of, say x) in S one does as follows. Ask a
predecessor query of x on the x-fast trie of the representatives. Let y be the representative answer.
The predecessor in S must appear in the set of y or in the set of the “representative successor” of
y. To find it a search is applied in the binary search tree of these two sets. Hence, in O(m) time
and space one can deterministically preprocess for weighted ancestor queries in O(log logm) time.

6.2.2 Node Intersections

Assume we are given two trees each with O(m) nodes and m leaves uniquely labeled with the
numbers from 1 to m. Let leaves(u) denote the set of labels on the leaves in the subtree rooted
at node u. Given a node u in one tree and a node v in the other tree a node intersection query
returns an element of the intersection of leaves(u) and leaves(v), if one exists. The algorithm of
Buchsbaum et al. [9] answers node intersection queries.

4We note that better constructions that Alon and Naor exist, specifically see [16], however they assume stronger
models which we prefer to avoid.
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6.2.3 Time Complexity

The preprocessing for the Substring Concatenation Algorithm takes O(m
√

logm) time and space.
The weighted ancestor algorithm takes O(m) time and space, and the node intersection algorithm
of Buchsbaum et al. [9] takes O(m

√
logm) time and space. Subsequent queries can be answered

in O(log logm) deterministic time.

6.3 Range Maxima Prefix Query

Query: Let Sufi denote the suffix of the pattern P that begins at location i. Given a range of
suffixes of the pattern P , Sufi . . . Sufj . Find the k which maximizes the LCP (Suf`, P ) over all
i ≤ ` ≤ j.

We construct an array of integers, A[1 . . .m], such that A[i] equals the longest common prefix
(LCP ) of P and the suffix of P beginning at location i. Note that the array A can be constructed
by performing m LCP queries.

We then preprocess the array A for range maxima queries, as in [14]. A range-maximum query
returns the largest number in the given interval in the array. The answer to the range maximum
query on the array A[i : j] gives the location of the longest prefix of P in the interval i . . . j.

Time Complexity: The preprocessing consists of constructing the array A and preparing it for
range maxima queries. Performing m LCP queries takes O(m) time. The algorithm of [14] takes
O(m) time for the preprocessing, and subsequent range-maximum queries can be answered in O(1)
time.

7 Summary

We summarize the algorithm, including the time and space complexity of each step.

Preprocessing: O(n log logm+m
√

logm) time and O(n+m
√

logm) space.

On-line algorithm: O(log logm) time per replacement.

Pattern Preprocessing: (Section 6)

1. Construct the suffix trees for P and Prev: O(m) time/space.

2. Preprocess the suffix trees for:

(a) Lowest common ancestor queries: O(m) time/space.

(b) Weighted ancestor queries: O(m) time/space.

(c) Node intersection queries: O(m
√

logm) time/space.

3. Construct the border tree for P : O(m) time/space.

4. Construct the range-maximum prefix array for P : O(m) time/space.
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Text Preprocessing: (Section 4.1.2)

1. Construct the cover of T by P : O(n log logm) time, O(n) space.

2. Store the cover in a van Emde Boas data structure: O(n log logm) time and O(n) space.

The Dynamic Algorithm: (Sections 4.2,5)

1. Delete old matches that are no longer pattern occurrences: O(log logm) time.

2. Update the data structures for the text: O(log logm) time.

3. Find new matches: O(log logm) time.

8 Open Problems

There are a number of problems that remain open in the domain of dynamic text and static pattern
matching. First, the changes that we dealt with are replacements in the text. An open challenge
would be to allow insertions/deletions in the text. Another variation would be to allow a general
alphabet, while our algorithm assumes an alphabet polynomially bounded by m.

Also, we propose a solution where one pattern exists. If there are multiple patterns, say r patterns,
then our solution requires the space and time to be multiplied by r. Can this be solved more
quickly?

Another important question is that of changes of substrings. Say a short substring (of length s)
was changed, does it require O(s log log n) time? Or can this be done faster? Say O(s+ log log n)
time.

Another possible avenue of research is to solve approximate pattern matching with a changing text.
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