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Abstract

Gene structure prediction is one of the most important problems in computational molecular
biology. It involves two steps: the first is finding the evidence (e.g. predicting splice sites) and
the second is, interpreting the evidence, that is, trying to determine the whole gene structure
by assembling its pieces. In this paper we suggest a combinatorial solution to the second step,
which is also referred to as the ”Exon Assembly Problem”. We use a similarity based approach
which aims to produce a single gene structure based on similarities to a known homologous
sequence.

We target the sparse case, where filtering has been applied to the data, resulting in a set of
O(n) candidate exon blocks. Our algorithm yields an O(n2

√
n) solution.

1 Introduction

Prediction of genes in eukaryotic DNA is seriously complicated by noisy regions (introns) that
interrupt the coding regions (exons) of genes. A combinatorial approach, due to Gelfand, Mironov
and Pevzner [7, 20, 27] incorporates similarity analysis into gene prediction by attempting to find
a set of potential exons in a genomic sequence whose concatenation is highly similar to one of the
already known gene sequences in the database.

The task of gene prediction is generally divided into two stages. The first task is that of finding
candidate exons in a long DNA sequence believed to contain a gene. A candidate exon is a sequence
fragment whose left boundary is an acceptor site or a start codon, and the right boundary is a donor
site or a stop codon. The nucleotide sequence in Figure 1 contains marked sites where a candidate
exon may begin and end. Uppercase A-E mark identified sites where an exon is likely to begin
(start/acceptor sites), and lowercase f-j mark sites where exons are likely to end (stop/donor sites).
Candidate exons are A-f, A-g, A-h, A-i, A-j, B-f, B-g, B-h, B-i, B-j, C-g, etc.

The second task, which is referred to as ”The Exon Assembly Problem” and which is the main
concern of this paper, is that of selecting the best subset of non overlapping candidate exons to
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Figure 1: A nucleotide sequence (S) and four of its derived candidate genes (s1, s2, s3, s4).

cover the sequence of the predicted gene. (Four of the many possible assemblies of candidate exons
as candidate genes are shown in the figure: s1 = {A − f,C − h,E − i}, s2 = {B − g,D − j}, s3 =
{A− h,E− j} and s4 = {A− g,D− i}.) Each candidate gene (a concatenation of non-intersecting
candidate exons which satisfy some natural consistency conditions [25]) is compared against the
target sequence, which is an already known gene from a homologous species. (For a survey on
the subject of Gene Prediction, the interested reader is referred to [18] and to http://www.nslij-
genetics.org/gene/).

Good filtration is crucial for exon assembly, especially if targets from distant taxa are used. In
[20], the authors studied the performance of the exon assembly algorithm for different targets on a
complete set of human genomic sequences with known relatives and demonstrated that the average
performance of the method remains high even for distant targets. The authors analyzed several
filtration procedures of varying strength and demonstrated that weak filtration provides better
results with mammalian targets. In the case of distant targets, the stronger filtering was more useful
than in the case of close targets, and sometimes it was shown to significantly improve the prediction
quality. Furthermore, it was also explicitly shown (see http://www-hto.usc.edu/software/procrustes-
/#salign) that the number of candidate exons generated in either weak or moderate filtration modes
is linear in the size of the genomic sequence: the default (weak) filter retained approximately 1
exon per 14 nucleotides on the average, while the moderate filter retained approximately 1 exon
per 33 nucleotides.

Therefore, we re-address the Exon Assembly problem for the linear-sized candidate exon-set
case. More formally, for any two substrings B and B′ of a genomic sequence S, we write B ≺ B′

if B ends before B′ starts. A sequence Γ = (B1 . . . , Bn) of substrings of S is a chain if B1 ≺ B2 ≺
. . . ≺ Bn. We denote the concatenation of strings from the chain Γ by Γ∗ = B1 ∗B2 ∗ . . . ∗Bn.

Definition 1 Given two sequences, S and T , of size O(n) each, and a set β = {B1, . . . Bb} con-
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taining O(n) blocks (substrings of S), of size O(n) each. The Sparse Exon Assembly Problem
is to find a chain Γ of strings from β such that score(Γ∗, T ) is maximum among all chains of blocks
from β.

We suggest a new algorithm for Sparse Exon Assembly. Our new approach is based in efficient
elimination of redundancy due to candidate-exon overlaps. Note that dominant portions of each
of the competing candidate gene assemblies in Figure 1 are segments common to other candidates,
since the candidate exons overlap in the genomic source sequence. (For example, the two source
strings S1 and S2 share the substrings B-f, C-g, D-h and E-i.) The authors of [7] indeed noticed
this redundancy and utilized it to speed up the naive dynamic programming algorithm. When no
filtration is applied, and the number of candidate exons generated is O(n2), their approach reduces
the Exon Assembly complexity from the naive O(n4) down to O(n3). However, when filtration is
applied, and the number of candidate exons is O(n), their algorithm still yields the same O(n3)
result.

A thorough examination of the problem leads to the conclusion that it is the dependency of
traditional dynamic programming on the direction in which it is applied, as well as the fact that
values in each dynamic programming table are sensitive to the content of preceding (or symmetri-
cally following) chained blocks in the candidate solution, which stand in the way of isolating the
common denominator between blocks and exploiting the overlap redundancy.

1.1 The Results of This Paper

We describe an O(n2
√
n) solution for Sparse Exon Assembly, which improves upon the previous

results by O(
√
n). Furthermore, the new algorithm degrades gracefully, so that even in the case

when no filtration is applied to the exon set, and the number of candidate exons may be O(n2), our
algorithm will yield an O(n3) complexity which is no worse than previous results. The efficiency
improvement is based in a tighter, more sophisticated elimination of overlap redundancy among
the candidate exons. The crux of the new algorithm is thus based in three components.

1. A Rectilinear Steiner Minimal Arborescence technique [8, 9, 17, 24] is applied to the anal-
ysis of the overlapping candidate exons. The Steiner technique is a well-practiced tool in both
Computational Geometry and Graph Theory problems. Its importance stems from the fact that
it has applications in as diverse areas as VLSI-layout and the study of phylogenetic trees. The
application of the Steiner tool here to the parsing of overlapping candidate exons leads to efficient
re-use of the substrings shared by multiple exon candidates and is key to the resulting efficiency
gain. (See section 4.)

2. We replace the dynamic programming tables in the network graph with alternative DIST
data structures. (See Section 3.) This will allow us to focus on the local common denominator
between overlapping blocks, and mask out the global information which varies for each considered
chain in which the blocks are embedded.

3. In order to achieve direction flexibility in the alignment computation, a new key operation
is introduced in this paper which supports both left-to-right and right-to-left computations. (See
Section 5.) Note that related work on dynamic programming ”against the grain” without the I/O
independence feature can be found in [13, 14, 15].

The combination of the above three components enables the new algorithm to eliminate re-
dundancy by applying the major part of the alignment work to multiple blocks in tandem, thus
reducing the work associated with re-computation of segments shared by several blocks.
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Figure 2: A example of the basic network dynamic programming algorithm, showing the candidate exon
block dynamic programming tables. Consecutive ”state-shots” of the I/O vector at the stages when it is
accessed also shown. This figure continues the example of Figure 1.

The results of this paper apply to all distance or similarity scoring schemes which use a scoring
table with rational number values and employ a linear gap penalty. In the next section we will
briefly describe Gelfand, Mironov and Pevzner’s algorithm [7] since our algorithm uses a similar
framework.

2 Gelfand, Mironov and Pevzner’s Algorithm

The Exon Assembly problem is first reduced to a search for the optimal path in a network graph.
Nodes in this graph correspond to candidate-exon blocks, arcs correspond to potential transitions
between blocks, and the path weight is defined as the weight of the optimal alignment between the
concatenated blocks of this path and the target sequence.

Figure 2 demonstrates the network alignment graph. Each of the rectangles corresponds to the
dynamic programming table for the alignment of a single candidate-exon substring Sj

i of S versus
T . Clearly, each such table is of size O(n2). The first row in each such dynamic programming table
is denoted I and the last row is denoted O. The only special feature of the computation is the fact
that the I row is being set from a global vector named the I/O vector which will be defined below.
All other computations are done in the standard way based on the penalty matrix.

The algorithm uses the I/O vector to maintain global information regarding the various possible
chainings of the dynamic programming tables for the exon-blocks.
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Definition 2 At step k of the algorithm, I/O[ℓ], for ℓ = 1 . . . n, holds the best alignment score of
the prefix T l

1 with any possible chaining of a set of complete, non-overlapping candidate exons which
ends at an index no higher then k.

To summarize, the work done at step k of the algorithm consists of the following three tasks:

1. First, all dynamic programming tables whose I row is at index k will be initialized with the
values of the I/O vector.

2. Then, the values of all rows internal to blocks (neither I nor O) which correspond to the
character at index k of S, will be computed from their preceding row via dynamic programming
computation.

3. Finally, for each dynamic programming table DP k
i (corresponding to the alignment of candidate

exon Sk
i versus T ) the I/O vector will be updated with the information from row O of DP k

i :
I/O[ℓ] = max{DP k

i [k, ℓ], I/O[ℓ]}, for ℓ = 1 . . . n.

Time Complexity

In both the Dense and the Sparse case the time and space complexity of the algorithm is O(n3).
The interested reader is referred to [7] for more details.

3 An Alternative Approach to Exon Assembly

Our new algorithm for Sparse Exon Assembly will maintain the main frame of the original algorithm
and will similarly run a sweep-line, top-to-bottom traversal over the network graph of candidate
exon blocks. However, the new approach will be based in replacing the dynamic programming
tables for the blocks with an alternative data structure which analyzes the DP graph (see Figure
3,6 and 9), denoted DIST [1, 4, 12, 23].

Definition 3 DISTA
B [0 . . . n][0 . . . n]- given the DP Graph for the alignment of a sequence A of

size m versus a sequence B of size n, DISTA
B [i, j] stores the weight of the highest scoring path from

vertex (0, i) in the first row of the DP graph to vertex (m, j) in the last row of the DP graph.

In other words, DISTA
B [i, j] stores score(A,Bj

i ) (see Figure 3).
Note that since all substrings of B may be considered as candidate exons, this problem can also

be referred to as the All Substrings Alignment Problem [10, 11, 2, 6].
We will use an O(n) representation of DIST , which replaces the full O(n2) DIST , and which

is explained in Section 5.1.
Consider the DP graph for the alignment of any candidate exon Sj

i with T in Figure 2. By
replacing the dynamic programming table with aDIST data structure, the alignment work involved
in the computation of column O from column I can be greatly reduced, as follows. Given DIST T

S
j

i

and input row I, the output row O can be computed in O(n) time instead of O(n2), by employing
the techniques from [5, 16].

Intuitively, the savings can be viewed as follows: for each block, the algorithm will eliminate the
work which is invested by the original exon assembly algorithm in the computation of all dynamic
programming table rows between I and O (highlighted with dark squares in Figure 2). Clearly
such an approach could lead to an O(n2) time complexity for the computation of the optimal path
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Figure 3: The full DISTA

B
where A = ”ACCADBAB”, B = ”BBCAACABABCCB”, for the Edit

Distance metric. Note that ψ = 3.

through the exon blocks, assuming that the DIST s for the comparison of each block with T are
available.

However, such an assumption does not hold in this case and therefore O(n) DIST tables need
to be constructed. Computing a single DIST for the comparison of two O(n)-sized sequences would
naively take O(n3) time. Schmidt [23] shows how to compute such a DIST in O(n2) time. Thus,
the computation of O(n) DIST s, where each DIST represents two strings of size O(n) each, can
be done in O(n3) time. This creates a complexity bottleneck which overrides the speed-up which
was obtained in reducing the work for the network dynamic programming graph to O(n2).

Therefore, in the rest of this paper we address the challenge of how to compute the DIST s
for all blocks in an efficient manner that would reduce the O(n3) DIST -construction bottleneck to
O(n2

√
n).

4 Breaking the O(n3) bottleneck with ”Append-Prepend” Parsing

In Section 5, the following two incremental DIST construction operations will be described. Both
operations cost O(n) time each, and will be used for efficient computations of all DIST s for β
(Definition 1).

Definition 4 DISTAppend - given a single input character a and DISTA
B , computes DISTAa

B ,
where Aa is the concatenation of the character a to the end of string A.

This operation is based on the work of [23].

Definition 5 DISTPrepend - given a single input character a and DISTA
B , computes DIST aA

B ,
where aA is the concatenation of the character a to the beginning of string A.
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Figure 4: An example of a set of candidate exon blocks. This figure continues the example of Figure 1. Let
|P | = 1, |Q| = 4, |R| = 1, |S| = 2, |T | = 3, |U | = 3, |V | = 3, |W | = 4 and |X | = 2.

This operation will be described in section 5.3.
Consider the candidate exons 1 . . . 9 which are shown in Figure 4. Dotted vertical lines are used

in this example to mark all start and end positions of candidate-exons. Clearly, each such dotted
line can be translated to at least one I/O-vector update. The letters P,Q, . . . T are used to mark
unit substrings of S, which are uninterrupted by a beginning or end of a candidate exon.

Naively, theDIST for each candidate-exon could be generated by a series of O(n) DISTAppend
operations, or alternatively by a series of O(n) consecutive DISTPrepend operations. This would
yield a total of O(n2) DISTAppend and DISTPrepend operations. Since the complexity of each
DISTAppend and DISTPrepend operation is O(n), the total work would amount to O(n3). How-
ever, a more careful construction scheme would try to order the DIST increment operations in
such a way as to minimize re-generation of unit-substrings that appear in more than one exon. For
example, generating the two exons ”PQ” (block 1 in Figure 4) and ”QRS” (block 4) by a series
of DISTAppend operations would yield a total of 12 operations. Alternatively, suppose that the
substring ”Q”, which is common to both exons, is first computed at the cost of 4 DISTAppend op-
erations, and then ”PQ” is obtained from ”Q” via a single DISTPrepend while ”QRS” is obtained
from ”Q” via 3 DISTAppend operations. The total cost in this case would be 8 instead of 12, since
”Q” is only generated once. From this example we conclude that both the bi-directional nature of
DIST and the fact that any subset of exons may share substrings could lead to an efficient construc-
tion of the associated set of DIST s. However, some order of DISTAppend and DISTPrepend
operations should be determined that will minimize the number of required operations.

For example, lets concentrate on the construction of DIST tables for exons 1, 4, 6 and 8 (see
figure 4). Suppose we choose to start by generating the DIST for substring Q. What should be the
next step? If the DIST table for Q is extended to the right to QR, exons 4, 6, and 8 will benefit as
opposed to exon 1. The consequence of this construction order is that the left extension for P will
have to be done twice: once for exon 1 (the creation of substring PQ) and once for exons 6 and 8
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(the creation of substring PQRS). On the other hand, if we choose to extend Q to the left first by
creating the DIST table for substring PQ the symmetric result is that of building the extension
to R twice. This leads to the following optimization problem.

Definition 6 The Append-Prepend Parsing optimization problem: (APPOP) Compute
the minimal-cost series of DISTAppend and DISTPrepend operations that will generate the
DIST s for all the candidate exons in β.

4.1 APPOP Reduced to RSMA

In this section we show how to solve APPOP by reducing it to a Steiner-Tree problem [9]. Fur-
thermore, the special features of the problem will allow us to tightly map it to a special case of
directed Steiner trees on a rectilinear grid. Such trees have the great advantage that their size has
a proven bound - a feature which is key to the efficiency gain suggested by our algorithm. The
Rectilinear Steiner Minimal Arborescence (RSMA) is defined as follows [24].

Definition 7 Let N be a set of nodes lying in the first quadrant of E2. The set of edges is
composed solely of horizontal and vertical arcs oriented only from left to right and from bottom to
top. A Rectilinear Steiner Tree for N is a tree rooted at the origin and containing all nodes in
N. A Rectilinear Steiner Arborescence (RSA) is a directed Rectilinear Steiner Tree for N with the
property that for each ni ∈ N , the length of the unique path in the tree from the origin to ni equals
xi + yi. A Rectilinear Steiner Minimum Arborescence (RSMA) for N is an RSA for N
that has the shortest possible total edge size.

This problem, which is NP -Complete [26], was first studied by Ladeira de Matos [19]. He proposed
an exponential time dynamic programming algorithm to solve the problem. Rao, Sadayappan,
Hwang and Shor [24] have suggested a heuristic 2-approximation algorithm for the problem, with
the time complexity of O(n log n), which finds an RSMA with a bounded size of O(n

√
n). Their

algorithm scans the nodes in the grid using a diagonal sweep line approach, starting at the highest
rightmost corner of the grid and progressing toward the root at the lowest leftmost corner of the
grid. We use their algorithm while sweeplining only the diagonals in the upper right triangle.
Additional related work can be found in [8, 9, 17]. In the next claim we prove that our problem
reduces to a variant of RSMA. Meanwhile, we give a high level description of this reduction.

Consider the upper right triangle of the n×n directed grid graph G in figure 5, associated with
the sequence S = s1, s2, . . . , sn which continues the example in figures 1 – 4. The origin of this
graph is point z1 = (0, 0) in the lowest, leftmost corner of the grid. Each column and row in G can
be associated to a different character of S. Columns are associated to sn, . . . , s1 from left to right,
and the rows are associated to s1, . . . , sn from bottom to top. Let the diagonal which is just above
the main diagonal of G, be called the Characters Diagonal. Nodes in the Characters Diagonal
are associated with consecutive characters of S, such that each character si is associated to node
(i, n − i + 1) on the Characters Diagonal. Recall that S can also be considered as a sequence of
the unit substrings P,Q, . . . ,X, which are substrings of S, uninterrupted by a beginning or end of
a candidate exon. For convenience purposes only, we will gather columns, rows and nodes on the
Characters Diagonal of G so that they can be associated to the unit substrings instead of to single
characters (see figure 5).

For example, the unit substring Q = s2, . . . , s5 is associated to rows 2, . . . , 5, to columns
22, . . . , 19 and thus to the nodes (2, 22), (3, 21), (4, 20) and (5, 19) respectively.
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Figure 5: APPOP reduced to a Minimal Steiner Arborescence problem on the upper triangle in a Rectilinear
Grid. The terminal nodes, representing the candidate-exon substrings, are circled. The designated root z1
is located at the origin (0, 0). The sequence of unit substrings of S is PQRSTUVWX . For the sake of the
figure’s clarity, the sizes have been omitted from the edges. Instead, the accumulative lengths of the unit
substring is shown in the right and upper sides of the figure. The RSMA approximation, as computed by
employing the algorithm of claim 2, is marked with thick bright lines. This figure continues the examples of
Figures 1 and 4.

We will now show how the substrings of S are associated to nodes in G. Any substring Sj
i (j ≥ i)

can be realized by concatenating the unit substrings associated to rows i to j or by concatenating
the unit substrings associated to columns n − j + 1 to n − i + 1. The node which represents this
substring in G is (j, n−i+1), which is the upper right intersection point of these rows and columns.
Among these nodes, the set of O(n) terminal nodes N (corresponding to the set of candidate exons)
are circled in figure 5.

The edges demonstrate all the possible options to extend any of these substrings either by
DISTAppend or by DISTPrepend. Therefore, all edges in the upper triangle of the grid graph are
directed, either upward or to the right. An edge leaving a node upwards corresponds to an extension
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of the substring represented by the node via a DISTAppend operation. For example, consider the
three consecutive edges starting at the node representing the substring RST and going upwards end
at the node representing the substring RSTU (at the row corresponding to the unit substring U).
These edges represent the result of 3 consecutive DISTAppend operations on RST which yields the
target substring RSTU (U ’s length is 3). Similarly, an edge leaving a node to the right corresponds
to an extension of the substring represented by the node via a DISTPrepend operation. For
example, the four consecutive edges starting at the node representing the substring RST and going
to the right end at the node representing the substring QRST (at the column corresponding to the
unit substring Q). This edge represents the result of 4 consecutive DISTPrepend operations on
RST which yields the target substring QRST (Q’s length is 4).

Consider some set of single characters of S (on the Characters Diagonal). The extension of each
one of them up and to the right with a sequence of DISTAppend and DISTPrepend operations can
finally result all the candidate exon substrings. Clearly, such a sequence can be mapped to a forest
which spans all the terminals in N , such that each tree in the forest is rooted in the Characters
Diagonal of G and grows in the upwards and right directions. A minimal-size such forest would
therefore yield a solution to the APPOP .

The RSMA variant problem is then to find a set of paths from the Characters Diagonal to all
terminals in N such that the total size of the edges in these paths is as small as possible (see Figure
5).

Claim 1 APPOP can be reduced to the RSMA problem on the upper triangle in a Rectilinear
Grid.

Proof: The proof is immediate from the previous discussion.

Next we show that running the RSMA algorithm of Rao et al. [24] on G would yield a 2-
Approximation to APPOP with the time complexity of O(n log n).

In their algorithm the distance in L1 of a point p = (px, py) from the origin is defined as px +py.
Clearly, all points lying on a certain diagonal share the same distance from the origin. Thus, this
RSMA algorithm scans the nodes in the grid using a diagonal sweep line approach. Starting at
the highest rightmost corner of the grid and progressing toward the root at the lowest leftmost
corner of the grid, the algorithm does not leave a diagonal until it processes every node on it which
is a candidate to participate in a minimal arborescence approximation. Theorem 7 in [24] states
that for any diagonal processed during the execution of their algorithm, the size of the forest found
by this step is no more then twice the size of the optimal forest spanning the upper triangular
subgraph defined by this diagonal. Therefore we can run the standard RSMA algorithm of [24] on
the upper triangle of G and halt once the Characters Diagonal is reached.

Claim 2 A 2-Approximation to the APPOP can be computed in O(n log n).

Proof: The proof is immediate from the previous discussion.

Let τG(N) denote the approximated RSMA obtained by running the algorithm of claim 2 on
G. The next lemma, which is based on Rao et al. [24], defines a bound on the size of τG(N).

Lemma 1 |τG(N)| = O(n(
√
n))
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Proof: Rao et al. [24] proved that the size of an RSMA for n terminal points in a unit square is
bounded by

√
2n+ 2. If the problem is scaled up from a unit-grid with n2 points to an n× n grid

with n2 points, both the size of each upward-edge and the size of each right-edge in the arborescence
increases by a factor of n, which yields a scaling of the total size of the arborescence by a factor of
n to O(n

√
n).

4.2 The New Sparse Exon Assembly Algorithm

The new algorithm is given below.

Algorithm Sparse Exon Assembly:

Input: a set β of O(n) candidate-exon substrings of S and the homologous gene sequence T .

Output: a chain Γ of strings from β such that the alignment score of the concatenation of Γ with
T is maximum among all chains of blocks from β.

1. Compute an approximation τG(N) of the RSMA of G as described in section 4.1.

2. Using τG(N), compute the linear encodings of the DIST s for all candidate exons in β, using
the DISTAppend and DISTPrepend operations described in section 5.

3. Using the linear encodings of the DIST s, scan the network graph in a top-to-bottom sweepline
of increasing row index, and for each scanned block Sj

i :

3a. Initialize I with the I/O vector.

3b. Compute O from I, applying the technique from [16] to the linear encoding of DIST T

S
j

i

which was computed in Step 2.

3c. Update the I/O vector with O, as described in section 2.

4. Upon completion, report the maximal value in the I/O vector and by tracebacking find the
maximal value chain Γ.

Time Complexity Analysis

A 2-Approximation τG(N) of the RSMA for O(n) points in an n × n grid can be computed in
O(n log n) as explained in the proof of claim 2. By Lemma 1, the size of the obtained tree τG(N)
is O(n

√
n).

Following the incremental order defined by τG(N), the linear encodings of the DIST s for all
exons in B are computed in O(n

√
n) steps. Each step consists of either a single DISTAppend or a

single DISTPrepend operation, each in O(n) time (see Section 5). Altogether, the time invested
in the construction of the DIST s is O(n2

√
n).

Using the O(n) linear encodings of the DIST s, the computation of I from O for each of the
O(n) blocks is done in O(n) time using [16]. In addition, the I/O update work for initializing the
I row for each block from the I/O vector and for updating the I/O vector with the resulting O
row for each block is also O(n) per block. Altogether, this stage contributes a term of O(n2) work
to the total complexity.

Thus, the total time complexity of the new Sparse Exon Assembly algorithm is O(n2
√
n).

We next show that even though the sparse case improved, the algorithm degrades gracefully
in the dense case. When the number of candidate exons approaches O(n2), the 2-Approximation
τG(N) of the RSMA for O(n2) points can be computed in O(n2 log n) similarly to the way as
with the sparse case. The size of an RSMA for n2 terminal points in a unit square is bounded by
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√
2 × n + 2. The scaling to an n × n grid with n2 points brings the total size of the arborescence

to O(n2).
Altogether, the time invested in the construction of the DIST s in the dense case is O(n3).
In a similar manner to the sparse case, the network alignment algorithm contributes a term of

O(n3) work to the total complexity, yielding the total time and space complexity of O(n3) in the
dense case of our Exon Assembly algorithm.

5 A DP Toolkit to Support APPOP

In this section we describe the two DIST construction operations, which enable us to utilize the
RSMA approximation τG(N), which was computed as a solution to the APPOP of the exon-
candidate set β, to efficiently construct the DIST data structures which represent the alignments
of all blocks in β with T . We will first explain the compressed, linear encoding representation of
DIST , and then describe the DISTAppend and DISTPrepend construction operations on this
data structure.

5.1 Properties of DIST that Enable Linear Encoding

Aggarwal and Park [3] observed that DIST tables are Monge arrays [21].

Definition 8 A matrix M [0 . . . m, 0 . . . n] is a Monge array if either condition 1 or 2 below holds
for all a, b = 0 . . . m; c, d = 0 . . . n:

1. M [b, d] −M [b, c] ≥M [a, d] −M [a, c] for all a < b and c < d.

2. M [b, d] −M [a, d] ≥M [b, c] −M [a, c] for all a < b and c < d.

For discrete scoring schemes, a more efficient encoding of high scoring paths in the DP Graph
can be achieved, by utilizing the fact that, due to the Monge property of DIST , the number of
relevant changes, from one column to the next, is constant. This property, also discussed in [16, 23],
allows for a representation of DIST via an O(n) number of ”relevant” points.

The HDIFF matrix on columns of DIST is defined as follows (see Figure 6).

Definition 9 HDIFFcol
A
B [i, j] = DISTA

B [i, j] −DISTA
B [i, j − 1], for i, j = 1 . . . n.

The range of possible values for HDIFFcol
A
B [i, j] depends on the scoring scheme which is used

for the string comparison, and is actually the upper bound for the value difference between two
consecutive elements in the dynamic programming table. We will use the term ψ to denote the
range bound for HDIFF [i, j] values. As an example, if the similarity metric used is LCS, the only
possible values for HDIFF will be either 1 or 0, and ψ assumes a value of 1. For the Edit Distance
metric, on the other hand, ψ is 2, since HDIFF can only assume one of the 3 values: -1, 0, 1
[28]. Our algorithm applies to all scoring scheme metrics for which ψ is a constant. Masek and
Paterson [22] observed that ψ is a constant for discrete scoring schemes (i.e. when the values of
the applied scoring matrices are restricted to rational numbers).

Schmidt [23] showed that since, for discrete scoring schemes, the number of ”steps” (row indices
in which the series of column entries increases in value) in each column of HDIFF is constant,
each column j = 1 . . . n, can be encoded by a sorted list of ψ = O(1) row indices ik, where ik is the
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Figure 6: The linear encoding compression of DISTA
B by columns, where A = ”ACCADBAB”,

B = ”BBCAACABABCCB”, for the Edit Distance metric. (a) HDIFFcol
A
B. (b) HLISTcol

A
B .

This Figure continues the example of Figure 3.

highest row index in column j, such that HDIFFcol
A
B [ik, j] = k. Altogether, HDIFFcol

A
B can be

encoded by its O(n) ”steps”, using the data structure defined below (See Figure 6).

Definition 10 HLISTcol
A
B is the linear encoding of HDIFFcol

A
B. i.e., HLISTcol

A
B [j, k] holds the

value of the highest row index i in which HDIFFcol
A
B [i, j] = k, for j = 1 . . . n, k = 1 . . . ψ.

We have shown in [16] that the linear encoding of DIST is sufficient to compute O from I, thus
liberating the algorithm from the time and space overhead of maintaining the full O(n2) DIST
representation. In the following sections we will show that the linear representation ofDIST suffices
for the computation of both DISTAppend and DISTPrepend, thus allowing for the efficient O(n)
computation of these operations.

5.2 Schmidt’s Algorithm for DISTAppend on the Linear Encoding of DIST

In this section we will describe a general framework of the DISTAppend operation of [23]. This
algorithm is intended as a black box for the new DISTPrepend operation which will be described
in Section 5.3. Consider the DP graph for the alignment of Aa versus B. Note that column j in
DISTA

B represents the j paths starting at row 0 of the DP graph for the alignment of A versus
B, and ending at vertex (m, j). Thus, appending a single character to the end of sequence A
corresponds to appending a new row to the last, bottom row of the DP graph (see Figure 7). The
goal of the DISTAppend operation is to compute the linear-encoded representation of DISTAa

B

from the linear-encoded representation of DISTA
B , namely computing all the paths which end at

vertices of row m+ 1 of the DP graph.
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Figure 7: The DP graph for computing the similarity between A = ”BCBCBDCB” and B =
”BCBADBDCD”. The highlighted edges demonstrate the extension of the prefix ”BCBCBDC” of A
by appending the character ’B’.

For each vertex in the newly appended row (m + 1, j), j = 1 . . . n, given the difference:
DISTA

B [i, j] − DISTA
B [i, j − 1] (i.e., entry j of HLISTcol

A
B), the algorithm computes in O(1) the

difference: DISTAa
B [i, j] −DISTAa

B [i, j − 1] (entry j of HLISTcol
Aa
B )

We refer the interested reader to [23] for the detailed description of this algorithm.

Time and Space Complexity Analysis of the DISTAppend Operation: Given a string B of
size O(n), a character a, a discrete scoring table, and the linear encoding of DISTA

B (HLISTcol
A
B)

for a string A, the linear encoding of DISTAa
B (HLISTcol

Aa
B ), can be computed in O(n) time and

space complexity.

5.3 DISTPrepend on the Linear Encoding of DIST

Given HLISTcol
A
B and a single character a, in this section we will show how to compute the

DISTPrepend operation, i.e., compute the linear encoding of DIST aA
B (HLISTcol

aA
B ), where aA

is the concatenation of the character a to the beginning of sequence A. Note that this simple
technique is new.

Lets examine DISTA
B ’s rows and columns. Column j of this DIST represents all the paths

which originate in vertices 0 to j of the first row ℓ (note that we say ”row ℓ” instead of ”row 0” for
the sake of notation clarity) of the DP graph for A versus B, and ending at vertex (m, j) of the
graph (see Figure 8). Respectively, row i of DISTA

B represents all the paths originating in vertex
(ℓ, i) and ending in vertices i to n of row m of the graph. Reversing the directed edges in the grid
graph will enable us to view row i in DISTA

B as the paths ending (instead of originating) at vertex
(ℓ, i) in the DP graph, while the values (the weights of the paths) remain the same. Therefore we
can consider the paths as going now in the opposite direction: from right to left, bottom-up.

Appending a single character to the beginning of sequence A is equivalent to appending a new
row (row ℓ − 1 in Figure 8) to the top of the DP graph. In this case, in a symmetric manner to
the way we viewed the Append operation in Section 5.2, every vertex (ℓ, i), which is the end-point
of n − i paths that originate the last row m of the DP graph, is represented as row i in DISTA

B .
Therefore, extending the DP graph by appending a row to its top end, requires extending some
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Figure 8: The DP graph for computing the similarity between A = BCBCBDC and B =
BCBADBDCD. The highlighted edges demonstrate the extension of the suffix ”BCBCBDDC” of
A by prepending the character ’B’.

representation of DISTA
B by the differences between its rows instead of its columns. These are

defined, symmetrically to the Definitions of section 5.2, asHDIFFrow
A
B = DISTA

B [i, j]−DISTA
B [i+

1, j] and HLISTrow
A
B . Given HLISTrow

A
B, HLISTrow

aA
B could be computed in O(n) time by using

a similar, reversed variant of the algorithm described in section 5.2.
Thus, what is left to show in order to compute DISTPrepend in O(n) time and space complex-

ity, is how to compute HLISTrow
A
B from a given HLISTcol

A
B in O(n) time and space complexity.

We will next show a simple technique which does that. The same technique can be applied in the
opposite direction as well, computingHLISTcol

A
B from a given HLISTrow

A
B , a fact which will enable

us to prepend and append characters to DIST alternately. The next claim can be demonstrated
by comparing Figures 6 and 9.

Claim 3 Given any ordered pair (j, i) of HLISTcol
A
B, the reversed ordered pair (i, j) will be listed

in HLISTrow
A
B (i.e., index j will appear in one of the ψ ”steps” at row i of HLISTrow

A
B).

Proof: The existence of such ordered pair (j, i) in HLISTcol
A
B implies the following ’local’ structure

in the full DIST : DIST [i, j] −DIST [i, j − 1] 6= DIST [i+ 1, j] −DIST [i+ 1, j − 1]. This simple
algebraic formula implies that DIST [i, j] −DIST [i+ 1, j] 6= DIST [i, j − 1] −DIST [i+ 1, j − 1],
which immediately indicates the existence of the ordered pair (i, j) in HLISTrow

A
B (i.e., index j

will appear in row i of HLISTrow
A
B).

Using the above claim, HLISTrow
A
B can easily be computed from HLISTcol

A
B in O(n) time and

space via a single scan of its values.

Time and Space Complexity Analysis of the DISTPrepend Operation: Given string B of
size O(n), a character a, a discrete scoring table, and the linear encoding of DISTA

B (HLISTcol
A
B)

for a string A, the linear encoding of DIST aA
B (HLISTcol

aA
B ), can be computed as follows. First,

HLISTrow
A
B is computed in O(n) time and space complexity from HLISTcol

A
B, as shown in this sec-

tion. Then, an O(n) ”reversed” version of the DISTAppend described in Subsection 5.2 is applied
to HLISTrow

A
B, yielding HLISTrow

aA
B . HLISTcol

aA
B can then be computed from HLISTrow

aA
B in
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This Figure continues the example of Figure 3.

O(n) time, by a method which is symmetric to the one shown in this section. This yields a total
of O(n) time and space complexity for computing HLISTcol

aA
B from HLISTcol

A
B.
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