
LCS Approximation via Embedding into Local
Non-Repetitive Strings

Gad M. Landau1,5,?, Avivit Levy2,3, and Ilan Newman1

1 Department of Computer Science, University of Haifa, Haifa 31905, Israel. E-mail:
{landau,ilan}@cs.haifa.ac.il

2 Department of Software Engineering, Shenkar College, 12 Anna Frank,
Ramat-Gan, Israel. E-mail: avivitlevy@shenkar.ac.il

3 CRI, University of Haifa, Mount Carmel, Haifa 31905, Israel.
4 Department of Computer and Information Science, Polytechnic Institute of NYU,

Six MetroTech Center, Brooklyn, NY 11201-3840

Abstract. A classical measure of similarity between strings is the length
of the longest common subsequence(LCS) between the two given strings.
The search for efficient algorithms for finding the LCS has been going
on for more than three decades. To date, all known algorithms may take
quadratic time (shaved by logarithmic factors) to find large LCS. In this
paper the problem of approximating LCS is studied, while focusing on
the hard inputs for this problem, namely, approximating LCS of near-
linear size in strings over relatively large alphabet (of size at least nε

for some constant ε > 0, where n is the length of the string). We show
that, any given string over relatively large alphabet can be embedded
into a local non-repetitive string. This embedding has a negligible ad-
ditive distortion for strings that are not too dissimilar in terms of the
edit distance. We also show that LCS can be efficiently approximated in
locally-non-repetitive strings.

1 Introduction

Measuring similarity plays an important role in data analysis. As strings are a
common data representation, similarity measures defined on strings are widely
used. A classical measure of similarity between strings is the length of the longest
common subsequence (LCS) between the two given strings. The search for ef-
ficient algorithms for finding the LCS has been going on for more than three
decades. The classical dynamic programming algorithm takes quadratic time [21,
22] and this complexity matches the lower bound in comparison model [1]. Many
other algorithms have been suggested over the years [12, 13, 19, 4, 5, 16, 18, 9]
(see also [11]). However, the state of the art is still not satisfying. To date,
all known algorithms may take near-quadratic time to find large LCS. None of
the known algorithms can find LCS of linear size in time polynomially smaller
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than quadratic. Analysis of large data bases storing very long strings cannot
settle with such methods.

A possible approach is to trade accuracy for speed and employ faster algo-
rithms that approximate the LCS. In fact, for measuring similarity a sufficiently
long common subsequence as an evidence of similarity might be as good as the
LCS itself. Thus, a good approximation of the LCS that can be found fast is of
great importance.

Approximating LCS in Strings Over Small Alphabet. Strings over small
alphabet have large LCS. Thus, LCS in strings over small alphabet can be triv-
ially approximated to a factor of 1/|Σ|, where Σ is the alphabet, by just picking
the letter that has the highest frequency. If the alphabet size is o(nε) for every
constant ε > 0, this trivial algorithm achieves sub-polynomial approximation
ratio, which is roughly the best known approximation ratio for the closely re-
lated edit distance [20]5. However, when the alphabet of the strings gets larger
this approximation becomes useless. Therefore, our goal is to design efficient
algorithms approximating LCS over strings with relatively large alphabet, i.e.,
alphabet of size at least nε.

Sparse vs. Large LCS. Relatively large alphabet may reduce the number of
matching symbols between the two given strings. In such cases the sparse LCS
techniques of Hunt-Szymanski can be used to give efficient exact solutions that
depend on the matchings set size [13, 5]. However, the input strings may have
a quadratic size of matching pairs of symbols even if the alphabet is relatively
large. In these cases, these sparse LCS algorithms take quadratic time. Other
methods for finding sparse LCS quickly are known. Specifically, LCS of size
O(nα), where n is the string size and 0 < α < 1 is a constant, can be found by
algorithms that take time O(n1+α) [12, 16, 18]. However, these algorithms take
quadratic time for finding LCS of linear size. Thus, the focus of this paper is on
efficiently approximating large LCS, typically, LCS of near linear size, in strings
over relatively large alphabet.

Related Work. LCS is closely related to the edit distance (ED). The edit dis-
tance is the number of insertions, deletions, and substitutions needed to trans-
form one string into the other. This distance is of key importance in several
fields such as text processing, Web search and computational biology, and con-
sequently computational problems involving ED have been extensively studied.
The ED is the dissimilarity measure corresponding to the LCS similarity mea-
sure. The ED can also be computed by a quadratic time dynamic programming
procedure. In fact, using the methods of Landau and Vishkin [17], ED can be
computed in time max{k2, n}, where k is the bound on ED and n the length

5 [20] show an embedding into `1, which is stronger than an approximation algorithm.
However, the time complexity of the embedding is high. It can, therefore, be used
for various tasks such as sketching and nearest neighbor search, but not as an edit-
distance approximation algorithm.



of the strings. Thus, a fast algorithm can find if the ED is small or not. Ap-
proximating ED efficiently has proved to be quite challenging [3]. Currently, the
best quasi-linear time algorithm due to Batu, Ergün and Sahinalp [7], achieves
approximation factor n1/3+o(1), where n is the length of the strings.

Results. In this paper it is shown that large LCS can be efficiently approx-
imated in strings with relatively large alphabet if the ED is not too large. In
particular, LCS of linear size can be approximated to a constant factor, if the
edit distance is o(n|Σ|

t ln t ), where |Σ| is the alphabet size and t is the period size
(t = n in aperiodic strings). It is important to note, that our algorithm does not
need to verify that the requirement on the ED is indeed fulfilled. A large LCS
detected by the algorithm is an evidence of similarity. For alphabet of size at
least nε, our algorithm complexity is always O(n2−ε log log n) but can be much
better (for some parameters it is O(n log log n)). Our contribution to the com-
putation of large common subsequences is, therefore, a strictly sub-quadratic
time algorithm (i.e., of complexity O(n2−ε) for some constant ε) which can find
common subsequences of linear (and near linear) size that cannot be detected
efficiently by the existing tools.

The approximation ratio of our algorithm depends on the size of the LCS. It is
better as the LCS is longer. Table 1 demonstrates the worst case performance of
our algorithm for LCS of different sizes. The complexity guarantees presented in
the table are a result of combining the theorems proved in this paper (Theorem 1
and Corollary 2 combined with Theorems 2 and 3 and Theorem 5). We stress
that these are worst case performances also in the sense that they demonstrate
the worst case parameters for given LCS size, alphabet size and period length,
but the true parameters for a given pair of strings can be much better. The
complexity of our method is superior compared to sparse LCS techniques when
LCS of near-linear size is concerned, as the first 6 lines of the table indicate.
Moreover, even for strictly sub-quadratic size LCS, our method gives a faster
approximation algorithm if the alphabet is large enough. As lines 7 and 9 of
the table indicate, for LCS of size Θ(n3/4) we get a faster algorithm for every
ε > 1/2. Line 8 of the table represents a case where our technique should not
be used due to the requirement on the edit distance. In such a case, sparse LCS
techniques should be preferred.

Our method works well for strings A and B where the ED is o(LCS(A,B) ·
|Σ|
t ln t ), where Σ is the alphabet size and t depends on the periodicity of the input
strings (can be of size n in aperiodic strings). The effect of these parameters is
also demonstrated in Table 1. Note that, if the edit distance is Θ(nε), the exact
LCS can be found in time max{n2ε, n}, by finding the edit positions and taking
the complement positions. However, for edit distance that is Ω(n/ logc n), for
some c > 1, our algorithm is strictly sub-polynomial, while computing the ED
yields a near-quadratic time algorithm. Moreover, even for edit distance that is
Θ(nε), our algorithm complexity is always superior when ε > 2/3 and can be
superior also for smaller ε, depending on the parameters of the strings.



Table 1. Worst Case Performance of Our Algorithm: Examples

LCS Alphabet Period ED Approximation Complexity
Size Length Ratio

Θ(n) Θ(n) Θ(n) o(n/ ln n) Θ(1) O(n log n)
Θ(n) Θ(nε) Θ(n) o(nε/ ln n) Θ(1) O(n2−ε log log n)
Θ(n) Θ(nε) Θ(nε) o(n/ ln n) Θ(1) O(n2−ε log log n)

Θ(n/ logc n) Θ(n) Θ(n) o(n/ logc+1 n) Θ(1/ logc n) O(n log n)
Θ(n/ logc n) Θ(nε) Θ(n) o(nε/ logc+1 n) Θ(1/ logc n) O(n2−ε log log n)
Θ(n/ logc n) Θ(nε) Θ(nε) o(n/ logc+1 n) Θ(1/ logc n) O(n2−ε log log n)

Θ(n3/4) Θ(n) Θ(n) o(n3/4// ln n) Θ(1/n1/4) O(n log n)

Θ(n3/4) Θ(nε) Θ(n) o(nε−1/4/ ln n) Θ(1/n1/4) O(n2−ε log log n)

Θ(n3/4) Θ(nε) Θ(nε) o(n3/4/ ln n) Θ(1/n1/4) O(n2−ε log log n)

Techniques. We exploit low distortion embedding of strings over relatively
large alphabet into local non-repetitive strings. Local non-repetitiveness has been
used for approximating ED [6] and for embedding ED [8]. In [6] and [8], efficient
algorithms for input strings that are non-repetitive or locally-non-repetitive with
good parameters are designed. Here, we show that any string over relatively
large alphabet can be embedded into a locally non-repetitive string. We prove
that this embedding has an additive negligible (contraction) distortion, if ED =
o(LCS(A,B) · |Σ|

t ln t ). We then show that local non-repetitiveness can be used
to significantly speed-up LCS approximation. The speed-up in the efficiency of
our algorithm depends on the local non-repetitiveness parameters of the given
strings. We show that local non-repetitiveness can be efficiently sketched so that
the best parameters for any two strings can be found by looking at a poly-
logarithmic sketch.

The paper is organized as follows. Sect. 2 presents basic definitions and prop-
erties. Sect. 3 presents the embedding of strings over relatively large alphabet into
locally-non-repetitive strings, namely, (1,n/c)-non-repetitive strings, for some c.
In Sect. 4 we present approximation algorithms for this special case of (1,n/c)-
non-repetitive strings, where c is a parameter. Finally, in Sect. 5 we show that
the best parameters for a given pair of strings can be quickly found by looking at
local non-repetitiveness sketches (LNR-sketches) of the strings. It is shown that
our LNR-sketch size matches the lower bound, and a lower bound on the space
needed by a LNR-sketching algorithm in the streaming model is also given.

2 Preliminaries

In this section we give the basic definitions and properties used in this paper.

Problem Definition. Let A and B be two strings of length n over alphabet
Σ. The longest common subsequence problem is to find the longest subsequence,
denoted by LCS(A,B), appearing in both A and B. We will abuse notation



throughout the paper by letting LCS(A,B) denote both the longest common
subsequence and its length. It will be clear from the context which is referred
to. The well-known Property 1 specifies the relation between the LCS and ED.

Property 1. Let A, B be two n-long strings, then

n− LCS(A,B) ≤ ED(A,B) ≤ 2 · (n− LCS(A,B)).

Definition 1. (LCS preserving embedding) Let X and Y be two classes
of n-long strings. A LCS preserving embedding of X into Y with distortion
ρ, is an injective mapping f : X 7→ Y, such that for every pair A,B ∈ X,
ρ · LCS(A,B) ≤ LCS(f(A), f(B)) ≤ LCS(A,B), where ρ ≤ 1.

Note that we require the embedding to be non-expanding. It is only allowed to
have a bounded contraction factor.

Periodicity and Non-Repetitiveness. Periodicity and non-repetitiveness are
two basic properties of a given string that, as we formally state in the sequel,
are closely related.

Definition 2. Let S be a string of length n. S is called periodic if S = P iP ′,
for some 2 ≤ i ≤ n, where P is a prefix of S such that |P | ≤ n/2, and P ′ is
a prefix of P . The smallest such prefix P is called the period of S. If S is not
periodic it is called aperiodic.

Definition 3. (A t-substring). Let S be a string of length n. The t-substring
of S starting at position i, i ≤ n− t + 1, is the string S[i]S[i + 1] . . . S[i + t− 1].

Definition 4. (Locally non-repetitive strings). A string S is called (t, w)-
non-repetitive if every w successive t-substrings in S are distinct, i.e., for each
interval {i, . . . , i + w− 1}, the w substrings of length t that start in this interval
are distinct. If t = 1 then S is simply called locally-non-repetitive.

In the next definition of non-repetitiveness it is required that t-substrings in
the range are not only distinct, but also different enough with respect to an
additional parameter d.

Definition 5. (Locally strong non-repetitiveness). A string S is called
(t, w, d)-non-repetitive if for each interval {i, . . . , i + w − 1} every pair of t-
substrings si, sj in S starting in this interval have H(si, sj) ≥ d, where H(si, sj)
is the hamming distance between si and sj (i.e. the number of indices in which
si differ from sj).

Remark. Throughout the paper we refer to a wrap-around of the given string S,
i.e. indices are taken modulo n, the length of the string. Thus, all t-substrings
are well-defined for every t. If S is periodic then the wrap-around is defined as
to continue the period from the point it is cut in the string S.

Property 2. Let S be a (t, w)-non-repetitive string, then:



1. S is a (t′, w)-non-repetitive string, for every t′ > t.
2. S is a (t, w′)-non-repetitive string, for every w′ < w.

Property 3. Let S be a string of length n, then:

1. If S is a periodic string with period length p then S is a (p, p)-non-repetitive
string.

2. If S is aperiodic then S is a (n, w)-non-repetitive string, where n/2 ≤ w ≤ n.

Lemma 1. Let S be a n-long string over alphabet Σ with period length p,
then S is a (p, |Σ|/2, |Σ|/2)-non-repetitive string. If S is aperiodic then S is
a (n, |Σ|/2, |Σ|/2)-non-repetitive string.

Note that, Lemma 1 gives a guarantee for worst case parameters of locally
strong non-repetitiveness. For a given pair of strings, the best parameters, i.e.,
the larger parameters w and d for which the t-substrings are strongly non-
repetitive, can be much better. For example, consider a n-long string over al-
phabet nε, with period p > nε. The lemma only assures that it is (p, nε/2, nε/2)-
non-repetitive, however, it can actually be (p, p, d)-non-repetitive, for d ≥ nε/2.

3 Embedding Strings Over Relatively Large Alphabet
into Local Non-Repetitive Strings

By Lemma 1, relatively large alphabet assures the existence of a large enough
parameter w and a parameter t such that the t-substrings are locally strong
non-repetitive, for a large enough parameter d. We will exploit this to define an
embedding into (1,n/c)-non-repetitive strings, for which the solutions of Sect. 4
are applicable. This embedding has only an additive negligible distortion, if
the ED is asymptotically negligible compared to the LCS size and the ratio
between the alphabet size and the periodicity parameter of the string. Thus, it
enables approximating large LCS in general strings over relatively large alphabet
with effectively the same approximation ratio as the algorithms for (1,n/c)-non-
repetitive strings, provided that the ED is not large. For clarity of exposition, a
simple idea of an embedding that may have an unbearable distortion is described
first. After analyzing its weaknesses it is shown how these can be overcome by
defining our embedding. Finally, we discuss the algorithmic applications of this
embedding.

A Naive Embedding. The idea is to exploit Property 3, namely, that every
n long string S over alphabet Σ is a (t, w)-non-repetitive string for some |Σ| ≤
t ≤ n, |Σ| ≤ w ≤ n. Each new t-substring defines a new symbol (overall, a linear
number of new symbols). This embedding yields a (1,n/c)-non-repetitive string
where c ≤ 2n

|Σ| , and since |Σ| is relatively large the algorithms of Sect. 4 are
efficient.

We now analyze the distortion of this embedding. Given the original n-long
strings A and B, denote by A′, B′ the strings after employing the embedding.



Clearly, LCS(A′, B′) ≤ LCS(A,B) because positions with different symbols
remain different. Also, each of the n−LCS(A,B) symbols that do not participate
in LCS(A,B) affects only t substrings, thus,

LCS(A′, B′) ≥ n− t(n− LCS(A,B)) = LCS(A,B)− (t− 1)(n− LCS(A,B)).

By Property 1 we get

LCS(A′, B′) ≥ LCS(A,B)− t− 1
2

· ED(A,B).

Thus, this embedding has an additive distortion affected both by t and ED(A,B),
which can both be Ω(n).

The Embedding f. Fix a random binary vector v of length t − 1, where each
coordinate is 1 with probability 2d ln t

|Σ| for an arbitrarily chosen constant d > 2,
and 0 otherwise. Note that v is well defined for relatively large alphabet, since
for |Σ| ≥ nε and t ≤ n, 2d ln t

|Σ| = o(1). Given an n-long string S over alphabet Σ

define f(S) as follows. Each location i is given a symbol σ(i) which identifies the
string Si, Si1 , . . . , Sik

, where Si1 , . . . , Sik
are the locations in the (t−1)-substring

starting at position i + 1 in S for which the corresponding coordinates in v are
1. Note, that there is no assumption whatsoever on any property of the original
string S. Lemma 2 and Corollary 1 give the local non-repetitiveness guarantee
on the string produced by the embedding f . Lemma 3 bounds the distortion of
the embedding f .

Lemma 2. Let S be a n-long string over alphabet Σ then, there exists a pa-
rameter t, |Σ| ≤ t ≤ n such that f(S) is (1, |Σ|/2)-non-repetitive string with
probability at least 1− 1/td−2.

Proof. By Lemma 1, there exists a t, |Σ| ≤ t ≤ n, such that S is a (t, |Σ|/2, |Σ|/2)-
non-repetitive string. Let i, j be any indices in S such that |i − j| < |Σ|/2,
and let si be the t-substring starting at position i in S. By Lemma 1 we have
H(si, sj) ≥ |Σ|/2. We first claim that

Prob[H(f(si), f(sj)) = 0] ≤ 1/td.

This is because Prob[H(f(si), f(sj)) = 0] = (1− 2d ln t
|Σ| )|Σ|/2, if none of the |Σ|/2

coordinates in which si and sj differ are chosen. Thus, by the union bound

Prob[∃i, j : H(f(si), f(sj)) = 0] ≤ 1/td−2.

The lemma follows.

The resulting string f(S) can be checked if it is indeed a locally non-repetitive
string in linear time. If it is not, the choice of v can be repeated until the result
is a locally non-repetitive string. The expected number of vectors v that should
be chosen is less than 2. Corollary 1 follows.



Corollary 1. Let S be a string over alphabet Σ then, there exists a deterministic
embedding f such that f(S) is (1, |Σ|/2)-non-repetitive string.

Lemma 3. Let A, B be n-long strings over alphabet Σ, then

LCS(A,B) ≥ LCS(f(A), f(B)) ≥ LCS(A,B)− d(t− 1) ln t

|Σ|
· ED(A,B)

Proof. First note that LCS(A,B) ≥ LCS(f(A), f(B)), because positions with
different symbols in A and B remain different in f(A) and f(B). We now bound
the contraction factor of f . Since by the definition of the randomized embedding
f the first symbol of the i-th t-substring is always taken and the rest i+1, . . . , i+
t − 1 locations of the i-th t-substring are taken with probability 2d ln t

|Σ| for a
constant d > 2, we have:

LCS(f(A), f(B)) ≥ n− (1 +
2(t− 1)d ln t

|Σ|
)(n− LCS(A,B))

= LCS(A,B)− 2(t− 1)d ln t

|Σ|
· (n− LCS(A,B))

≥ LCS(A,B)− d(t− 1) ln t

|Σ|
· ED(A,B),

where the last inequality is due to Property 1.

Let RL(n, Σ) be the class of n-long strings over alphabet Σ, |Σ| ≥ nε, for
some ε > 0. Let LNR(n) be the class of locally-non-repetitive n-long strings.
Theorem 1 follows.

Theorem 1. There exists an embedding f : RL(n, Σ) 7→ LNR(n) such that
for every A,B ∈ RL(n, Σ), there exists a parameter t, |Σ| ≤ t ≤ n, such
that f(A), f(B) ∈ LNR(n) and if ED(A,B) = o(LCS(A,B) · |Σ|

t ln t ) then f has
distortion 1− o(1).

Implementation and Algorithmic Application. The discussion of efficient
algorithms for computing the embedding f is postponed to Sect. 5, since the
algorithms we present are also sketching algorithms, and therefore, require the
relevant study from this point of view. Denote by γ(n), the time for computing f .
In Sect. 5 it is shown that γ(n) = Õ(n). Corollary 2 is the algorithmic application
of the embedding f .

Corollary 2. Let A,B be two n-long strings over alphabet Σ. Then, there exists
a parameter t, |Σ| ≤ t ≤ n, such that if ED(A,B) = o(LCS(A,B) · |Σ|

t ln t ), any
algorithm approximating LCS(f(A), f(B)) to a factor of α in O(β(n)) steps,
can be used to approximate LCS(A,B) to a factor of α−o(1) in O(β(n))+Õ(n)
steps.



4 Approximating LCS in (1,n/c)-Non-Repetitive Strings

In this section we present efficient algorithms to approximate the LCS if both
strings are (1,n/c)-non-repetitive strings. The algorithms framework is based on
the observation that a (1,n/c)-non-repetitive string for small values of parameter
c is sufficiently close to being a permutation string (i.e., a string with distinct
characters). Finding the LCS in n-long permutation strings is actually finding the
Longest Increasing Subsequence (LIS) of a string over the alphabet {1, . . . , n},
which can be done fast.

4.1 Θ(1/c)-Approximation Algorithm

The algorithm first divides both input strings A and B into c blocks of size
O(n/c). Since A and B are (1,n/c)-non-repetitive, each of their blocks is a per-
mutation string. Therefore, the LCS between any block of A and any block of B
can be found fast using the LIS algorithm. Our algorithm exploits this fact by
finding the LIS between all c2 pairs of block of A and block of B, and chooses
the pair with the best score. A detailed description of the algorithm is given in
Fig. 1. Lemma 5 and Corollary 3 assure the approximation ratio of this algo-
rithm. Lemma 4 gives its complexity guarantee. Theorem 2 follows.

Algorithm Approx1LCS
Input: Two strings A, B of length n, a parameter c
1 divide A, B into c blocks of size O(n/c).
2 for each pair of blocks Ai, Bj do
3 transform into blocks A′

i, B′
j containing only the joint alphabet symbols.

4 `i,j ← LIS(A′
i, B

′
j)

5 Lalg ← max `i,j

Output:
6 Lalg

Fig. 1. Θ(1/c)-Approximation Algorithm for LCS in (1,n/c)-Non-Repetitive Strings.

Lemma 4. Algorithm Approx1LCS runs in O(cn log log(n/c) + c2) steps.

Proof. It is a well-known fact that LIS can be computed in (n log log n) time
for n-length strings. Algorithm Approx1LCS computes c2 times LIS on strings
of size n/c. Therefore, the total time for steps 2-4 is O(cn log log(n/c)). Step 5
takes another c2 steps. The lemma then follows.

Lemma 5. Let A and B be two strings of length n, then there exists a pair of
blocks Ai, Bj such that li,j ≥ Θ(1/c) · LCS(A,B).



Corollary 3. The approximation ratio of algorithm Approx1LCS is Θ(1/c).

Theorem 2. Let A,B be two (1,n/c)-non-repetitive strings then LCS(A,B) can
be approximated to a factor of Θ(1/c) in O(c · n log log(n/c) + c2) steps.

4.2 Θ(k/c)-Approximation Algorithm

The Θ(1/c) approximation ratio of algorithm ApproxLCS1 is quite well if c
is constant. However, as c grows it gets worse. In fact, for c =

√
n it gives

nothing but a trivial approximation. We thus give another algorithm with the
same framework as algorithm ApproxLCS1, in which additional work is done
(but asymptotically takes the same time) in order to improve the approximation
ratio. This new algorithm does not choose only one pair of blocks with best score,
but rather gather a legal sequence of pairs of blocks with total best score. A legal
sequence does not contain crossing pairs. Clearly, any legal sequence defines a
common subsequence of A and B. Fortunately, such a legal sequence of pairs
can be found by a dynamic programming procedure in O(c2) time. We refer to
this procedure by MaximumWeightLegalSequence. A detailed description of
the algorithm is given in Fig. 2. Lemma 7 assures the approximation ratio of
this algorithm. Lemma 6 gives its complexity guarantee. Theorem 3 follows.

Algorithm Approx2LCS
Input: Two strings A, B of length n, a parameter c
1 divide A, B into c blocks of size O(n/c).
2 for each pair of blocks Ai, Bj do
3 transform into blocks A′

i, B′
j containing only the joint alphabet symbols.

4 `i,j ← LIS(A′
i, B

′
j)

5 construct a weighted bipartite graph G =< V 1 ∪ V 2, E > with weight function
W : E → N , where:
V 1 = {i | Ai is a block in A}
V 2 = {j | Bj is a block in B}
E = {(i, j) | i ∈ V 1 and j ∈ V 2}
W (i, j) = `i,j

6 Lalg ←MaximumWeightLegalSequence(G, W )
Output:
7 Lalg

Fig. 2. Θ(k/c)-Approximation Algorithm for LCS ≥ kn/c in (1,n/c)-Non-Repetitive
Strings.

Lemma 6. Algorithm Approx2LCS runs in O(cn log log(n/c) + c2) steps.

Lemma 7. Algorithm Approx2LCS approximates LCS(A,B) ≥ kn/c to a fac-
tor of Θ(k/c).



Theorem 3. Let A,B be two (1,n/c)-non-repetitive strings then LCS(A,B) ≥
kn/c can be approximated to a factor of Θ(k/c) in O(c ·n log log(n/c)+c2) steps.

5 Sketching Local Non-Repetitiveness

Since the performance of our method for approximating LCS rely on the extent
of local non-repetitiveness parameters of the given strings, it is natural to ask
how quickly can these parameters be found. The almost linear time algorithms
presented in this section do not require any pre-computed information on the
strings (e.g., the periodicity), and approximate the best parameters to a factor
of 2. For our method of approximating the LCS of two given strings this is
sufficient. However, the strength of these algorithms lies in the fact that they are
sketching algorithms, i.e., they are only used once for a given string and produce
a small (poly-logarithmic) size information from which the best parameters can
be deduced. This use is valuable for data-bases applications, in which a query
string is typically compared with many stored strings to find a similar (or the
most similar) stored string. Short one-time pre-computed sketches of the stored
strings save many repeated linear time scans, and thus speed-up computations.

In this section, we show that the best parameters t and w for a given pair of
strings can be found by looking at O(log2 n) size independently pre-computed
local non-repetitiveness sketches (LNR-sketch) of the strings. The LNR-sketch
gives the exact parameter w for which the best t parameter is approximated to
a factor of 2. The implementation of the embedding f from Sect. 3 using the
construction of strong local non-repetitiveness sketches (SLNR-sketch) is then
described. We also show that our LNR-sketch size matches the lower bound.
Finally, a lower bound on the space needed by a LNR-sketching algorithm in the
streaming model is also given.

5.1 The LNR-Sketching Algorithms

If both t and w are given in advance, a trivial sketch of one bit can be built.
Simply, keep the one bit answer of the check if S is a (t, w)-non-repetitive string.
This check can obviously be done in time O(tn), and therefore the sketching
algorithm is efficient (i.e., has a polynomial time complexity). In the sequel, we
assume that the t and w parameters are unknown when the sketching is done,
which is the interesting case. We explain the algorithms for a given t parameter,
and then use them for the case that t is not given.

Sketching with a Given t. The sketching algorithms are based on finding the
minimum distance between any repeating t-substrings. This distance is returned
as the w parameter. The correctness of this returned value is ensured by Prop-
erty 2. The number of bits needed to store this value is O(log n). Finding the
minimum distance between any repeating t-substrings can be found either by
a O(n log2 t) time deterministic algorithm or by a O(n) time randomized al-
gorithm. The deterministic algorithm uses a renaming process as in the string



matching algorithm of Karp-Miller-Rosenberg [14]. It is usually assumed, for
convenience, that t is a power of 2. This assumption can be removed by using
standard splitting techniques, while adding only a O(log t) factor to the O(n log t)
complexity. The randomized algorithm uses the Rabin-Karp string matching al-
gorithm [15] to produce a distinct polynomial representing each t-substring with
high probability. In both the deterministic and the randomized algorithm after
the ”names” representing the n t-substrings are determined all is needed is a
linear scan to find the minimum distance between repeating ”names”.

Sketching with Unknown t. In order to have the w for every t, we find the exact
parameter w for every t = 2i, 0 ≤ i ≤ log n. For each such t we use the algorithms
described above for a given t. Since we only do that for O(log n) values of t, and
for each the sketch size is O(log n) we get a total O(log2 n) sketch size. For each
value t , the w parameter is the one stored for the closest power of two that is
less than or equal to t. The correctness of this value is ensured by Property 2.

Theorem 4. Let A, B be n long strings, then, there exist (almost) linear al-
gorithms giving LNR-sketch of size O(log2 n) enabling finding the maximum w
and approximating to a factor of 2 the minimum t for which A and B are both
(t, w)-non-repetitive.

5.2 Sketching Strong Local Non-Repetitiveness

The embedding from strings over relatively large alphabet into (1,n/c)-non-
repetitive strings described in Sect. 3 requires local non-repetitiveness under
the choices of the randomized vectors v, which is not detected by the algorithms
described in Sect. 5.1. Nevertheless, we show that the ideas of the sketching al-
gorithms described in Sect. 5.1 can be used also for this case. We call it strong
local non-repetitiveness sketch (SLNR-sketch)6. By Corollary 1, a constant num-
ber of vectors v are enough so that two given strings can be compared using the
same vector v. Therefore, in the sequel we ignore the fact that the algorithm is
repeated for each choice of v and keep each of the resulting sketches7.

To this end, the substrings as defined by the binary vector v (defined in
Sect. 3), are considered. Observe that both the deterministic and randomized
sketching algorithms described in Sect. 5.1 work as well for non-contiguous
strings. Such non-standard use of the KMR algorithm also appears in [2]. Note
that the binary vector v depends only on Σ and t and is independent of S. Thus,
the definition of the vector can be done in the sketching time. Also, note that in
order to be able to compare any two strings (with possibly different size of joint
alphabet and different t parameter) we must define a v vector for each possible
pair. To cover all possible values of Σ, for each t a power of two, O(log2 n) vec-
tors v (for each Σ a power of two and t a power of two) are computed. Once
6 Should not be confused with the local strong non-repetitiveness.
7 A data-base application requires another logarithmic factor in the size of the

database to assure that every pair of strings can be compared using the same vector
v.



a specific vector v is defined, the sketch for non-repetitiveness can be done as
explained in Sect. 5.1. This would take O(n log t) because here t is a power of 2.
Since O(log2 n) sketches of size O(log n) are used, Theorem 5 follows.

Theorem 5. (The embedding implementation) Let A, B be n long strings,
then, there exist (almost) linear algorithms giving SLNR-sketch of size O(log3 n)
enabling finding the maximum w and approximating to a factor of 2 the minimum
t for which f(A) and f(B) are both (1, w)-non-repetitive.

5.3 Lower Bound on LNR-Sketch Size

Note that the w parameter as a function of t is a nondecreasing monotone
function that take values on the range {1, . . . , n}. We show a feasible set of
monotone sequences, i.e., monotone sequences that represent w as a function of
t for some string. The size of this set gives a lower bound on the number of bits
needed to represent a LNR-sketch.

Lemma 8. The size of the feasible set is at least ( n
log n )log n.

The next theorem is an immediate corollary of Lemma 8.

Theorem 6. Any LNR-sketch of n-length string requires Ω(log2 n) bits.

5.4 A Ω(n/ log n) Space Lower Bound of LNR-Sketching
Algorithms in Streaming Model

We now show that LNR-sketch cannot be done in streaming model. Consider
the following one-round two-party communication setting for the problem. Alice
has a string S1 of length n and Bob has a string S2 of length n. Alice and Bob
should decide whether there exists a t-substring in S1 repeating in S2 while Alice
may pass at most k bits to Bob. We call this setting the repeating t-substring
problem. Lemma 9 shows that k = Ω(n). Theorem 7 follows.

Lemma 9. The repeating t-substring problem requires passing Ω(n) bits.

Theorem 7. Any LNR-sketching deterministic algorithm in streaming model
requires Ω(n/ log n) space.

6 Conclusions

We show how embedding strings over relatively large alphabet into local non-
repetitive strings can be exploited for approximating LCS in strictly sub-quadratic
time. An important contribution of the paper is also conceptual in suggesting a
different point of view that make the problem algorithmically easier. Our tech-
nique works well provided that the dissimilarity in terms of the edit distance
of the given strings is not too large. It is still an open question wether LCS
can be well-approximated in strings over relatively large alphabet with large
dissimilarity.
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