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Abstract. The edit distance problem is a classical fundamental problem in computer
science in general, and in combinatorial pattern matching in particular. The standard
dynamic-programming solution for this problem computes the edit-distance between a
pair of strings of total length O(N) in O(N2) time. To this date, this quadratic upper-
bound has never been substantially improved for general strings. However, there are known
techniques for breaking this bound in case the strings are known to compress well under
a particular compression scheme. The basic idea is to first compress the strings, and then
to compute the edit distance between the compressed strings.

As it turns out, practically all known o(N2) edit-distance algorithms work, in some
sense, under the same paradigm described above. It is therefore natural to ask whether
there is a single edit-distance algorithm that works for strings which are compressed under
any compression scheme. A rephrasing of this question is to ask whether a single algorithm
can exploit the compressibility properties of strings under any compression method, even
if each string is compressed using a different compression. In this paper we set out to
answer this question by using straight-line programs. These provide a generic platform
for representing many popular compression schemes including the LZ-family, Run-Length
Encoding, Byte-Pair Encoding, and dictionary methods.

For two strings of total length N having straight-line program representations of
total size n, we present an algorithm running in O(n1.4

N
1.2) time for computing the edit-

distance of these two strings under any rational scoring function, and an O(n1.34
N

1.34)-
time algorithm for arbitrary scoring functions. This improves on a recent algorithm of
Tiskin that runs in O(nN

1.5) time, and works only for rational scoring functions.
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1. Introduction

The edit distance between two strings over a fixed alphabet Σ is the minimum cost
of transforming one string into the other via a sequence of character deletion, insertion,
and replacement operations [31]. The cost of these elementary editing operations is given
by some scoring function which induces a metric on strings over Σ. The simplest and
most common scoring function is the Levenshtein distance [16] which assigns a uniform
score of 1 for every operation. Determining the edit-distance between a pair of strings is a
fundamental problem in computer science in general, and in combinatorial pattern matching
in particular, with applications ranging from database indexing and word processing, to
bioinformatics [11].

The standard dynamic programming solution for computing the edit distance between a
pair of strings A = a1a2 · · · aN and B = b1b2 · · · bN involves filling in an (N+1)×(N+1) table
T , with T [i, j] storing the edit distance between a1a2 · · · ai and b1b2 · · · bj . The computation
is done according to the base-case rules given by T [0, 0] = 0, T [i, 0] = T [i−1, 0]+ the cost of
deleting ai, and T [0, j] = T [0, j−1]+ the cost of inserting bj, and according to the following
dynamic programming step:

T [i, j] = min











T [i − 1, j] + the cost of deleting ai

T [i, j − 1] + the cost of inserting bj

T [i − 1, j − 1] + the cost of replacing ai with bj

(1.1)

Note that as T has (N + 1)2 entries, the time-complexity of the algorithm above is O(N2).
Compression is traditionally used to efficiently store data. In this paper, we focus on

using compression to accelerate the dynamic-programming solution for the edit-distance
problem described above. The basic idea is to first compress the strings, and then com-
pute the edit distance between the compressed strings. Note that the “acceleration via
compression” approach has been successfully applied also to other classical problems on
strings. Various compression schemes, such as LZ77 [33], LZW-LZ78 [32], Huffman coding,
Byte-Pair Encoding (BPE) [27], Run-Length Encoding (RLE), were employed to accelerate
exact string matching [3, 13, 17, 20, 28], subsequence matching [9], approximate pattern
matching [2, 12, 13, 24], and more [23].

Regarding edit-distance computation, Bunke and Csirik presented a simple algorithm
for computing the edit-distance of strings that compress well under RLE [8]. This algorithm
was later improved in a sequence of papers [5, 6, 10, 19] to an algorithm running in time
O(nN), for strings of total length N that encode into run-length strings of total length
n. In [10], an algorithm with the same time complexity was given for strings that are
compressed under LZW-LZ78, where n again is the length of the compressed strings. Note
that this algorithm is also O(N2/ lg N) in the worst-case for any strings over constant-size
alphabets.

The first paper to break the quadratic time-barrier of edit-distance computation was the
seminal paper of Masek and Paterson [21], who applied the ”Four-Russians technique” to
obtain a running-time of O(N2/lg N) for any pair of strings, and of O(N2/lg2 N) assuming
a unit-cost RAM model. Their algorithm essentially exploits repetitions in the strings to
obtain the speed-up, and so in many ways it can also be viewed as compression-based. In
fact, one can say that their algorithm works on the “naive compression” that all strings over
constant-sized alphabets have. A drawback of the the Masek and Paterson algorithm is that
it can only be applied when the given scoring function is rational. That is, when all costs of
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editing operations are rational numbers. Note that this restriction is indeed a limitation in
biological applications, where PAM and evolutionary distance similarity matrices are used
for scoring [10, 21]. For this reason, the algorithm in [10] mentioned above was designed
specifically to work for arbitrary scoring functions. We mentioned also Bille and Farach-
Colton [7] who extend the Masek and Paterson algorithm to general alphabets.

There are two important things to observe from the above: First, all known techniques
for improving on the O(N2) time bound of edit-distance computation, essentially apply ac-
celeration via compression. Second, apart from RLE, LZW-LZ78, and the naive compression
of the Four-Russians technique, we do not know how to efficiently compute edit-distance
under other compression schemes. For example, no algorithm is known which substantially
improves O(N2) on strings which compress well under LZ77. Such an algorithm would be
interesting since there are various types of strings that compress much better under LZ77
than under RLE or LZW-LZ78. In light of this, and due to the practical and theoretical
importance of substantially improving on the quadratic lower bound of string edit-distance
computation, we set out to answer the following question:

“Is there a general compression-based edit-distance algorithm that can ex-
ploit the compressibility of two strings under any compression scheme?”

A key ingredient to answering this question, we believe, lies in a notion borrowed from the
world of formal languages: The notion of straight-line programs.

1.1. Straight-line programs

A straight-line program (SLP) is a context-free grammar generating exactly one string.
Moreover, only two types of productions are allowed: Xi → a where a is a unique terminal,
and Xi → XpXq with i > p, q where X1, . . . ,Xn are the grammar variables. Each variable
appears exactly once on the left hand side of a production. The string represented by a
given SLP is a unique string corresponding to the last nonterminal Xn. We define the size
of an SLP to be n, the number of variables (or productions) it has. The length of the strings
that is generated by the SLP is denoted by N . It is important to observe that many SLPs
can be exponentially smaller than the string they generate.

Example 1.1. Consider the string abaababaabaab. It could be generated by the following
SLP, also known as the Fibonacci SLP :

X1 → b
X2 → a
X3 → X2X1

X4 → X3X2

X5 → X4X3

X6 → X5X4

X7 → X6X5

Rytter [25] proved that the resulting encoding of most compression schemes including
the LZ-family, RLE, Byte-Pair Encoding, and dictionary methods, can be transformed to
straight-line programs quickly and without large expansion1. In particular, consider an

1Important exceptions of this list are statistical compressors such as Huffman or arithmetic coding, as
well as compressions that are applied after a Burrows-Wheeler transformation.
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LZ77 encoding [33] with n′ blocks for a string of length N . Rytter’s algorithm produces an
SLP-representation with size n = O(n′ log N) of the same string, in O(n) time. Moreover,
n lies within a log N factor from the size of a minimal SLP describing the same string. This
gives us an efficient logarithmic approximation of minimal SLPs, since computing the LZ77
encoding of a string can be done in linear-time. Note also that any string compressed by
the LZ78-LZW encoding can be transformed directly into a straight-line program within a
constant factor.

1.2. Our results

Due to Rytter’s results, SLPs are perfect candidates for achieving our goal of generaliz-
ing compression-based edit-distance algorithms. Indeed, a fast edit-distance algorithm for
strings that have small SLP representations, would give a fast algorithm for strings which
compress well under the compression schemes generalized by SLPs. Note that since con-
structing the strings generated by the SLPs requires linear-time in the length of the strings,
an O(N2) algorithm is available via the standard dynamic-programming formulation (1.1).
The main result of this paper gives an algorithm which beats this bound:

Theorem 1.2. Let A and B be two SLPs of total size n that respectively generate two string

A and B of total size N . Then, given A and B, one can compute the edit-distance between

A and B in O(n1.4N1.2) time for any rational scoring function.

We can remove the dependency of rational scoring schemes in Theorem 1.2, recalling
that arbitrary scoring schemes are important for biological applications. We obtain the
following secondary result for arbitrary scoring functions:

Theorem 1.3. Let A and B be two SLPs of total size n that respectively generate two string

A and B of total size N . Then, given A and B, one can compute the edit-distance between

A and B in O(n1.34N1.34) time for any arbitrary scoring function.

In the last part of the paper, we explain how the four-russians technique can also be
incorporated into our SLP edit-distance scheme. We obtain a very simple algorithm that
matches the performance of [10] in the worst-case. That is, we obtain a four-russian like
algorithm with an Ω(lg N) speed-up which can handle arbitrary scoring functions, unlike
the Masek and Paterson algorithm which works only for rational functions. We add this
algorithm to our presentation not only for its practical importance, but also to emphasize
the fact that SLPs provide a framework which allows an almost perfect generalization of
compression-based edit-distance algorithms.

1.3. Related Work

Rytter et al. [14] was the first to consider SLPs in the context of pattern matching,
and other subsequent papers also followed this line [15, 22]. In [25] and [17] Rytter and
Lifshits took this work one step further by proposing SLPs as a general framework for
dealing with pattern matching algorithms that are accelerated via compression. However,
the focus of Lifshits was on determining whether or not these problems are polynomial in n
or not. In particular, he gave an O(n3)-time algorithm to determine equality of SLPs [17],
and he established hardness for the edit distance [18], and even for the hamming distance
problems [17]. Nevertheless, Lifshits posed as an open problem the question of whether or
not there is an O(nN) edit-distance algorithm for SLPs. Here, our focus is on algorithms
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which break the quadratic O(N2) time-barrier, and therefore all algorithms with running-
times between O(nN) and O(N2) are interesting for us.

Recently, Tiskin [29] gave an O(nN1.5) algorithm for computing the longest common
subsequence between two SLPs, an algorithm which can be extended at constant-factor
cost to compute the edit-distance between the SLPs under any rational scoring function.
Observe that our algorithm for arbitrary scoring functions in Theorem 1.3 is already faster
than Tiskin’s algorithm for most values of N and n. Also, it has the advantage of being
much more simpler to implement. As for our main algorithm of Theorem 1.2, our faster
running-time is achieved also by utilizing some of the techniques used by Tiskin in a more
elaborate way.

2. The DIST Table

The central dynamic-programming tool we use in our algorithms is the DIST table, a
simple and handy data-structure which was originally introduced by Apostolico et al. [4],
and then further developed by others in [10, 26]. In the following section we briefly review
basic facts about this tool that are essential for understanding our results, following mostly
the presentation in [10]. We begin with the so-called dynamic-programming grid, a graph
representation of edit-distance computation on which DIST tables are defined.

Consider the standard dynamic programming formulation (1.1) for computing the
edit-distance between two strings A = a1a2 · · · aN and B = b1b2 · · · bN . The dynamic-

programming grid associated with this program, is an acyclic-directed graph which has a
vertex for each entry of T (see Figure 1). The vertex corresponding to T [i, j] is associ-
ated with ai and bj , and has incoming edges according to (1.1) – an edge from T [i − 1, j]
whose weight is the cost of deleting ai, an edge from T [i, j − 1] whose weight is the cost
of inserting bj, and an edge from T [i − 1, j − 1] whose weight is the cost of replacing ai

with bj. The value at the vertex corresponding to T [i, j] is the value stored in T [i, j], i.e.

the edit-distance between the length i prefix of A and the length j prefix of B. Using
the dynamic-programming grid G, we reduce the problem of computing the edit-distance
between A and B to the problem of computing the weight of the lightest path from the
upper-left corner to bottom-right corner in G.
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Figure 1: A subgraph of a Levenshtein distance dynamic program graph. On the left,
DIST [4, 4] (in bold) gives the minimum-weight path from I[4] to O[4]. On the
right, the value 9 of O[4] is computed by miniI[i] + DIST [i, 4].
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We will work with sub-grids of the dynamic-programming grid that will be referred to
as blocks. The input vertices of a block are all vertices in the first row and column of the
block, while its output vertices are all vertices in the last row and column. Together, the
input and output vertices are referred to as the boundary of the block. The substrings of
A and B associated with the block are defined in the straightforward manner according
to its first row and column. Also, for convenience purposes, we will order the input and
output vertices, with both orderings starting from the vertex in bottom-leftmost corner of
the block, and ending at the vertex in the upper-rightmost corner. The ith input vertex
and jth output vertex are the ith and jth vertices in these orderings. We next give the
definition of DIST tables, defined over blocks of G.

Definition 2.1 (DIST [4]). Let G′ be a block in G with x input vertices and x output
vertices. The DIST table corresponding to G′ is an x × x matrix, with DIST [i, j] storing
the weight of the minimum-weight path from the ith input to the jth output in G, and
otherwise ∞ if no such paths exists.

It is important to notice that the values at the output vertices of a block are completely
determined by that values at its input and its corresponding DIST table. In particular, if
I[i] and O[j] are the values at the ith input vertex and jth output vertex of a block G′ of
G, then

O[j] = min
1≤i≤x

I[i] + DIST [i, j]. (2.1)

Equation 2.1 implies not only the input-output relation of the dynamic-programming values
of a block, but also that the values at the output vertices can be computed in linear time from
the values at the input vertices. Indeed, by (2.1), the values at the output vertices of G′ are
given by the column minima of the matrix I+DIST . Furthermore, by a simple modification
of all ∞ values in I +DIST , we get what is known as a totally-monotone matrix [10]. Now,
Aggarwal et al. [1] gave a simple recursive algorithm, nicknamed SMAWK in the literature,
that computes all column minima of an x × x totally-monotone matrix by querying only
O(x) elements of the matrix. It follows that using SMAWK we can compute the output
values of G′ in O(x) time.

Let us now discuss how to efficiently construct the DIST table corresponding to a block
in G. Observe that this can be done quite easily in O(x3) time, for blocks with boundary
size O(x), by computing the standard dynamic-programming table between every prefix of
A against B and every prefix of B against A. Each of these dynamic-programming tables
contains all values of a particular row in the DIST table. In [4], Apostolico et al. show an
elegant way to reduce the time-complexity of this construction to O(x2 lg x). In the case
of rational scoring functions, the complexity can be further reduced to O(x2) as shown by
Schmidt [26].

3. Acceleration via Straight-Line Programs

In the following section we describe a generic framework for accelerating the edit dis-
tance computation of two strings which are given by their SLP representation. This frame-
work will later be used for explaining all our algorithms. We will refer throughout the paper
to this framework as the block edit-distance procedure.

Let A and B be two SLP representations of a pair of strings A and B, and for ease
of presentation assume that |A| = |B| = n and |A| = |B| = N . Recall the definition in
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Section 2 for the dynamic-programming grid corresponding to A and B. The general idea
behind the block edit-distance procedure is to partition this grid into disjoint blocks, and
then to compute the edit-distance between A and B at the cost of computing the values at
the boundary vertices of each block. This is achieved by building in advance a repository
containing all DIST tables corresponding to blocks in the partition. To efficiently construct
this repository, we show how to partition the grid in a way which induces many block repeats.
This is possible by utilizing substring repeats in A and B that are captured in A and B,
and imply block repeats in the partitioning of G. The edit-distance of A and B is then
computed by propagating the dynamic programming values at the boundary vertices of the
blocks using the DIST tables in the repository and SMAWK. Before giving a complete
description of this algorithm, we need to introduce the notion of xy-partition.

Definition 3.1 (xy-partition). An xy-partition is a partitioning of G into disjoint blocks
such that every block has boundary of size O(x), and there are O(y) blocks in each row and
column. In addition, we require each pair of substrings of A and B associated with a block
to be generated by a pair of SLP variables in A and B.

A      B        C A        B        C        A       B                        

B

B

B
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B

B

B
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3X

1X

4X

2X

3X

1X

5X

1Y

2Y

1Y

2Y

3Y

3Y

3Y

An xy-partition of an edit distance graph
for two SLPs generating the strings
“ABCABCAB” and “BBCBBBCB”. The
white blocks are the ones of the partition
and their corresponding SLP variables are
marked in bold. Notice that there are nine
blocks in the partition but only six of them
are distinct.

Figure 2: An xy-partition.

An xy-partition of G is a partition with a specific structure, but more importantly, one
where each substring is generated by a unique SLP variable of A and B. This latter require-
ment allows us to exploit the repetitions of A and B captured by their SLPs. We next give
a complete description of the block edit distance procedure. It assumes an xy-partition of
G has already been constructed. Section 4 explains how to construct such partitions.

Block Edit Distance

(1) Construct a repository with the DIST tables corresponding to each block in the
xy-partition.

(2) Fill-in the first row and column of G using the standard base-case rules.
(3) In top-to-bottom and left-to-right manner, identify the next block in the partition

of G and use its input and the repository to compute its output using (2.1).
(4) Use the outputs in order to compute the inputs of the next blocks using (1.1).
(5) The value in the bottom-rightmost cell is the edit distance of A and B.
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Apart from the repository construction in step 1, all details necessary for implementing
the block edit-distance procedure are by now clear. Indeed, steps 2 and 5 are trivial, and
step 4 is done via the standard dynamic-programming formulation of (1.1). Furthermore,
the SMAWK computation of output values of a block, given its input values plus its cor-
responding DIST table (step 3), is explained in Section 2. We next show that, as we are
working with xy-partitions where each block is associated with an SLP variable, we can
compute a repository containing all DIST necessary which is rather small.

The first crucial observation for this, is that any two blocks associated with the same
pair of substrings A′ and B′ have the same DIST table. This is immediate since any such
pair of blocks have identical edge-weights.

Observation 3.2. A pair of substrings A′, B′ uniquely identify the DIST table of a block.

Since we required each substring in the xy-partition of G to be generated by some SLP
variable, the above observation actually suggests that the number of different DIST tables
is bounded by the number of variable pairs X ∈ A and Y ∈ B:

Observation 3.3. The number of different DIST tables corresponding to any xy-partition
is O(n2).

Therefore, combining the two observations above, we know that a repository containing
a DIST tables for each SLP variable pair X ∈ A and Y ∈ B will not be too large, and that
it will contain a table corresponding to each block in our given xy-partition at hand. We
can therefore state the following lemma:

Lemma 3.4. The block edit-distance procedure runs in O(n2x2 lg x + Ny) time.

Proof. We analyze the time complexity of each step in the block edit-distance procedure
separately. Step 1 can be performed in O(n2x2 lg x) time, as we can construct every DIST
table in O(x2 lg x) time (see Section 2), and the total number of such distinct matrices is
O(n2). Step 2 can be done trivially in O(N) time. Then, step 3 takes O(x) time per block
by using the SMAWK algorithm as explained in Section 2. Step 4 also takes O(x) time per
block as it only computes the values in the O(x) vertices adjacent to the output vertices.
The total time complexity of steps 3 and 4 is thus equal to the total number of boundary
vertices in the xy-partition of G, and therefore to O(Ny). Accounting for all steps together,
this gives us the time complexity stated in the lemma.

4. Constructing an xy-partition

In this section we discuss the missing component of Section 3, namely the construction
of xy-partitions. In particular, we complete the proof of Theorem 1.3 by showing how to
efficiently construct an xy-partition where y = O(nN/x) for every x ≤ N . Together with

Lemma 3.4, this implies an O(n
4

3 N
4

3 lg
1

3 N) = O(n1.34N1.34) time algorithm for arbitrary

scoring functions by considering x = N
2

3 /(n lg N)
1

3 . In the remainder of this section we
prove the following lemma.

Lemma 4.1. For every x ≤ N there exists an xy-partition with y = O(nN/x). Moreover,

this partition can be found in O(N) time.
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The key-vertices vi and vi+1 both
generate substrings of length Θ(x),
and their least common ancestor is
ui. The white vertices “hanging”
of the vi-to-vi+1 path are the added
key-vertices. Together, they gener-
ate the substring that lies between
the substrings of vi and vi+1.

Figure 3: A closer look on the parse tree of an SLP A.

To prove the lemma, we show that for every SLP A generating a string A and every
x ≤ N , one can partition A into O(nN/x) disjoint substrings, each of length O(x), such
that every substring is generated by some variable in A. This defines a subset of variables
in both input SLPs which together defined our desired xy-partition. To partition A, we
first identify O(N/x) grammar variables in A each generating a disjoint substring of length
between x and 2x. We use these variables to partition A. We then show that the substrings
of A that are still not associated with a variable can each be generated by O(n) additional
variables. Furthermore, these O(n) variables each generate a string of length bounded by
x. We add all such variables to our partition of A for a total of O(nN/x) variables.

Consider the parse tree of A. We want to identify O(nN/x) key-vertices such that every
key-vertex generates a substring of length O(x), and A is a concatenation of substrings
generated by key-vertices. We start by marking every vertex v that generates a substring
of length greater than x as a key-vertex iff both children of v generate substrings of length
smaller than x. This gives us ℓ ≤ N/x key-vertices so far, each generating a substring of
length Θ(x) (see Figure 3). But we are still not guaranteed that these vertices cover A
entirely.

To fix this, consider the ordering v1, v2, . . . , vℓ on the current key-vertices induced by
a left-to-right postorder traversal of the parse tree. This way, vi+1 is “to the right of” vi.
If every vi generates the substring Ai then A = A′

1A1A
′
2A2 · · ·A′

ℓAℓA
′
ℓ+1, where every Ai

is of length Θ(x), and every A′
i is the “missing” substring of A that lies between Ai−1 and

Ai. We now show that every A′
i is a concatenation of substrings of length smaller than x

generated by at most O(n) vertices.
Let ui be the lowest common ancestor of vi and vi+1 and let Pi (resp. Pi+1) be the

unique path between ui and vi (resp. vi+1). For every vertex v ∈ Pi − {ui} such that
v’s left child is also in Pi mark v’s right child as a key-vertex. Similarly, for every vertex
v ∈ Pi+1 − {ui} such that v’s right child is also in Pi+1 mark v’s left child as a key-vertex.
It is easy to verify that A′

i is the concatenation of substrings generated by these newly
marked key-vertices. There are at most 2n of these key-vertices since the depth of the parse
tree is bounded by the number of different SLP variables. Moreover, they each generate a
substring of length smaller than x for the following reason. Assume for contradiction that
one of them generates a string of length greater than x. This would imply the existence of
some vertex between vi and vi+1 in the v1, v2, . . . , vℓ ordering.
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To conclude, we showed that A = A′
1A1A

′
2A2 · · ·A′

ℓAℓA
′
ℓ+1 where ℓ ≤ N/x, every Ai

is of length Θ(x) and is generated by one vertex, and every A′
i is a concatenation of O(n)

substrings each of length smaller than x and generated by one vertex. Overall, we get that
y = O(nℓ) = O(nN/x) vertices suffice to generate A for every x ≤ N . It is easy to see
that we can identify these vertices in O(N) time thus proving Lemma 4.1. By choosing

x = N
2

3 /(n lg N)
1

3 , and using the block edit distance time complexity of Lemma 3.4, this
implies an O(n1.34N1.34) time algorithm for arbitrary scoring functions.

5. Improvement for Rational Scoring Functions

In this section we show that in the case of rational scoring functions, the time complexity
of the block edit distance procedure can be reduced substantially by using a recursive
construction of the DIST tables. In particular, we complete the proof of Theorem 1.2 by
showing that in this case the repository of DIST tables can be computed in O(n2x1.5) time.
This implies an O(n1.4N1.2) time algorithm for rational scoring functions by considering
x = N0.8/n0.4 and the xy-partition with y = nN/x.

Before we describe how to compute the repository in O(n2x1.5) time, we need to in-
troduce some features that DIST tables over rational scoring functions have. The first
property, discovered by Schmidt [26], is what is known as the succinct representation prop-
erty: Any x × x DIST table can be succinctly stored using only O(x) space. This follows
from considering the vector obtained by subtracting a DIST column from the column to
its right, and observing that this vector has only a constant number of value changes. The
second property is that succinct representations allow to efficiently merge two DIST tables.
That is, if D1 and D2 are two DIST tables, one between a pair of substrings A′ and B′

and the other between A′ and B′′, then we refer to the DIST table between A′ and B′B′′

as the product of merging D1 and D2. A recent important result of Tiskin [30] shows how
to utilize the succinct representation of DIST tables in order to merge two succinct x × x
DIST tables in O(x1.5) time.

Lemma 5.1. The block edit distance algorithm runs in O(n2x1.5 + Ny) time in case the

underlying scoring function is rational.

Proof. To prove the lemma it suffices to show how to compute the repository of DIST tables
in step 1 of the block edit-distance procedure in O(n2x1.5) time, in case the underlying
scoring function is rational. We will work with succinct representations of the DIST tables
as described above. Say X → XpXq and Y → YsYt are two rules in the SLPs A and B
respectively. To compute the DIST table that corresponds to the strings generated by X
and Y , we first recursively compute the four DIST tables that correspond to the pairs
(Xp, Ys), (Xp, Yt), (Xq, Ys), and (Xq, Yt). We then merge these four tables to obtain the
DIST table that corresponds to (X,Y ). To do so we use Tiskin’s procedure to merge
(Xp, Ys) with (Xp, Yt) into (Xp, YsTt), then merge (Xq, Ys) with (Xq, Yt) into (Xq, YsTt),
and finally we merge (Xp, YsTt) and (Xq, YsTt) into (XpXq, YsTt) = (X,Y ). This recursive
procedure computes each succinct DIST table by three merge operations, each taking
O(x1.5) time and O(x) space. Since the number of different DIST tables is bounded by
O(n2), the O(n2x1.5) time for constructing the repository follows.
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To conclude, we have shown an O(n2x1.5 + Ny) time algorithm for computing the edit
distance. Using the xy-partition from Lemma 4.1 with x = N0.8/n0.4 and y = nN/x, we
get a time complexity of O(n1.4N1.2) .

6. Four-Russian Interpretation

In the previous sections we showed how SLPs can be used to speed up the edit distance
computation of strings that compress well under some compression scheme. In this section,
we conclude the presentation of our SLP framework by presenting an Ω(lg N) speed-up for
strings that do not compress well under any compression scheme. To do so, we adopt the
Four Russions approach of Masek and Paterson [21] that utilizes a naive property that every
string over a fixed alphabet has. Namely, that short enough substrings must appear many
times. However, while the Masek and Paterson algorithm can only handle rational scoring
functions, the SLP version that we propose can handle arbitrary scoring functions.

Consider a string A of length N over an alphabet Σ. The parse tree of the naive SLP
A is a complete binary tree with N leaves2. This way, for every x ≤ N we get that A is
the concatenation of O(N/x) substrings each of length Θ(x) and each can be generated by
some variable in A. This partition of A suggests an xy-partition in which y = N/x. At
first glance, this might seem better than the partition guarantee of Lemma 4.1 in which
y = nN/x. However, notice that in the naive SLP we have n ≥ N so we can not afford to
compute a repository of O(n2) DIST tables.

To overcome this problem, we choose x small enough so that |Σ|x, the number of
possible substrings of length x, is small. In particular, by taking x = 1

2
log|Σ| N we get

that the number of possible substrings of length x is bounded by |Σ|x =
√

N . This implies
an xy-partition in which x = 1

2
log|Σ| N , y = N/x, and the number of distinct blocks n′ is

O(N). Using this partition, we get that the total construction time of the DIST repository
is O(n′x2 lg x). Similar to Lemma 3.4, we get that the total running time of the block edit
distance algorithm is O(n′x2 lg x + Ny) which gives O(N2/ lg N).
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