
Permutation Pattern Discovery in Biosequences ∗

Revital Eres† Gad M. Landau‡ Laxmi Parida §

University of Haifa University of Haifa & IBM T J Watson Research Center

Polytechnic University

Abstract

Functionally related genes often appear in each others neighborhood on the genome, however
the order of the genes may not be the same. These groups or clusters of genes may have an
ancient evolutionary origin or may signify some other critical phenomenon and may also aid in
function prediction of genes. Such gene clusters also aid toward solving the problem of local
alignment of genes. Similarly, clusters of protein domains, albeit appearing in different orders
in the protein sequence, suggest common functionality in spite of being nonhomologous. In
the paper we address the problem of automatically discovering clusters of entities be it genes
or domains: we formalize the abstract problem as a discovery problem called the πpattern
problem and give an algorithm that automatically discovers the clusters of patterns in multiple
data sequences. We take a model-less approach and introduce a notation for maximal patterns
that drastically reduces the number of valid cluster patterns, without any loss of information,
We demonstrate the automatic pattern discovery tool on motifs on E Coli protein sequences.

Key Words: Design and analysis of algorithms, combinatorial algorithms on words, discovery,
data mining, clusters, patterns, motifs.

1 Introduction

Genes that appear together consistently across genomes are believed to be functionally related:
these genes in each others neighborhood often code for proteins that interact with one another
suggesting a common functional association. However, the order of the genes in the chromosomes
may not be the same. In other words, a group of genes appear in different permutations in the

∗This paper is the extended journal version of [ELP03].
†Department of Computer Science, Haifa University, Haifa 31905, Israel, phone: (972-4) 828-8376, FAX: (972-4)

824-9331; email: revitale@cslx.haifa.ac.il; partially supported by by the Israel Science Foundation grant 282/01
and by the FIRST Foundation of the Israel Academy of Science and Humanities.

‡Department of Computer Science, Haifa University, Haifa 31905, Israel, phone: (972-4) 824-0103, FAX: (972-
4) 824-9331; Department of Computer and Information Science, Polytechnic University, Six MetroTech Center,
Brooklyn, NY 11201-3840; email: landau@poly.edu; partially supported by NSF grant CCR-0104307, by the Israel
Science Foundation grant 282/01, by the FIRST Foundation of the Israel Academy of Science and Humanities, and
by IBM Faculty Partnership Award.

§Computational Biology Center, IBM TJ Watson Research Center, Yorktown Heights, New York 10598
emailparida@us.ibm.com

1

genomes [PNR+99, OFD+99, SLBH00]. For example in plants, the majority of snoRNA genes are
organized in polycistrons and transcribed as polycistronic precursor snoRNAs [BCL+01]. Also,
the olfactory receptor(OR)-gene superfamily is the largest in the mammalian genome. Several of
the human OR genes appear in cluster with ten or more members located on almost all human
chromosomes and some chromosomes contain more than one cluster [GBM+01].

As the available number of complete genome sequences of organisms grows, it becomes a fertile
ground for investigation along the direction of detecting gene clusters by comparative analysis of
the genomes. A gene G is compared with its orthologs G′ in the different organism genomes.
Even phylogenetically close species are not immune from gene shuffling, such as in Haemophilus
influenzae and Escherichia Coli [WMIG97, SMA+97]. Also, a multicistronic gene cluster sometimes
results from horizontal transfer between species [LR96] and multiple genes in a bacterial operon
fuse into a single gene encoding multi-domain protein in eukaryotic genomes [PNR+99].

If the functions of genes say G1G2 is known, the function of its corresponding ortholog clusters
G′

2G
′
1 may be predicted. Such positional correlation of genes as clusters and their corresponding

orthologs have been used to predict functions of ABC transporters [TK98] and other membrane
proteins [KK00].

The local alignment of nucleic or amino acid sequences, called the multiple sequence alignment
problem, is based on similar subsequences; however the local alignment of genomes [OFG00] is
based on detecting locally conserved gene clusters. A measure of gene similarity is used to identify
the gene orthologs. For example genes G1G2G3 may be aligned with G′

3G
′
1G

′
2: such an alignment

is never detected in subsequence alignments.

Domains are portions of the coding gene (or the translated amino acid sequences) that correspond to
a functional sub-unit of the protein. Often, these are detectable by conserved nucleic acid sequences
or amino acid sequences. The conservation helps in a relative easy detection by automatic motif
discovery tools. However, the domains may appear in a different order in the distinct genes giving
rise to distinct proteins. But, they are functionally related due to the common domains. Thus these
represent functionally coupled genes such as forming operon structures for co-expression [TCOV97,
DSHB98].

In the paper we address the problem of automatically discovering clusters of genes or domains. A
similar problem is addressed in [NGK01] that integrates data from different sources such as gene
expression data and metabolic pathways and works on a single genome at a time. Yet another
variation has been addressed as the problem of finding common intervals in multiple permuta-
tions [HS01]. In this paper, we formalize the abstract problem as a discovery problem called the
πpattern problem and give an algorithm that automatically discovers the clusters of patterns (that
appear in various permuted forms in the instances) in multiple data sequences. As there is not
enough knowledge about forming an appropriate model to filter the meaningful from the apparently
meaningless clusters, we take a model-less approach and introduce a notation for maximal patterns
that drastically reduces the number of valid cluster patterns, without any loss of information,
making it easier to study the results from an application viewpoint.

We demonstrate the automatic pattern discovery tool on motifs on E Coli protein sequences. It is
interesting to observe that permutations involving as many as eight motifs are discovered. Although
its biological significance is yet to be established, nevertheless it appears to be an interesting

2

phenomenon.

Roadmap. In the next section we formalize the problem. In the following section we introduce
our notion of maximality and its associated notation so that there is no loss of information. We next
describe the algorithm and then give some experimental results, open problems and conclusions.

2 The πPattern Problem

We begin by giving some definitions.

Let S = s1s2 . . . sn be a string of length n, and P = p1p2 . . . pm a pattern, both over alphabet
{1, ..., |Σ|}.

Definition 1 (Π(s), Π′(s)) Given a string s on alphabet Σ,

Π(s) = {α ∈ Σ | α = s[i], for some 1 ≤ i ≤ |s|} and

Π′(s) = {α(t) | α ∈ Π(s), t is the number of times that α appears in s}

For example if s = abcda, Π(s) = {a, b, c, d}. If s = abbccdac, Π′(s) = {a(2), b(2), c(3), d}. Note
that d appears only once and we ignore the annotation altogether.

Definition 2 (p-occurs) A pattern P p-occurs (permuted occurrence) in a string S at location i if:
Π′(P) = Π′(si . . . si+m−1).

Definition 3 (πpattern) Given an integer K, a Pattern P is a πpattern on S if:

• |P | > 1, we rule out the trivial single character patterns.

• P p-occurs at some k′ ≥ K distinct locations on S. Lp = {i1, i2, . . . , ik′} is the location list
of p.

For example consider K = 2, Π′(P) ={a(2), b(3), c}, and the string S = aacbbbxxabcbab. Clearly P
p-occurs at positions 1 and 9.

The Problem of Permutation Pattern (πPattern) Discovery. Given a string S and K < n,
find all πpatterns of S together with their location lists.

For example, if S = abcdbacdabacb, then P = {a, b, c} is a 4-πpattern with location list Lp =
{1, 5, 10, 11}.

The total number of πpatterns is O(n2), but is this number actually attained? Consider the
following example.

3

Example 1 Let S = abcdefghijabdcefhgij and k = 2. The πpatterns below show that their
number could be quadratic in the size of the input.

P1 = {a, b}, Lp1
= {1, 11}

P2 = {a, b, c, d}, Lp2
= {1, 11}

P3 = {a, b, c, d, e}, Lp3
= {1, 11}

P4 = {a, b, c, d, e, f}, Lp4
= {1, 11}

P5 = {a, b, c, d, e, f, g, h}, Lp5
= {1, 11}

P6 = {a, b, c, d, e, f, g, h, i}, Lp6
= {1, 11}

P7 = {a, b, c, d, e, f, g, h, i, j}, Lp7
= {1, 11}

P8 = {b, c, d}, Lp8
= {2, 12}

P9 = {b, c, d, e, f}, Lp9
= {2, 12}

P10 = {b, c, d, e, f, g, h}, Lp10
= {2, 12}

P11 = {b, c, d, e, f, g, h, i, j}, Lp11
= {2, 12}

P12 = {c, d}, Lp12
= {3, 13}

P13 = {c, d, e}, Lp13
= {3, 13}

P14 = {c, d, e, f}, Lp14
= {3, 13}

P15 = {c, d, e, f, g, h}, Lp15
= {3, 13}

P16 = {c, d, e, f, g, h, i}, Lp16
= {3, 13}

P17 = {c, d, e, f, g, h, i, j}, Lp17
= {3, 13}

P18 = {e, f}, Lp18
= {5, 15}

P19 = {e, f, g, h}, Lp19
= {5, 15}

P20 = {e, f, g, h, i, j}, Lp20
= {5, 15}

P21 = {f, g, h}, Lp21
= {6, 16}

P22 = {f, g, h, i, j}, Lp22
= {6, 16}

P23 = {g, h}, Lp23
= {7, 17}

P24 = {g, h, i, j}, Lp24
= {7, 17}

P25 = {i, j}, Lp25
= {9, 19}

3 Maximal Patterns

We give a general definition of maximality which holds even for different kinds of substring patterns
such as rigid, flexible, with or without wild cards [Par00].

In the following, assume that P is the set of all πpatterns on a given input string S.

Definition 4 Pa ∈ P is non-maximal if there exists Pb ∈ P such that: (1) each p-occurrence
of Pa on S is covered by a p-occurrence of Pb on S, (each occurrence of Pa is a substring in an
occurrence of Pb) and, (2) each p-occurrence of Pb on S covers l ≥ 1, p-occurrence(s) of Pa on S.
A pattern Pb that is not non-maximal is maximal.

Clearly, Π′(Pa) ⊂ Π′(Pb). Although it seems counter-intuitive, but it is possible that |Lpa| < |Lpb
|.

Consider the input S = abcdebca abcde. Pa = {d, e} p-occurs only two times but Pb =
{a, b, c, d, e} p-occurs three times and by the definition Pa is non-maximal with respect to Pb.

To illustrate the case of l > 1 in the definition, consider S = abcdbac abcabcd abcdabc.

4

Pa = {a, b, c} p-occurs two times in the first and third, and, four times in the second p-occurrence
of Pb = {(a)2, (b)2, (c)2, d}. Also, by the definition, Pa is non-maximal with respect to Pb.

We further claim that such a non-maximal pattern Pa can be “deduced” from Pb and the p-
occurrences of Pa on S can be estimated to be within the p-occurrences of Pb. This will be shown
to be a consequence of Theorem 2 in the next section.

Theorem 1 Let M = {Pj ∈ P| Pj is maximal}. M is unique.

This is straightforward to see. This result holds even when the patterns are substring patterns.

In Example 1, pattern P7 is the only maximal πpattern in S.

3.1 Maximality Notation

Recall that in case of substring patterns, the maximal pattern very obviously indicates the non-
maximal patterns as well. For example a maximal pattern of the form abcd implicates ab, bc, cd,
abc, bcd as possible non-maximal patterns, unless they have occurrences not covered by abcd. Do
maximal πpatterns have such an obvious form? In this section we introduce a special notation
based on observations discussed below. We next demonstrate how this notation makes it possible
to represent maximal πpatterns.

Theorem 2 Let Q ∈ P and Q = {Q′| Q′ is non-maximal w.r.t Q }. Then there exists a permu-
tation, Q, of Π′(Q) such that for each element Q′ ∈ Q, a permutation of Π′(Q′) is a substring of
Q.

Proof: Without loss of generality, let the ordering of the elements be as the one in the leftmost
occurrence of Q on S as Q. Clearly, there is a permutation of Π′(Q′) that is a substring of Q, else
Q′ is not a non-maximal pattern by the definition.

Corollary 1 The ordering is not necessarily complete. Some elements may have no order with
respect to some others.

Consider S = abcdef cadbfe abcdef . Then P1 = {a, b, c, d}, P2 = {e, f} and P3 =
{a, b, c, d, e, f} are the πpatterns with three occurrences each on S. Then the intervals denoted by
brackets can be represented as

(3(1a, b, c, d)1, (2e, f)2)3

where the elements within the brackets can be in any order. A pair of brackets (i. . .)i corresponds
to the πpattern Pi. An element is either a character from the alphabet or bracketed elements.

Corollary 2 A representation that captures the order of the elements of Q along with the intervals
that correspond to each Q′ encodes the entire set Q.

5

This representation will appropriately annotate the ordering. The representation using brackets
works except that there may intersecting intervals that could lead to clutter. When the intervals
intersect, the brackets need to be annotated. For example, (a(b, d)c) can have at least two distinct
interpretations: (1) (1a(2b, d)2c)1, or, (2) (1a(2b, d)1c)2.

Consider the input string S = abcd dcba abcd. The πpatterns are P1 = ab, P2 = bc,
P3 = cd, P4 = abc, P5 = bcd, P6 = abcd, each occurring three times. Using only annotated brackets
will yield a cluttered representation as follows:

(6(1(4a(2(5b)1(3c)2)4d)3)5)6 (1)

The annotation of the brackets is required to keep the pairing of the brackets unambiguous. It is
clear that if two intervals intersect, then the intersection elements are immediate neighbors of the
remaining elements. For example if (1a(2b, c)1d)2, then (b, c) must be immediate neighbors of (a)
as well as (d). We introduce a symbol ‘-’ to denote immediate neighbors, then the intervals never
intersect. Further, they do not need to be annotated if they do not intersect. Thus the previous
example can be simply given as a-(b, c)-d. The earlier cluttered representation of Equation 1 can
be cleanly put as

a-b-c-d

Next, consider Example 1. Using the notation, there is only one maximal πpattern given by
M = a-b-(c, d)-e-f -(g, h)-i-j at locations 1 and 11 on S. Notice that Π(P7) = Π(M) and every
other πpattern can be deduced from M .

4 The Algorithm

The input of the algorithm is a set of strings of total length n. In order to simplify the explanation
we consider one string S of length n over an alphabet Σ.

The algorithm computes the maximal πpatterns in S. It has two stages: (1) Find all the πpatterns
in S, and (2) Find the maximal πpatterns in S. In our implementation, in Stage 2 we use a
straightforward computation using location lists of all the πpatterns in S obtained at Stage 1. The
location lists of each pair of πpatterns are checked to find if one πpattern is covered by the other
one. Assume that stage 1 outputs p πpatterns, and the maximum length of a location list is `,
stage 2 runs in O(p2`) time. From now on, only Stage 1 will be discussed.

We assume that the size of the longest pattern is L. Step ` (2 ≤ ` ≤ L) of Stage 1, finds πpatterns
of length `. The computation is based on an algorithm given by Amir et. al. [AALS03]. Different
approaches are given in [D03, SS03]

The algorithm moves a window of size ` along string S, adding and deleting a letter in each iteration.
This is similar to the algorithm for computing the sum of every consecutive ` elements of an array,

The algorithm maintains an array NAME[1 . . . |Σ|] where NAME[q] keeps count of the number
of appearances of letter q in the current window. Hence, the sum of the values of the elements
of NAME is `. In each iteration the window shifts one letter to the right, and at most 2 vari-
ables of NAME are changed one is increased by one (adding the rightmost letter) and one is

6

decreased by one (deleting the leftmost letter of the previous window). Note that for a given
window sasa+1 . . . sa+`−1 NAME represents Π′(sasa+1 . . . sa+`−1). There is one difference between
NAME and Π′, in Π′ only the letters of Π are considered and in NAME all letters of Σ are
considered, but the values of letters that are not in Π are zero. At iteration j we define NAME to
represents the substring sj . . . sj+`−1.

7

Algorithm’s Implementation:

In order to implement the sliding window technique described above we maintain the following data
structures:

• Two pointers ileft and iright. At every iteration (ileft, iright) is the window under considera-
tion.

• Array NAME[1..|Σ|].

The main part of the algorithm consists of a move of iright and ileft to the right and an update of
two entries of NAME, as described in the following code:

Main Part of Algorithm

Repeat until iright = n

{ iright Move }
iright ← iright + 1
NAME[Siright

]← NAME[Siright
] + 1

{ ileft Move }
NAME[Sileft

]← NAME[Sileft
]− 1

ileft ← ileft + 1

Compute the name of NAME

end Main Part of Algorithm

Observation: Substrings of S, of length `, that are permutations of the same string are represented
by the same NAME.

We have explained how the NAMEs of all substrings of length ` of S are computed. However, we
still have to find the NAMEs that appear more than K times.

Each distinct NAME is given a unique name - an integer in the range 0 . . . n. The names are given
by using the naming technique [AIL+88, KLP96], which is a modified version of the algorithm of
Karp, Miller and Rosenberg [KMR72].

4.1 The Naming technique

Assume, for the sake of simplicity, that |Σ| is a power of 2. (If |Σ| is not a power of 2, NAME
can be extended to an appropriate size by concatenating to its end repeated -1. The size of the
resulting array is no more than twice the size of the original array.)

A name is given to each subarray of size 2i that starts on a position j2i + 1 in the array, where
0 ≤ i ≤ log |Σ| and 0 ≤ j < |Σ|/2i. Names are given first to subarrays of size 1 then 2, 4, . . . , |Σ|,
at the end a name is given to the entire array.

8

A subarray of size 2i is a concatenation of 2 subarrays of size 2i−1. The names of these 2 subarrays
are used as the input for the computation of the name of the subarray of size 2i. The process may
be viewed as constructing a complete binary tree, which we will refer to as a naming tree. The
leaves of the tree (level 0) are the elements of the initial array. Node x in level i is the parent of
nodes 2x− 1 and 2x in level i− 1.

Our naming strategy is as follows. A name is a pair of previous names. At level j of the naming,
we compute the name of subarray NAME1NAME2 of size 2j , where NAME1 and NAME2 are
consecutive subarrays of size 2j−1 each. We give as names the natural numbers in increasing order.
Notice that every level only uses the names of the level below it, thus the names we use at every
level are numbers from the set {1, ..., n}.

To give an array a name, we need only to know if the pair of names of the composing subarrays
has appeared previously. If it did, then the array gets the name of this pair. Otherwise, it gets a
new name. It is necessary, therefore, to show a quick way to dynamically access pairs of numbers
from a bounded range universe. This is discussed in Section 4.2

Example 2 Let Σ = {a, b, c, d, e, f, g, h, i, j, k, `,m, n, o, p}, |Σ| = 16. Assume a substring cbo`jikgik`j
of S, the array NAME that represents this substring is:

0 1 1 0 0 0 1 0 2 2 2 2 0 0 1 0

Below is the result of naming the above NAME.
11

9 10

6 7 8 7

2 3 4 3 5 5 4 3

0 1 1 0 0 0 1 0 2 2 2 2 0 0 1 0

Suppose the window move adds the letter n, In the diagram below we indicate in boldface the names
that changed as a result of the change to NAME.

14

9 13

6 7 8 6

2 3 4 3 5 5 2 3

0 1 1 0 0 0 1 0 2 2 2 2 0 1 1 0

From example 2 one can see that a single change in NAME causes at most log |Σ| names to change,
since there is at most one name change in every level.

Time. We conclude that at every iteration, only O(log |Σ|) names need to be handled, since only
two elements of array NAME are changed.

We have seen that the name of the NAME array can be maintained at a cost of O(log |Σ|) per
iteration. What has to be found is whether the updated NAME array gets a new name, or a name
that appeared previously. Before we show an efficient implementation of this task, let us bound the
maximum number of different names our algorithm needs to generate for a fixed window size `.

9

Lemma 3 [AALS03] The maximum number of different names generated by our algorithm’s nam-
ing of size ` window on a text of length n is O(n log |Σ|). The maximum number of names generated
at a fixed level j in the naming tree is O(n).

4.2 The Pair Recognition Problem

We have seen earlier that it is necessary to show a quick way to dynamically access pairs of numbers
from a bounded range universe. Formally, we would like a solution to the following problem:

Definition 5 The dynamic pair recognition problem is the following:
INPUT: A sequence of queries {(aj , bj)}

∞
j=1, where aj, bj ∈ {1, ..., j}.

OUTPUT: Dynamically decide, for every query (aj , bj), whether there exist c, c < j such that
(aj , bj) = (ac, bc).

At any point j the pairs we are considering all have their first element no greater than j. Thus,
accessing the first element can be done in constant time by direct access. This suggest “gathering”
all pairs in trees rooted at their first element. However, if we make sure these trees are ordered by
the second element and balanced, we can find elements by binary search in time that is logarithmic
in the tree size.

Algorithm’s Implementation:

The algorithm maintains the following data structure:

• BAL[a] is a balanced binary tree of all pairs (a, b) that have been named so far, sorted by b.
Since a, b are increasing natural numbers, starting from 1, BAL[a] is directly accessed by a.

• When a is the name appearing as the root of the naming tree, two data structures are
attached to its BAL[a]:

– countera - counts the number of substrings named a.

– location lista - holds the starting locations of those substrings in S.

The algorithm is now straightforward. We are given pair (a, b) at time j and need to recognize if
it has appeared so far.

10

Pair Recognition Algorithm

if (a, b) ∈ BAL[a] then name is name (a,b).
else:

j ← j + 1
add (a, b) to BAL[a]
name(a, b)← j
initialize empty BAL[j]

if name(a,b) is the name appearing in the root of the naming tree then
add ileft to location listname(a,b)

countername(a,b) ← countername(a,b) + 1

end Algorithm

Time: The above solution, for the pair recognition algorithm, requires, for solving each query
(aj , bj), a search on a balanced search tree with all previous queries whose first pair element is aj .
In our case, since in every level there are at most O(n) different numbers, the time for searching
such a balanced tree is O(log |BAL[a]|) = O(log(n)).

4.3 Time Complexity

Stage 1 of our algorithm runs L times. In a step ` we first initialize NAME and the naming tree in
O(` + |Σ|) time and then compute n− ` iterations. Each iteration includes at most two changes in
NAME, and the computation of O(log |Σ|) names. Computing a name takes O(log n) time. Hence
the total running time of our algorithm is O(Ln log |Σ| log n).

5 Experimental Results

We show some preliminary results on E Coli protein sequences. The input to our system is sub-
string patterns detected on pruned set of E Coli sequences: in this pruned set, no pair of se-
quences is ninety percent or more similar in the sequences using standard sequence similarity
measures. There are 8, 394 protein sequences with a total of about 1, 391, 900 amino acids in the
data set. The following parameters were used to obtain the substring patterns. (1) quorum: the
patterns appear at least five times, (2) wild card density: the patterns have no more than two
wild cards in a window of twelve bases. The number of such substring patterns is 207. The
input sequences are now viewed as sequences of motifs/domains with a possibility of multiple oc-
currences at a location. Thus the alphabet size for this problem is 207. The πpattern discovery
tool is run on this input file to yield the result. The input files are available from following site:
www.cs.nyu.edu/∼parida/res/public/data/ as “ecobase.dat.gz” and “ecobase.mtfs.gz”.

Table 1 shows the result of discovering πpatterns on this data where the alphabet is the mo-
tif/domain with parameters as described above. Figure 1 shows an example of a permuted πpattern
of size 6.

11

Size of Total number Number of Percentage of
πPatterns of πPatterns Maximal Maximal

πPatterns πPatterns

2 161 98 61%

3 129 53 41%

4 95 55 58%

5 43 17 40%

6 27 19 70%

7 15 11 67%

8 7 7 100%

Table 1: πpatterns on motifs/domains of the E Coli protein sequences.

6 Conclusions

Related genes often appear in each others neighborhood on the genome, however the order of
the genes may not be the same. Such gene clusters also aid toward solving the problem of local
alignment of genes. Similarly, clusters of protein domains, albeit appearing in different orders in
the protein sequence, suggest common functionality in spite of being nonhomologous. In the paper
we have addressed the problem of automatically discovering clusters as a discovery problem called
the πpattern problem and give an algorithm that automatically discovers the clusters of patterns
in multiple data sequences. We have taken a model-less approach and introduced a notation for
maximal patterns that drastically reduces the number of valid cluster patterns. We conclude with
two open problems and some preliminary results of the automatic pattern discovery tool on motifs
on E Coli protein sequences.

Acknowledgments. We are greatly benefited from earlier discussions with Jens Stoye.

12

References

[AALS03] A. Amir, A. Apostolico, G. M. Landau, and G. Satta. Efficient text fingerprinting via
Parikh mapping. Journal of Discrete Algorithms, 2003. to appear.

[AIL+88] A. Apostolico, C. Iliopoulos, G. M. Landau, B. Schieber, and U. Vishkin. Parallel
construction of a suffix tree with applications. Algorithmica, 3:347–365, 1988.

[BCL+01] Brown, Clark, Leader, Simpson, and Lowe. RNA, 7:1817–1832, 2001.

[DSHB98] T Dandekar, B Snel, M Huynen, and P Bork. Trends Biochem. Sci., 23:324–328, 1998.

[D03] G. Didier. Common intervals of two sequences. In Proc. Third International Workshop
on Algorithms in Bioinformatics (WABI), Lecture Notes in Computer Science 2812,
Springer-Verlag, 17-24, 2003.

[ELP03] R. Eres, G.M. Landau, and L. Parida. A Combinatorial Approach to Automatic Dis-
covery of Cluster-Patterns. In Proc. Third International Workshop on Algorithms in
Bioinformatics (WABI), Lecture Notes in Bioinformatics 2812, Springer-Verlag, 139-
150, 2003.

[GBM+01] S Giglio, K W Broman, N Matsumoto, V Calvari, G Gimelli, T Neuman, H Obashi,
L Voullaire, D Larizza, R Giorda, J L Weber, D H Ledbetter, and O Zuffardi. Olfactory
receptor-gene clusters, genomic-inversion polymorphisms, and common chromosome
rearrangements. Am. J. Hum. Genet., 68(4):874–883, 2001.

[HS01] Steffen Heber and Jens Stoye. Finding all common intervals of k permutations. In
Proc. of the Twelfth Symp. on Comp. Pattern Matching, volume 2089 of Lecture Notes
in Computer Science, pages 207–218. Springer-Verlag, 2001.

[KK00] D. Kihara and M. Kanehisa. Genome Res, 10:731–743, 2000.

[KLP96] Z. M. Kedem, G. M. Landau, and K. V. Palem. Parallel suffix-prefix matching algorithm
and application. SIAM Journal of Computing, 25(5):998–1023, 1996.

[KMR72] R. Karp, R. Miller, and A. Rosenberg. Rapid identification of repeated patterns in
strings, arrays and trees. In Symposium on Theory of Computing, volume 4, pages
125–136, 1972.

[LR96] J. G. Lawrence and J. R. Roth. Genetics, 143:1843–1860, 1996.

[NGK01] Akhiro Nakaya, Susumo Goto, and Minoru Kanehisa. Extraction of correlated gene
clusters by multiple graph comparison. Genome Informatics, No 12:44–53, 2001.

[OFD+99] R Overbeek, M Fonstein, M Dsouza, G D Pusch, and N Maltsev. The use of gene
clusters to infer functional coupling. Proc. Natl. Acad. Sci. USA, 96(6):2896–2901,
1999.

[OFG00] H. Ogata, W. Fujibuchi, and S. Goto. Nucleic Acids Res, 28:4021–4028, 2000.

13

[Par00] Laxmi Parida. Some results on flexible-pattern matching. In Proc. of the Eleventh Symp.
on Comp. Pattern Matching, volume 1848 of Lecture Notes in Computer Science, pages
33–45. Springer-Verlag, 2000.

[PNR+99] E M Marcott M Pellegrini, H L Ng, D W Rice, T O Yeates, and D Eisenberg. Detecting
protein function and protein-protein interactions. Science, 285:751–753, 1999.

[SS03] T. Schmidt and J. Stoye. Quadratic time algorithms for finding common intervals in
two and more sequences.

[SLBH00] B. Snel, G Lehmann, P Bork, and M A Huynen. A web-server to retrieve and display
repeatedly occurring neighborhood of a gene. Nucleic Acids Research, 28(18):3443–
3444, 2000.

[SMA+97] J L Siefert, K A Martin, F Abdi, W R Widger, and G E Fox. J. Mol. Evol., 45:467–472,
1997.

[TCOV97] J Tamames, G Casari, C Ouzounis, and A Valencia. J. Mol. Evol., 44:66–73, 1997.

[TK98] K. Tomii and M. Kanehisa. Genome Res, 8:1048–1059, 1998.

[WMIG97] H Watanbe, H Mori, T Itoh, and T Gojobori. J. Mol. Evol., 44:S57–S64, 1997.

14

Example of a permuted maximal πpattern of size 6 in E Coli sequences:
(325) 35 {53 36} 81 136 {72 8} 35 {159 21} 36 109 {140 82 57}

(498) 35 {159 21} {53 36} 81 136 {72 8} 35 187 {159 21} 36 109 {166 145 140 82 79 74 71 57}

6 4 [35 36 72 81 136 159] (325 1) (325 2) (498 0) (498 1)

35 GETL..VGESGSGKS.T
36 V GESGSGKS.T
72 IADEPTT.LDV
81 PHQLSGG..QRV
136 LSGG.RQRV.IA

159 LV G.SGSGKS.T

line 325
VLAVENLNIAFMQDQQKIAAVRNLSFSLQRGETLAIV GESGSGKSV TALALMRLLEQAGGLV
QCDKMLLQRRSREVIELSEQNAAQMRHVRGADMAMIFQEPMTSLNPVFTVGEQIAESIRLHQ
NASREEAMVEAKRMLDQVRIPEAQTILSRYPHQLSGGMRQRVMIAMALSCRPAVLIADE

PTTALDVTIQAQILQLIKVLQKEMSMGVIFITHDMGVVAEIADRVLVMYQGEAVETGTVEQ
IFHAPQHPYTRALLAAVPQLGAMKGLDYPRRFPLISLEHPAKQAPPIEQKTVVDGEPVLRVR
NLVTRFPLRSGLLNRVTREVHAVEKVSFDLWPGETLSLV GESGSGKSTTGRALLRLVESQGG
EIIFNGQRIDTLSPGKLQALRRDIQFIFQDPYASLDPRQTIGDSIIEPLRVHGLLPGKDAAARVAW
LLERVGLLPEHAWRYPHEFSGGQRQRICIARALALNPKVIIADEAVSALDVSIRGQIINLLLDLQR
DFGIAYLFISHDMAVVERISHRVAVMYLGQIVEIGPRRAVFENPQHPYTRKLLAAVPVAEPSRQR
PQRVLLSDDLPSNIHLRGEEVAAVSLQCVGPGHYVAQPQSEYAFMRR

line 498
MTQTLLAIENLSVGFRHQQTVRTVVNDVSLQIEAGETLALV GESGSGKSV TALSILRLLPSPP
VEYLSGDIRFHGESLLHASDQTLRGVRGNKIAMIFQEPMVSLNPLHTLEKQLYEVLSLHRGMRR
EAARGEILNCLDRVGIRQAAKRLTDYPHQLSGGERQRVMIAMALLTRPELLIADEPTTAL

DVSVQAQILQLLRELQGELNMGMLFITHNLSIVRKLAHRVAVMQNGRCVEQNYAATLFASPTH
PYTQKLLNSEPSGDPVPLPEPASTLLDVEQLQVAFPIRKGILKRIVDHNVVVKNISFTLRAGETL
GLV GESGSGKSTTGLALLRLINSQGSIIFDGQPLQNLNRRQLLPIRHRIQVVFQDPNSSLNPRLN
VLQIIEEGLRVHQPTLSAAQREQQVIAVMHEVGLDPETRHRYPAEFSGGQRQRIAIARALILKPSL
IILDEPTSSLDKTVQAQILTLLKSLQQKHQLAYLFISHDLHVVRALCHQVIILRQGEVVEQGPCAR
VFATPQQEYTRQLLALS

Figure 1: An example to show how a pair of domains (motifs) numbered. The top two lines
numbered 325 and 498 represent the input line numbers in the data. Each number in the row
represents a domain (motif). Numbers in braces represents multiple occurrence of the domains: for
example domains 53 and 36 occur at the same location. The next line shows that it is a pattern of
size 6 (ie. six domains in the permutation) occurring in four locations, twice in sequence 325 and
twice in sequence 498. The next six lines show the mapping of the domain numbers to the actual
domains. The permuted domains are displayed on the original sequences at the bottom. Using the
maximality notation the pattern is represented as: (36-81-136-72), 35, 159.

15

