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Abstract. We present a simple factor 6 algorithm for approximating
the optimal multiplicative distortion of embedding (unweighted) graph
metrics into tree metrics (thus improving and simplifying the factor 100
and 27 algorithms of Bǎdoiu et al. (2007) and Bǎdoiu et al. (2008)). We
also present a constant factor algorithm for approximating the optimal
distortion of embedding graph metrics into outerplanar metrics. For this,
we introduce a notion of metric relaxed minor and show that if G contains
an α-metric relaxed H-minor, then the distortion of any embedding of
G into any metric induced by a H-minor free graph is ≥ α. Then, for
H = K2,3, we present an algorithm which either finds an α-relaxed minor,
or produces an O(α)-embedding into an outerplanar metric.

1 Introduction

1.1. Avant-propos. The structure of the shortest-path metrics of spe-
cial classes of graphs, in particular, graphs families defined by forbidden
minors (e.g., line metrics, tree metrics, planar metrics) is one of the main
areas in the theory of metric spaces. From the algorithmic point of view,
such metrics have more structure than general metrics, and this struc-
ture can often be exploited algorithmically. Thus, if the input metric can
be well approximated by a special metric, this usually leads to an algo-
rithmic advantage; see, e.g., [13] for a survey of algorithmic applications
of embeddings. One way of understanding this structure is to study the
low distortion embeddings from one metric class to another. To do this
successfully, one needs to develop tools allowing a decomposition of the
host space consistent with the embedded space. If this is impossible, one
usually learns much about the limitations of the host space and the rich-
ness of the embedded space. In this paper, we pursue this direction and
study the embeddings into tree metrics and the metrics of K2,3-minor
free graphs (essentially outerplanar metrics).
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The study of tree metrics can be traced back to the beginning of the 20th
century, when it was first realized that weighted trees can in some cases
serve as an (approximate) model for the description of evolving systems.
More recently, as indicated in [16], it was observed that certain Internet
originated metrics display tree-like properties. It is well known [17] that
tree metrics have a simple structure: d is a tree metric iff all submetrics of
d of size 4 are such. Moreover, the underlying tree is unique, easily recon-
structible, and has rigid local structure corresponding to the local struc-
ture of d. But what about the structure of approximately tree metrics?
We have only partial answers for this question, and yet what we already
know seems to indicate that a rich theory might well be hiding there.
The strongest results were obtained, so far, for the additive distortion.
A research on the algorithmical aspects of finding a tree metric of least
additive distortion has culminated in the paper [1] (see also [8]), where a
6-approximation algorithm was established (in the notation of [1], their
algorithm is a 3 approximation, however, in our more restrictive defini-
tion, this is a 6-approximation), together with a (rather close) hardness
result. Relaxing the local condition on d by allowing its size-4 submetrics
to be δ-close to a tree metric, one gets precisely Gromov’s δ-hyperbolic
geometry. For study of algorithmic and other aspects of such geome-
tries, see e.g. [7, 14]. The situation with the multiplicative distortion is
less satisfactory. The best result for general metrics is obtained in [4]:
the approximation factor is exponential in

√
log ∆/ log log n, where ∆ is

the aspect ratio. Judging from the parallel results of [2] for line metrics,
it is conceivable that any constant factor approximation for the general
metric is NP-hard. For some small constant γ, the hardness result of [1]
implies that it is NP-hard to approximate the multiplicative distortion
better than γ even for metrics that come from unit-weighted graphs. For
a special interesting case of shortest path metrics of unit-weighted graphs,
[4] gets a large (around 100) constant approximation factor (which was
improved in [3] to a factor 27). The proof introduces a certain metric-
topological obstacle for getting embeddings of distortion better than α,
and then algorithmically either produces an O(α)-embedding, or an α-
obstacle (such an obstacle was used also in [11], and, essentially, in [15]).

1.2. Our results. In this paper, we simplify and improve the construc-
tion of [4], using a decomposition procedure developed earlier in [5, 6].
The improved constant is 6 and the running time of the algorithm is
linear once the distance matrix is computed. We also introduce the no-
tion of metric relaxed minor and show that if G contains an α-metric
relaxed H-minor, then the distortion of any embedding of G into any
metric induced by a H-minor free graph is at least α. This generalizes
the obstacle of [4]. Using this newly defined H-obstacle, we show that
it is an essential obstacle not only for trees, but also for graphs without
H = K2,3 minors. We further develop an efficient algorithm which either
embeds the input metric induced by a unit-weighted graph G into an
outerplanar metric with distortion O(α), or finds an α-metric relaxed
K2,3-minor in G. This is a first result of this kind for any H different
from a C4 (which is the α-metric relaxed minor corresponding to the
four-point condition used for embedding into tree-metrics).



1.3. Preliminaries. A metric space (X, d) is isometrically embeddable
into a host metric space (Y, d′) if there exists a map ϕ : X 7→ Y such
that d′(ϕ(x), ϕ(y)) = d(x, y) for all x, y ∈ X. More generally, ϕ : X 7→
Y is an embedding with (multiplicative) distortion λ ≥ 1 if d(x, y) ≤
d′(ϕ(x), ϕ(y)) ≤ λ · d(x, y) for all x, y ∈ X. Given a metric space (X, d)
and a class M of host metric spaces, we denote by λ∗ := λ∗(X,M)
the minimum distortion of an embedding of (X, d) into a member of
M. Analogously, ϕ : X 7→ Y is an embedding with additive distortion
λ ≥ 0 if d(x, y) ≤ d′(ϕ(x), ϕ(y)) ≤ d(x, y) + λ for all x, y ∈ X and, in
a similar way, we can define the minimum additive distortion. In this
paper, we consider unweighted graphs as input metric spaces and tree
metrics (trees) or outerplanar metrics as the class of host metric spaces.
If not specified, all our results concern embeddings with multiplicative
distortion. For a connected unweighted graph G = (V, E), we denote
by dG(u, v) the shortest-path distance between u and v. A finite metric
space (X, d) is called a tree metric [17] if it isometrically embeds into a
tree, i.e., there exists an weighted tree T = (X ′, E′) such that X ⊆ X ′

and d(u, v) = dT (u, v) for any two points u, v ∈ X, where dT (u, v) is
the length of the unique path connecting u and v in T. Analogously, an
outerplanar metric is a metric space isometrically embeddable into an
outerplanar weighted graph. Denote by T the class of tree metric spaces
and by O the class of outerplanar metric spaces.

2 Preliminary results

In this section, we establish some properties of layering partitions and of
embeddings with distortion λ of graph metrics into weighted graphs.

2.1. Layering partitions. The layering partitions have been introduced
in [5, 6] and recently used in a slightly more general forms in both ap-
proximation algorithms of [3, 4] and in other similar contexts [7, 9, 10].
Let G = (V, E) be a graph with a distinguished vertex s and let r :=
max{dG(s, x) : x ∈ V }. A layering of G with respect to s is the decompo-
sition of V into the spheres Li = {u ∈ V : d(s, u) = i}, i = 0, 1, 2, . . . , r.
A layering partition LP (s) = {Li

1, . . . , L
i
pi

: i = 0, 1, 2, . . . , r} of G is
a partition of each Li into clusters Li

1, . . . , L
i
pi

such that two vertices
u, v ∈ Li belong to the same cluster Li

j iff they can be connected by a
path outside the ball Bi−1(s) of radius i − 1 centered at s. Let Γ be a
graph whose vertex set is the set of all clusters Li

j in a layering partition

LP and C = Li
j and C′ = Li′

j′ are adjacent in Γ iff there exist u ∈ Li
j and

v ∈ Li′

j′ such that u and v are adjacent in G. Γ is a tree [6], called the
layering tree of G. LP and Γ are computable in linear time [6]. We can
construct a new tree H = (V, F ) (closely reproducing the global struc-
ture of Γ ) by identifying for each cluster C = Li

j an arbitrary vertex
xC ∈ Li−1 (the support vertex for cluster C) which has a neighbor in C
and by making xC adjacent in H with all vertices v ∈ C. In what follows,
we assume that Γ and H are rooted at s. Let D be the largest diameter of
a cluster in LP , i.e., D := maxC∈LP maxv,u∈C{dG(u, v)}. The following
result (also implicitly used in [5–7]) shows that the additive distortion of
the embedding of G into H is essentially D:



Proposition 1. If x, y ∈ V, then dH(x, y)−2 ≤ dG(x, y) ≤ dH(x, y)+D.

Proof. Let Cx and Cy be the clusters containing x and y. Let C be the
nearest common ancestor of Cx and Cy in Γ. For C 6= Cx, let x′, y′ ∈ C
be the ancestors of x and y in a BFS(G, s)-tree. Then dΓ (Cx, C) =
dG(x, x′) and dΓ (Cy, C) = dG(y, y′). By construction of H, dH(x, y) is
equal to dΓ (Cx, C) + dΓ (Cy, C) or to dΓ (Cx, C) + dΓ (Cy, C) + 2. By
the triangle inequality, dG(x, y) ≤ dG(x, x′) + dG(x′, y′) + dG(y, y′) ≤
dΓ (Cx, C) + dΓ (Cy, C) + D ≤ dH(x, y) + D. By definition of clusters,
dG(x, y) ≥ dG(x, x′) + dG(y, y′) ≥ dH(x, y)− 2. �

The BFS-tree H preserves the distances between the root s and any other
vertex of G. We can locally modify H by assigning uniform weights to
its edges or by adding Steiner points to obtain a number of other desired
properties. Assigning length w := D + 1 to each edge of H, we will get a
tree Hw = (V, F, w) in which G embeds with distortion essentially equal
to D+1 : dG(u, v) ≤ dHw (u, v) ≤ (D+1)(dG(u, v)+2) ∀u, v ∈ V. Adding
Steiner points and using edge lengths 0 and 1, H can be transformed into
a tree H ′ which has the same additive distortion and satisfies the non-
expansive property. For this, for each cluster C := Li

j we introduce a
Steiner point pC , and add an edge of length 0 between any vertex of
C and pC and an edge of length 1 between pC and the support vertex
xC for C: dH′(u, v) ≤ dG(u, v) ≤ dH′(u, v) + D ∀u, v ∈ V. Finally, by
replacing each edge in H ′ with edge of length w := D+1

2
, we obtain a

tree H ′
w so that dG(u, v) ≤ dH′

w
(u, v) ≤ (D + 1)(dG(u, v) + 1) ∀u, v ∈ V.

2.2. Embeddings with distortion λ of graph metrics. We continue
with two auxiliary standard results about embeddings.

Lemma 1. If G = (V, E), G′ = (V ′, E′) are two graphs, one unweighted
and second weighted, and ϕ : V 7→ V ′ is a map so that dG′(ϕ(u), ϕ(v)) ≤
λ ∀uv ∈ E, then dG′(ϕ(x), ϕ(y)) ≤ λdG(x, y) ∀x, y ∈ V.

Lemma 2. If G = (V, E), G′ = (V ′, E′) are two graphs, one unweighted
and second weighted, and ϕ : V 7→ V ′ is a map so that dG′(ϕ(u), ϕ(v)) ≥
dG(u, v) ∀ϕ(u)ϕ(v) ∈ E′, then dG′(ϕ(x), ϕ(y)) ≥ dG(x, y) ∀x, y ∈ V.

3 Embedding into trees

We describe now a simple factor 6 algorithm for approximating the op-
timal distortion λ∗ = λ∗(G, T ) of embedding finite unweighted graphs
G into trees. For this, we first investigate the properties of layering par-
titions of graphs which λ-embed into trees, i.e., for each such graph
G = (V, E) there exists a tree T = (V ′, E′) with V ⊆ V ′ such that
(1) dG(x, y) ≤ dT (x, y) (non-contractibility) and (2) dT (x, y) ≤ λ ·
dG(x, y) (bounded expansion) for every x, y ∈ V . Denote by PT (x, y)
the path connecting the vertices x, y in T. For x ∈ V ′ and A ⊆ V ′, we
denote by dT (x, A) = min{dT (x, v) : v ∈ A} the distance from x to A.
First we show that the diameters of clusters in a layering partition of
such a graph G are at most 3λ, allowing already to build a tree with dis-
tortion 9λ∗. Refining this property of layering partitions, we construct
in O(|V ||E|) time a tree into which G embeds with distortion ≤ 6λ∗.



Lemma 3. If G λ-embeds into a tree, then for any x, y ∈ V, any (x, y)-
path PG(x, y) of G and any vertex c ∈ PT (x, y), dT (c, PG(x, y)) ≤ λ/2.

Proof. Removing c from T , we separate x from y. Let Ty be the subtree
of T \ {c} containing y. Since x /∈ Ty, we can find an edge ab of PG(x, y)
with a ∈ Ty and b /∈ Ty. Therefore, the path PT (a, b) must go via c. If
dT (c, a) > λ/2 and dT (c, b) > λ/2, then dT (a, b) = dT (a, c)+dT (c, b) > λ
and since dG(a, b) = 1, we obtain a contradiction with the assumption
that the embedding of G in T has distortion λ (condition (2)). Hence
dT (c, PG(x, y)) ≤ min{dT (c, a), dT (c, b)} ≤ λ/2, concluding the proof. �

Lemma 4. If G λ-embeds into a tree T , then the diameter in G of any
cluster C of a layering partition of G is ≤ 3λ, i.e., dG(x, y) ≤ 3λ for any
x, y ∈ C. In particular, λ∗(G, T ) ≥ D/3.

Proof. Let PG(x, y) be a (x, y)-path of G outside the ball Bk(s), where
k = dG(s, x) − 1. Let PG(x, s) and PG(y, s) be two shortest paths of
G connecting x, s and y, s, respectively. Let c ∈ V (T ) be the unique
vertex of T in PT (x, y) ∩ PT (x, s),∩PT (y, s). Since c belongs to each
of the paths PT (x, y), PT (x, s), and PT (y, s), applying Lemma 3 three
times, we infer that dT (c, PG(x, y)), dT (c, PG(x, s)), and dT (c, PG(y, s))
are ≤ λ/2. Let a be a closest to c vertex of PG(x, s) in the tree T, i.e.,
dT (a, c) = dT (c, PG(x, s)) ≤ λ/2. Let z be a closest to a vertex of PG(x, y)
in T. From (1) and previous inequalities we conclude that dG(a, z) ≤
dT (a, z) = dT (a, PG(x, y)) ≤ dT (a, c) + dT (c, PG(x, y)) ≤ λ. Since z ∈
PG(x, y) and PG(x, y) ∩ Bk(s) = ∅, necessarily dG(s, z) ≥ dG(s, y) =
dG(s, a)+dG(a, x), yielding dG(a, x) ≤ dG(a, z) ≤ λ. Analogously, if b is a
closest to c vertex of PG(y, s) in T, then dG(b, y) ≤ λ and dT (b, c) ≤ λ/2.
By non-contractibility condition (1) and triangle condition, dG(a, b) ≤
dT (a, b) ≤ dT (a, c) + dT (b, c) ≤ λ. Summarizing, we obtain the desired
inequality dG(x, y) ≤ dG(x, a) + dG(a, b) + dG(b, y) ≤ 3λ. �

Lemma 1 and the properties of H ′ imply that one can construct in linear
time an unweighted tree H = (V, F ) (without Steiner points) and a
{0, 1}-weighted tree H ′ = (V ∪ S′, F ′) (with Steiner points), so that
dH(x, y) − 2 ≤ dG(x, y) ≤ dH(x, y) + 3λ and dH′(x, y) ≤ dG(x, y) ≤
dH′(x, y)+3λ ∀x, y ∈ V . Hence, for any graph G, it is possible to turn its
non-contractive multiplicative distortion embedding into a weighted tree
to a non-expanding additive distortion embedding into a {0, 1}-weighted
tree. From properties of the trees Hw and H ′

w, we obtain:

Corollary 1. If G = (V, E) λ-embeds into a tree, then there exists uni-
formly weighted trees Hw = (V, F, w) and H ′

w = (V ∪ S′, F ′, w) (without
and with Steiner points), both constructible in O(|V ||E|) time, such that
dG(u, v) ≤ dHw (u, v) ≤ (3λ+1)(dG(u, v)+2) and dG(u, v) ≤ dH′

w
(u, v) ≤

(3λ + 1)(dG(u, v) + 1) ∀u, v ∈ V.

Corollary 1 implies already that there exists a factor 12 (factor 8 if Steiner
points are used) approximation algorithm for considered problem. We
will show now that, by strengthening Lemma 4, one can improve the
approximation ratio from 12 to 9 and from 8 to 6.



Lemma 5. If G = (V, E) λ-embeds into a tree T , C = Li
j ∈ LP is a

cluster of a layering partition of G and v is a vertex of C, then dG(v′, u) ≤
max{3λ− 1, 2λ + 1} for any neighbor v′ ∈ Li−1 of v and any u ∈ C.

Proof. Let c ∈ V (T ) be the nearest common ancestor in the tree T
(rooted at s) of all vertices of cluster C = Li

j . Let x and y be two vertices
of C separated by c. Let PG(x, y) be a path of G connecting vertices x
and y outside the ball Bi−1(s). Then, as in the proof of Lemma 4, we
have dT (c, PG(x, y)) ≤ λ/2. Pick an arbitrary vertex v ∈ C and a shortest
path PG(v, s) connecting v with s in G. Since c separates v from s in
T , by Lemma 3, dT (c, PG(v, s)) ≤ λ/2 holds. Let av be a closest to c
vertex of PG(v, s) in the tree T . Then, dT (av, PG(x, y)) ≤ dT (av, c) +
dT (c, PG(x, y)) ≤ λ. The choice of the path PG(x, y) and inequality (1)
imply that dG(av, v) ≤ dG(av, PG(x, y)) ≤ dT (av, PG(x, y)) ≤ λ.
Consider an arbitrary vertex u ∈ C, u 6= v. By the triangle inequality and
(1), we have dG(av, au) ≤ dT (av, au) ≤ dT (av, c) + dT (au, c) ≤ λ, thus
dG(av, u) ≤ dG(av, au) + dG(au, u) ≤ 2λ. Let v′ ∈ Li−1 be a neighbor of
v in PG(v, s). If av = v, then dG(v, u) = dG(av, u) ≤ 2λ, i.e., dG(v′, u) ≤
dG(v, u)+1 ≤ 2λ+1. Otherwise, if av 6= v, then dG(v′, u) ≤ dG(v′, av)+
dG(av, u) ≤ λ− 1 + 2λ = 3λ− 1, dG(v′, u) ≤ max{3λ− 1, 2λ + 1}. �

To make the embedding non-contractive, it suffices to assign the length
` := max{3λ−1, 2λ+1} to each edge of H and get a uniformly weighted
tree H` = (V, F, `). Then dG(u, v) ≤ dH`(u, v) ≤ max{3λ − 1, 2λ +
1}(dG(u, v) + 2). The tree H` (without Steiner points) provides a 9-
approximation to our problem. If we allow Steiner points and assign the
length ` := 3λ

2
to each edge of H ′, then get a uniformly weighted tree

H ′
` such that dG(u, v) ≤ dH′

`
(u, v) ≤ 3λ(dG(u, v) + 1).

For a graph G = (V, E), we do not know λ in advance, however we
know from Lemma 4 that λ∗(G, T ) ≥ D/3. Therefore, the length `
to be assigned to the edges of the tree H (which is defined indepen-
dently of the value of λ), can be found as follows: ` = max{dG(u, v) :
uv is an edge of H}. The length `, which needs to be assigned to each
edge of H ′, can be found as follows: ` = 1

2
max{D, max{dG(u, v) :

uv is an edge of H}}. Hence, ` can be computed in O(|V ||E|) time. Our
main result of this section is the following theorem.

Theorem 1. There exists a factor 6 approximation algorithm for the
optimal distortion of embedding an unweighted graph G into a tree.

The approximation ratio 6 of our algorithm holds only for adjacent ver-
tices of G. It decreases when distances in G increase. Our tree H` does
not have any Steiner points and the edges of both trees H` and H ′

` are
uniformly weighted. The tree H ′

`, with Steiner points, is better than the
tree H` only for small graph distances. So, the Steiner points do not
really help, confirming A. Gupta’s claim [12].

4 Minors, relaxed minors, and metric minors

We define metric relaxed minors, which, together with layering parti-
tions, are used for approximate embedding of graphs into outerplanar
metrics.



4.1. Minors and relaxed minors. A graph H is a minor of a graph
G if a graph isomorphic to H can be obtained from G by contracting or
delating some edges and some isolated vertices. To adapt the concept of
minor to our embedding purposes, note that H = (V ′, E′) is a minor of
G = (V, E) if there exists a map µ : V ′ ∪ E′ 7→ 2V , such that

(i) for any vertex v of H, G(µ(v)) is connected;

(ii) for any vertices v 6= v′ of H, G(µ(v)) ∩G(µ(v′)) = ∅;
(iii) for any edge e = uv of H, G(µ(e)) is a path Pe of G with ends in

G(µ(u)) and G(µ(v));

(iv) for any vertex v and any edge e of H with v /∈ e, Pe ∩G(µ(v)) = ∅;
(v′) for any edges e = (x, y), e′ = (u, v) of H, Pe and Pe′ intersect iff

{x, y}∩{u, v} 6= ∅ and if e = (x, y), e′ = (x, v), then Pe∩Pe′ = µ(x).

Indeed, if µ exists, then contracting each µ(v), v ∈ V ′, to a single vertex
v and each Pe to an edge e, (ii),(iii), and (v′) ensure that the resulting
graph will be isomorphic to H. Note that if in (v′) two paths Pe and Pe′

intersect, then they intersect in G(µ(u)), where u is the common end of e
and e′. In particular, if e, e′ are non-incident, then Pe and Pe′ are disjoint.
For our metric purposes we need a weaker notion of minor by allowing
intersecting paths to intersect anywhere. A graph H = (V ′, E′) is a
relaxed minor of a graph G = (V, E) if there exists a map µ : V ′∪E′ 7→ 2V

satisfying (i)-(iv) and the following relaxation of (v′):

(v) for any two non-incident edges e, e′ of H, the paths Pe ∩ Pe′ = ∅.

The concept of relaxed minor is weaker than that of minor: the triangle
C3 is not a minor of any tree, but it is a relaxed minor of the star K1,3 :
µ maps the three vertices of C3 to the three leaves of K1,3 and maps
each edge uv of C3 to the path of K1,3 between the leaves µ(u) and µ(v).
The map µ satisfies (i)-(v) but does not satisfy (v′). Relaxed and α-
metric relaxed minors (see Subsection are crucial because their existence
corresponds to a witness that G cannot be embedded into H-relaxed-
minor-free graphs with small distortion (see Proposition 3). Thus it seems
important to relate this notion to standard minors. We conjecture that
if the graph H is triangle-free, then the notion of relaxed minor is not
weaker than that of minor. We established a weaker statement which is
enough to deal with H of special form: H will be bipartite H = (V, F ; E)
with every vertex f ∈ F of degree two. Such subdivided graphs H can be
seen as a subdivision of an arbitrary graph H ′ = (V, E′) where (u, v) ∈
H ′ iff there is a member f ∈ F such that (u, f), (v, f) ∈ E.

Proposition 2. If a graph G = (V, E) has a subdivided graph H =
(V ′, E′) as a relaxed minor, then G has H as a minor.

4.2. α-Metric relaxed minors. Two sets A, B are α-far if min{dG(a, b) :
a ∈ A, b ∈ B} > α. For α ≥ 1, we call a graph H = (V ′, E′) an α-metric
relaxed minor of G = (V, E) if there exists a map µ : V ′ ∪ E′ 7→ 2V

satisfying (i)-(v) and the following stronger version of condition (v):

(v+) for any non-incident edges e = uv and e′ = u′v′ of H, the sets
µ(u) ∪ Pe ∪ µ(v) and µ(u′) ∪ Pe′ ∪ µ(v′) are α-far in G.



Let ϕ be an embedding of a graph G = (V, E) into a graph G′ = (V ′, E′)
with distortion ≤ α. For S ⊆ V inducing a connected subgraph G(S) of
G, we denote by [ϕ(S)] a union of shortest paths of G′ running between
each pair of vertices of ϕ(S) which are images of adjacent vertices of
G(S), one shortest path per pair.

Lemma 6. If G α-embeds into G′ and two sets of vertices A, B inducing
connected subgraphs of G are α-far, then [ϕ(A)] ∩ [ϕ(B)] = ∅.

Proposition 3. If a subdivided 2-connected graph H = (V ′, E′) is an
α-metric relaxed minor of G = (V, E), then any embedding of G into an
H-minor free graph has distortion > α.

Proof. Suppose G has an embedding ϕ with distortion ≤ α into an H-
minor free graph G′. Let µ : V ′ ∪ E′ 7→ 2V be a map showing that H
is an α-metric relaxed minor of G. Extend ϕ from V to the edge-set E
by associating with each edge e of G the shortest path Pe := [ϕ(e)] of
G′. Pick any vertex v of H. Then, ϕ(µ(v)) is a connected subgraph of
G′ because µ and ϕ map connected subgraphs to connected subgraphs.
From Lemma 6 we know that ϕ maps two α-far connected subgraphs
of G to two disjoint subgraphs of G′. As to the map µ, we assert that
for any distinct vertices v, v′ of H, µ(v) and µ(v′) are α-far and for any
vertex v and any edge e of H with v /∈ e, µ(v) and µ(e) = Pe are α-far.
We will prove the first part. Since H is 2-connected, any two vertices
v, v′ belong to a common cycle C of H. Since H is triangle-free, v and
v′ belong to non-incident edges e, e′ of C. Applying (v+) to e and e′, we
conclude that µ(v) and µ(v′) are α-far. Now, we define the following map

ν : V ′ ∪E′ 7→ 2V (G′) from H to G′. For each v ∈ V ′, set ν(v) = ϕ(µ(v)).
For each edge e = uv of H, µ(e) = Pe is a path of G with end-vertices
u∗ ∈ µ(u) and v∗ ∈ µ(v). Each edge f of Pe is mapped by ϕ to a path
ϕ(f) of G′. Let ν(e) be any path of G′ between u′ = ϕ(u∗) and v′ = ϕ(v∗)
contained in the set

⋃
{ϕ(f) : f is an edge of Pe}. From definition of ν

and properties of µ and ϕ it follows that ν satisfies (i) and (iii). We
will show that ν satisfies (ii), (iv), and (v) as well. To verify (ii), pick
two vertices u, v of H. The sets µ(u) and µ(v) are α-far, thus Lemma 6
implies that ν(u) = ϕ(µ(u)) and ν(v) = ϕ(µ(v)) are disjoint, showing
(ii). Analogously, if v is a vertex and e is an edge of H with v /∈ e,
then, since the sets µ(v) and Pe = µ(e) are α-far, thus, by Lemma 6,
ν(v) = ϕ(µ(v)) and ϕ(Pe) are disjoint. Since ν(e) ⊆ ϕ(Pe), ν(v) and
ν(e) are disjoint as well, establishing (iv). The last condition (v) can be
derived in a similar way by using (v+) and Lemma 6. Hence, ν satisfies
(i)-(v), i.e., H is a relaxed minor of G′. By Proposition 2, H is a minor
of G′, contradicting that G′ is H-minor free. �

4.3. Lower bounds for α-embeddings into K2,r-minor free graphs.
We use the previous results to give lower bounds for the distortion of em-
bedding a graph G = (V, E) into K2,r-minor free graphs.

Proposition 4. If a cluster C of a layering partition LP of G contains
r ≥ 3 vertices v∗1 , . . . , v∗r that are pairwise (4α + 2)-far, then any embed-
ding ϕ of G into a K2,r-minor free graph has distortion > α.



Proof. Let LP be defined with respect to s and let T be a BFS tree
rooted at s. Let k be the distance from s to C. Since C contains (4α+2)-
far vertices v∗1 , . . . , v∗r , k ≥ 2α+2. We will define a mapping µ from K2,r

to G allowing to conclude that K2,r is an α-metric relaxed minor of
G. Since K2,r is a subdivided graph, Proposition 3 will show that any
embedding of G into a K2,r-minor free graph has distortion > α.

Let u1, . . . , ur, v, w be the vertices of K2,r, where v, w have degree r. De-
note by ei the edge vui and by fi the edge wui, i = 1, . . . , r. Let P1, . . . , Pr

be the paths of T of length α+1 from v∗1 , . . . , v∗r towards the root s. De-
note by u∗1, . . . , u

∗
r the other end vertices of the paths P1, . . . , Pr. Let

R1, . . . , Rr be the paths of T of length α + 1 from u∗1, . . . , u
∗
r towards

s. Denote by w∗1 , . . . , w∗r the other end vertices of the paths R1, . . . , Rr.
Set µ(ui) := u∗i , µ(ei) := Pi and µ(fi) := Ri for i = 1, . . . , r. Let
µ(v) be the connected subgraph of G induced by all (or some) paths
connecting the vertices v∗1 , . . . , v∗r outside the ball Bk−1(s). Finally, let
µ(w) := Bk−2α−2(s) (clearly, w∗1 , . . . , w∗r belong to µ(w)). From the defi-
nitions of µ and LP , we conclude that µ satisfies (i) and (iii). Since µ(v) ⊆
∪j≥kLj , µ(w) = Bk−2α−2(s), and the vertices u∗1 = µ(u1), . . . , u

∗
r =

µ(ur) belong to Lk−α−1, the µ-images of the vertices of K2,r are pair-
wise α-far in G. Analogously, any vertex of µ(v) is at distance > α
from any path Ri = µ(fi) and any vertex of µ(w) is at distance > α
from any path Pi = µ(ei). If a vertex u∗i is at distance ≤ α from
x ∈ Pj∪Rj for j 6= i, then, by triangle inequality, we obtain dG(v∗i , v∗j ) ≤
dG(v∗i , u∗i )+dG(u∗i , x)+dG(x, v∗j ) ≤ α+1+α+dG(v∗j , x). Since x 6= w∗j ,
dG(v∗j , x) ≤ 2α+1, yielding dG(v∗i , v∗j ) ≤ α+1+α+2α+1 = 4α+2, con-
trary to the assumption that v∗i and v∗j are (4α+2)-far. This contradiction
shows that the µ-images of any vertex and any non-incident edge of K2,r

are α-far. It remains to show that any two paths Pi and Rj with i 6= j
are α-far. If dG(x, y) ≤ α for x ∈ Pi\{v∗i , u∗i } and y ∈ Rj \{u∗j , w∗j }, then
dG(v∗i , v∗j ) ≤ dG(v∗i , x) + dG(x, y) + dG(y, v∗j ) ≤ α + α + 2α + 1 ≤ 4α + 1,
contrary to the assumption that v∗i and v∗j are α-far. This contradiction
shows that K2,r is an α-metric relaxed minor of G. �

5 Embedding into outerplanar graphs

We present now the algorithm for approximate embedding of graph met-
rics into into outerplanar metrics.

5.1. The algorithm. Let G = (V, E) be the input graph and let LP be a
layering partition of G. We assume that λ ≥ 1 is so that each cluster C of
LP contains at most two (4λ+2)-far vertices (otherwise, by Proposition
4, the optimal distortion is larger than λ). Set Λ := 4λ + 2. We call a
cluster C bifocal if it has two Λ-far vertices c1 and c2. In addition, for
such cluster C let C1 = {x ∈ C : dG(x, c1) ≤ dG(x, c2)} and C2 = {x ∈
C : dG(x, c2) ≤ dG(x, c1)}, and call C1 and C2 the cells of C centered
at c1 and c2 (we will suppose below that c1 and c2 form a diametral
pair of C). If diam(C) ≤ Λ (i.e., C is not bifocal), then the cluster C is
called small. Then C has a unique cell centered at an arbitrary vertex
of C. A bifocal cluster C is called big if diam(C) > 16λ + 12, otherwise,



if Λ < diam(C) ≤ 16λ + 12, then C is a medium cluster. An almost big
cluster is a medium cluster C such that diam(C) > 16λ + 10. A cluster
C is ∆-separated if C is bifocal with cells C1 and C2 and dG(u, v) > ∆
for any u ∈ C1 and v ∈ C2. Further, we will set ∆ := 8λ + 6. A bifocal
cluster C′ is spread if both cells C1, C2 of its father C are adjacent to C′.
Given a cluster C at distance k from s and its son C′, we call the union
of C with the connected component of G(V \ Bk(s)) containing C′ the
CC′-fiber of G and denote it by F(C, C′). We now ready to describe the
algorithm.

Algorithm Approximation by Outerplanar Metric
Input: A graph G = (V, E), a layering partition LP of G, and λ
Output: An outerplanar graph G′ = (V, E′) or an answer “not”
1. For each cluster C of the layering partition LP do
2. If C has two big sons or C is big and has two spread sons, then

return “not”.
3. Else for each son C′ of C do
4. Case 1: If C′ is small, then pick the center c of a cell of C

adjacent to C′ and in G′ make c adjacent to all vertices of C′.
5. Case 2: If C′ is medium and C is not big, or C′ is medium and

not spread and C is big, then pick the center c of a cell of C
adjacent to C′ and in G′ make c adjacent to all vertices of C′.

6. Case 3: If C′ is medium, C is big, and C′ is the (unique) spread
son of C, then in G′ make the center c1 of cell C1 of C adjacent
to all vertices of C′. Additionally, make the center c2 of cell C2

of C adjacent to all vertices of C′.
7. Case 4: If C′ = C′

1 ∪ C′
2, such that C′

1 is adjacent to C1 and
C′

2 is adjacent to C2, where C1 and C2 are the cells of C with
centers c1 and c2, then in G′ make c1 adjacent to all vertices
of C′

1 and c2 adjacent to all vertices of C′
2.

5.2. Small, medium, and big clusters. We present here without proof
several simple properties of clusters of LP .

Lemma 7. If C is bifocal, then the diameter of each of its cells is ≤ 2Λ.

Lemma 8. If C is bifocal and diam(C) = dG(c1, c2) > 12λ+6, then (i)
C is (diam(C) − 2Λ − 1)-separated, in particular C1 ∩ C2 = ∅ and (ii)
diam(C1) ≤ Λ and diam(C2) ≤ Λ.
If C is big, then C is (8λ+8)-separated and if C is almost big, then C is
(8λ + 6)-separated, whence big and almost big clusters are Λ-separated.
If C is big or almost big, then diam(C1) ≤ Λ and diam(C2) ≤ Λ.

Lemma 9. If C is big, then C has a bifocal spread son C′ such that
contracting the four cells of C and C′ (but preserving the inter-cell edges),
we will obtain a 2K2.

Lemma 10. If C′ is big or almost big, then its father C is bifocal and
the neighbors in C of the centers c′1 and c′2 of the cells C′

1 and C′
2 of C′

belong to different cells of C. Big and almost big clusters are spread.



Lemma 11. If C is big, no son of C has a cell adjacent to both cells of
C. No big cluster C has a small son adjacent to both cells of C.

5.3. Correctness of the algorithm. The following results establish
the correctness and the approximation ratio of our algorithm.

Theorem 2. Let G = (V, E) be a graph and λ ≥ 1. If the algorithm
returns the answer “not”, then any embedding of G into a K2,3-minor free
graph has distortion > λ. If the algorithm returns the outerplanar graph
G′ = (V, E′), then assigning to its edges weight w := 20λ+15, we obtain
an embedding of G to G′ such that dG(x, y) ≤ dG′(x, y) ≤ 5wdG(x, y)
∀x, y ∈ V. As a result, we obtain a factor 100λ+75 approximation of the
optimal distortion of embedding a graph into an outerplanar metric.

The proof of this theorem is subdivided into two propositions. We start
with a technical result, essentially showing that in both cases when our
algorithm returns the answer “not”, any embedding of G into an outer-
planar metric requires distortion > λ:

Proposition 5. Let C be a big or an almost big cluster having two sons
C′, C′′ such that the two cells of C can be connected in both CC′- and
CC′′-fibers of G. Then, any embedding of G in a K2,3-minor free graph
has distortion > λ. These conditions hold in the following two cases:
(i) C is big and has two spread sons; (ii) C has two big sons C′, C′′. In
particular, if the algorithm returns the answer “not”, then any embedding
of G in a K2,3-minor free graph requires distortion > λ.

Now suppose that the algorithm returns the graph G′. By construction,
G′ is outerplanar. Let dG′(x, y) be the distance in G′ between x and y,
where each edge of G′ has length w := 20λ + 15. We continue with the
basic property of G′ allowing to analyze the approximation ratio.

Proposition 6. For each edge xy of G, x and y can be connected in the
graph G′ by a path consisting of at most 5 edges, i.e. dG′(x, y) ≤ 5w.
Conversely, for each edge xy of G′, dG(x, y) ≤ 20λ + 15.

5.4. Proof of Proposition 6. We start with first assertion. First sup-
pose that dG(s, x) = dG(s, y). Let C be the cluster of G containing xy.
Then, either C is not big or C is big and x, y belong to the same cell
of C. In both cases, by construction of G′, we deduce that x and y will
be adjacent in G′ to the same vertex from the father C0 of C, implying
dG′(x, y) = 2w. Now suppose that x ∈ C, y ∈ C′ and C′ is a son of C. Let
C0 be the father of C. Let z be a vertex of C to which y is adjacent in G′.
If C is small, medium, or C is big but x and z belong to the same cell,
then in G′ the vertices z and x will be adjacent to the same vertex xC0 of
C0, yielding dG′(x, y) ≤ 3w. So, suppose that C is big and the vertices z
and x belong to different cells C1 and C2 of C, say z ∈ C1 and x ∈ C2. By
Lemma 11, C′ is not small. According to the algorithm, z is the center
of the cell C1, i.e., z = c1. Note also that x and the center c2 of its cell
are both adjacent in G′ to a vertex xC0 ∈ C0, whence dG′(x, c2) = 2w.
If C′ is big and say y ∈ C′

1, then since y is adjacent to z in G′, from the



algorithm we conclude that a vertex of C′
1 is adjacent in G to a vertex of

C1. On the other hand, y ∈ C′
1 is adjacent in G to x ∈ C2. As a conse-

quence, the cell C′
1 is adjacent in G to both cells C1 and C2 of C, which

is impossible by Lemma 11. So, the cluster C′ must be medium. If C has
a big son C′′, then since both cells of C are adjacent in G to the medium
son C′, we obtain a contradiction with Proposition 5(i). Hence, C cannot
have big sons. Moreover, by Proposition 5, C′ is the unique spread son
of C. According to the algorithm (see Case 3), the centers z = c1 and
c2 of the cells of C are adjacent in G′ to a common vertex u from C′,
yielding dG′(z, c2) = 2w. As a result, we obtain a path with at most 5
edges connecting the vertices y and x in G : (y, z = c1, u, c2, xC0 , x).

We continue with second assertion. Any edge xy of G′ runs between two
clusters lying in consecutive layers of G (and G′); let x ∈ C and y ∈ C′,
where C is the father of C′. In G, y has a neighbor x′ ∈ C. Let x′ 6= x,
otherwise we are done. If C is not big, then dG(x, x′) ≤ 16λ+12, whence
dG(x, y) ≤ 16λ + 13. So, suppose C is big. If x, x′ belong to the same
cell of C, then Lemma 7 implies that dG(x, x′) ≤ 2Λ = 8λ + 4, yielding
dG(x, y) ≤ 8λ + 5. Now, let x ∈ C1 and x′ ∈ C2. By Lemma 11, C′ is
medium or big. If C′ is big and y ∈ C′

1, since x and y are adjacent in G′,
according to the algorithm, C′

1 contains a vertex that is adjacent in G
to a vertex of C1. Since y ∈ C′

1 is adjacent in G to x′ ∈ C2, we obtain a
contradiction with Lemma 11. Hence C′ is a medium cluster. According
to the algorithm, x is the center of the cell C1 and C1 contains a vertex z
adjacent in G to a vertex v ∈ C′. Since x, z ∈ C1 implies dG(x, z) ≤ 4λ+2
and y, v ∈ C′ implies dG(y, v) ≤ 16λ+12, we obtain dG(x, y) ≤ 20λ+15.

5.5. Proof of Proposition 5. By Proposition 3, it suffices to show that
G contains K2,3 as a λ-metric relaxed minor. Indeed, suppose that C is a
big or an almost big cluster with cells C1 and C2 having two sons C′, C′′,
such that C1 and C2 can be connected by a path in each of the CC′- and
CC′′-fibers of G. Let k = dG(s, C). Denote by P ′ and P ′′ the shortest
such paths connecting two vertices of C, one in C1 and another in C2, in
F(C, C′) and F(C, C′′), respectively. Denote by x′ ∈ C1 and y′ ∈ C2 the
end-vertices of P ′ and by x′′ ∈ C1 and y′′ ∈ C2 the end-vertices of P ′′.
The choice of P ′ implies P ′ ∩ C = {x′, y′} and the choice of P ′′ implies
P ′′ ∩ C = {x′′, y′′}. Let w′ and w′′ be middle vertices of P ′ and P ′′,
respectively. Let a′, b′ be the vertices of P ′ at distance λ + 1 (measured
in P ′) from w′, where a′ is between w′ and x′ and b′ is between w′ and y′.
Let L′ be the subpath of P ′ between a′ and w′ and R′ the subpath of P ′

between w′ and b′. Analogously, for P ′′ we can define the vertices a′′, b′′

and the paths L′′, R′′ of length λ + 1 each. Finally, denote by P ′
1, P

′
2 the

subpaths of P ′ between a′ and x′ and between b′ and y′. Analogously,
define the supbaths P ′′

1 and P ′′
2 of P ′′. Pick any shortest path M ′ in G

between the vertices x′, x′′ and any shortest path M ′′ between y′, y′′.
Let F ′ be a subpath of a shortest path P (x′, s) from x′ to the root s
starting with x′ and having length 3λ. Analogously, let F ′′ be a subpath
of a shortest path P (y′′, s) from y′′ to s starting with y′′ and having
length 3λ. Let J ′ and J ′′ be the subpaths of length λ + 1 of P (x′, s) and
P (y′, s), which continue F ′ and F ′′, respectively, towards s.



Now we define a mapping µ : V (K2,3) ∪ E(K2,3) 7→ V (G) certify-
ing that K2,3 is a λ-metric relaxed minor of G. Denote the vertices of
K2,3 by a, b, c, q′, q′′, where the vertices q′ and q′′ are assumed to be
adjacent to each of the vertices a, b, c. We set µ(a) := {w′}, µ(b) :=
{w′′}, µ(q′) := P ′

1 ∪ P ′′
1 ∪ M ′ ∪ F ′ =: Q′, µ(q′′) := P ′

2 ∪ P ′′
2 ∪ M ′′ ∪

F ′′ := Q′′, and µ(c) := Bk′ =: S, where k′ = k − 4λ − 1. Addition-
ally, for each edge of K2,3, we set µ(aq′) := L′, µ(aq′′) := R′, µ(bq′) :=
L′′, µ(bq′′) := R′′, µ(q′s) := J ′, µ(q′′s) := J ′′. We will call the paths
L′, L′′, R′, R′′, P ′

1, P
′
2, P

′′
1 , P ′′

2 , F ′, F ′′, J ′, J ′′, M ′, M ′′, the vertices w′, w′′,
and the set S the elements of the map µ. Notice first that each vertex of
K2,3 is mapped to a connected subgraph of G and each edge of K2,3 is
mapped to a path of G, thus µ satisfies the conditions (i) and (iii) of a
metric relaxed minor. It remains to show that µ satisfies the remaining
conditions of a λ-metric relaxed minor. The proof of this is subdivided
into several results: (1) dG(w′, C) ≥ 4λ + 3 and dG(w′′, C) ≥ 4λ + 3, (2)
S is λ-far from all elements of µ except J ′, J ′′ (3) w′ is λ-far from all
elements of µ except L′, R′ and w′′ is λ-far from all elements of µ except
L′′, R′′, (4) L′, R′ are λ-far from L′′, R′′, P ′′

1 , P ′′
2 , J ′, J ′′ and L′′, R′′ are

λ-far from P ′
1, P

′
2, J

′, J ′′, (5) Q′ is λ-far from the R′, R′′, J ′′ and Q′′ is
λ-far L′, L′′, J ′, and (6) Q′ and Q′′ are λ-far.

To prove the second assertion of Proposition 5, first suppose that the
cluster C is big and C has a big and a medium sons C′, C′′ such that
both cells C1 and C2 are adjacent to C′′ or that C has two medium
sons C′, C′′ adjacent to both cells of C. By definition of the layering,
each vertex of C′ ∪ C′′ is adjacent to a vertex of C. If all vertices of C′

are adjacent to vertices from the same cell of C, say C1, then for any
x′, y′ ∈ C′ we have dG(x′, y′) ≤ 2 + 4λ + 2, contrary to the assumption
that C′ is big. Hence, both cells of C are adjacent to C′, say x ∈ C1 is
adjacent to x′ ∈ C′ and y ∈ C2 is adjacent to y′ ∈ C′. By Lemma 11,
x′ and y′ belong to different cells of C′, say x′ ∈ C′

1 and y′ ∈ C′
2. Let

k := dG(s, C). Since x′, y′ ∈ C′, the vertices x′ and y′ are adjacent in
G(V \ Bk(s)) by a path P (x′, y′). Then P (x, y) := xx′ ∪ P (x′, y′) ∪ y′y
is a path between x and y in the CC′-fiber F(C, C′). Analogously, since
both cells C1 and C2 are adjacent to C′′, we conclude that two vertices
from different cells of C can be connected by a path belonging to the
CC′′-fiber, showing that the first condition of Proposition 5 is fulfilled.
This establishes (i). Now suppose that C has two big sons C′ and C′′.
Then C is either a big or an almost big cluster. By Lemma 9, each of
the clusters C′, C′′ is (8λ + 8)-separated while the cluster C is (8λ + 6)-
separated and that its cells C1 and C2 have diameters at most Λ. As in
previous cases, one can deduce that C1 is adjacent to one cell of each of
the clusters C′ and C′′, while C2 is adjacent to the second cell of these
clusters, establishing (ii).

5.6. Proof of Theorem 2. The algorithm returns the answer “not”
when a cluster C has two big sons or a big cluster C has two spread
sons. In this case, by Proposition 5 any embedding of G into a K2,3-minor
free graph requires distortion > λ, whence λ∗(G,O) > λ. Now suppose
that the algorithm returns the outerplanar graph G′ weighted uniformly
with w = 20λ + 15. Notice that in Case 4 of the algorithm, the required



matching between the four cells of the big clusters C and C′ exists by
Lemma 9 and because C′ is the unique spread son of C. By Proposition 6
we have dG(x, y) ≤ 20λ+15 = dG′(x, y) for each edge xy of the graph G′.
By Lemma 2 we conclude that dG(x, y) ≤ dG′(x, y) for any pair x, y ∈ V.
By Proposition 6, for any edge xy of G, the vertices x and y can be
connected in G′ by a path with at most 5 edges, i.e., dG′(x, y) ≤ 5w =
100λ+75. By Lemma 1 we conclude that dG′(x, y) ≤ (100λ+75)dG(x, y)
for any pair x, y of V. Hence dG ≤ dG′ ≤ (100λ + 75)dG.
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2. M. Bădoiu, J. Chuzhoy, P. Indyk, A. Sidiropoulos, Low-distortion
embeddings of general metrics into the line, STOC 2005.
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