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Abstract. In this paper, we present a simple factor 6 algorithm for approximating the optimal multiplicative

distortion of embedding a graph metric into a tree metric (thus improving and simplifying the factor 100

and 27 algorithms of Bǎdoiu, Indyk, and Sidiropoulos (2007) and Bǎdoiu, Demaine, Hajiaghayi, Sidiropoulos,

and Zadimoghaddam (2008)). We also present a constant factor algorithm for approximating the optimal

distortion of embedding a graph metric into an outerplanar metric. For this, we introduce a general notion

of metric relaxed minor and show that if G contains an α-metric relaxed H-minor, then the distortion of any

embedding of G into any metric induced by a H-minor free graph is ≥ α. Then, for H = K2,3, we present an

algorithm which either finds an α-relaxed minor, or produces an O(α)-embedding into an outerplanar metric.

1. Introduction

1.1. Avant-propos. The structure of the shortest-path metrics of special classes of graphs,

in particular, graph families defined by a set of forbidden minors (e.g., line metrics, tree

metrics, planar metrics) is one of the main areas in the theory of metric spaces. From the

algorithmic point of view, such metrics typically have more structure than general metrics,

and this structure can often be exploited algorithmically. Thus, if the input metric can

be well approximated by a special metric, this usually leads to an algorithmic advantage;

see, e.g., [14] for a survey of embeddings and their algorithmic applications. One way of

understanding this structure is to study the low distortion embeddings from one metric class

to another. To do this successfully, one needs to develop tools allowing a decomposition of the
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host space consistent with the embedded space. If this is impossible, one usually learns much

about the limitations of the host space and the richness of the embedded space. In this paper

we pursue this direction and study the embeddings into tree metrics and the metrics of K2,3-

minor free graphs (the outerplanar metrics essentially, because each 2-connected component

of a K2,3-minor free graph is either outerplanar or a K4).

The study of tree metrics can be traced back to the beginning of the 20th century, when

it was first realized that weighted trees can in some cases serve as an (approximate) model

for the description of evolving systems. More recently, as indicated in [17], it was observed

that certain Internet originated metrics display tree-like properties. It is well known [18]

that tree metrics have a simple structure: d is a tree metric if and only if all submetrics

of d of size 4 are such. Moreover, the underlying tree is unique, easily reconstructible, and

has rigid local structure corresponding to the local structure of d. But what about the

structure of approximately tree metrics? We have only partial answers for this question, and

yet what we already know seems to indicate that a rich theory might well be hiding there.

The strongest results were obtained, so far, for the additive distortion. A research on the

algorithmic aspects of finding a tree metric of least additive distortion has culminated in the

paper [1] (see also [8]), where a 6-approximation algorithm was established (in the notation

of [1], it is a 3-approximation algorithm, however, in our more restrictive definition, requiring

that the metric is dominated by the approximating one, it is a 6-approximation), together

with a (rather close) hardness result. Relaxing the local condition on d by allowing its size-4

submetrics to be δ-close to a tree metric, one gets precisely Gromov’s δ-hyperbolic geometry.

For study of algorithmic and other aspects of such geometries, see e.g. [7, 15].

The situation with the multiplicative distortion is less satisfactory. The best result for

embedding general metrics into tree metrics is obtained in [4]: the approximation factor is

exponential in
√
log∆/ log logn, where ∆ is the aspect ratio. Judging from the parallel results

of [2] for embedding into line metrics, it is conceivable that any constant factor approximation

for optimal embedding general metrics into tree metrics is NP-hard. For some small constant

γ, the hardness result of [1] implies that it is NP-hard to approximate the multiplicative

distortion better than γ even for metrics that come from unit-weighted graphs. For a special

interesting case of shortest path metrics of unit-weighted graphs, [4] gets a large (around

100) constant approximation factor (which was improved in [3] to a factor 27). The proof

introduces a certain metric-topological obstacle for getting embeddings of distortion better

than α, and then algorithmically either produces an O(α)-embedding, or an α-obstacle. Let

us mention that such an obstacle was used also in [12], and, essentially, in [16].

1.2. Our results. In this paper, we study the embeddings of unweighted (i.e., unit-weighted)

graph metrics into tree metrics and outerplanar metrics. Using a decomposition procedure

developed earlier in [5, 6], we simplify and improve the construction of [4] for embedding into

tree metrics. The improved constant is 6. We also introduce the notions of relaxed and metric

relaxed minors and show that if G contains an α-metric relaxed H-minor, then the distortion

of any embedding of the metric of G into any metric induced by a H-minor free graph is
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at least α. This generalizes the obstacle of [4]. Using this newly defined H-obstacle, we are

able to show that it is an essential obstacle not only for trees, but also for graphs without

H = K2,3 minors as well. We further develop an efficient algorithm which either embeds the

input graph G into an outerplanar metric with distortion O(α), or finds an α-metric relaxed

K2,3-minor in G. This is a first result of this kind for any H different from a C4 (which

is the corresponding α-metric relaxed minor corresponding to the four-point condition used

for embedding into tree-metrics; α-metric relaxed minors are defined in Subsection 4.2). It

is our feeling that this obstacle may prove essential for other forbidden H’s, notably K2,r,

hopefully series-parallel graphs, and beyond. Note also that our proof for embedding into

outerplanar graphs has an interesting consequence: it implies that if a graph embeds with

distortion α into an outerplanar graph then it embeds with distortion O(α) into a “tree of

cycles”, i.e., into an outerplanar graph in which every 2-connected component is either an

edge, or a cycle. In particular, this shows that every unweighted outerplanar graph embeds

into a tree of cycles with constant distortion.

1.3. Preliminaries. A metric space (X, d) is isometrically embeddable into a host metric

space (Y, d′) if there exists a map ϕ : X 7→ Y such that d′(ϕ(x), ϕ(y)) = d(x, y) for all

x, y ∈ X. In this case we say that X is a subspace of Y. More generally, ϕ : X 7→ Y is an

embedding with (multiplicative) distortion λ ≥ 1 if d(x, y) ≤ d′(ϕ(x), ϕ(y)) ≤ λ ·d(x, y) for all
x, y ∈ X (note that embedding here is non-contracting; this could be relaxed to contracting

embeddings as well, but will not be important in what follows). Given a metric space (X, d)

and a class M of host metric spaces, we denote by λ∗ := λ∗(X,M) the minimum distortion

of an embedding of (X, d) into a member of M. Analogously, ϕ : X 7→ Y is an embedding

with additive distortion λ ≥ 0 if d(x, y) ≤ d′(ϕ(x), ϕ(y)) ≤ d(x, y) + λ for all x, y ∈ X. In a

similar way, we can define the minimum additive distortion for embedding of a metric space

(X, d) into a class M of host metric spaces. In this paper, we consider finite connected

unweighted graphs as input metric spaces and tree metrics (trees) or outerplanar metrics

(and they relatives) as the class of host metric spaces. If not specified, all our results concern

embeddings with multiplicative distortion. For a connected unweighted graph G = (V,E),

we denote by dG(u, v) the shortest-path distance between two vertices u and v of G. A finite

metric space (X, d) is called a tree metric if it isometrically embeds into a tree, i.e., there

exists a weighted tree T = (X ′, E′) such that X ⊆ X ′ and d(u, v) = dT (u, v) for any two

points u, v ∈ X, where dT (u, v) is the length of the unique path connecting u and v in

T. Analogously, an outerplanar metric is a metric space isometrically embeddable into an

outerplanar weighted graph. We denote by T the class of all tree metric spaces and by O the

class of outerplanar metric spaces. Note that T is a proper subclass of O.

2. Preliminary results

In this section, we establish some properties of layering partitions and of embeddings with

distortion λ of graph metrics into weighted graphs.
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2.1. Layering partitions. We now briefly describe the layering partitions and establish

some of their properties. The layering partitions have been introduced in the papers [5, 6]

and recently used in a slightly more general forms in both approximation algorithms for

embedding graph metric into trees [3, 4] as well as in some other similar contexts [7, 10, 11].

Let G = (V,E) be an unweighted connected graph with a distinguished vertex s and

let r := max{dG(s, x) : x ∈ V }. A layering of G with respect to s is the decomposition

of V into the spheres Li = {u ∈ V : d(s, u) = i}, i = 0, 1, 2, . . . , r. A layering partition

LP (s) = {Li
1, . . . , L

i
pi : i = 0, 1, 2, . . . , r} of G is a partition of each Li into clusters Li

1, . . . , L
i
pi

such that two vertices u, v ∈ Li belong to the same cluster Li
j if and only if they can be

connected by a path outside the ball Bi−1(s) of radius i − 1 centered at s. It was shown in

[6] that for a given unweighted graph G such a layering partition can be found in linear time.

Let Γ be a graph whose vertex set is the set of all clusters Li
j in a layering partition LP of

a graph G. Two vertices C = Li
j and C ′ = Li′

j′ are adjacent in Γ if and only if there exist

u ∈ Li
j and v ∈ Li′

j′ such that u and v are adjacent in G (see Fig. 1). It is shown in [6] that

Γ is a tree, called the layering tree of G, and that Γ is computable in linear time in the size

of G. In what follows, we assume that Γ is rooted at cluster {s}.

Figure 1. A layering partition of G and the trees Γ and H associated with

this layering partition.

We can construct a new tree H = (V, F ) for a graph G (closely reproducing the global

structure of the layering tree Γ) by identifying for each cluster C = Li
j ∈ LP an arbitrary

vertex xC ∈ Li−1 which has a neighbor in C = Li
j and by making xC adjacent in H with all

vertices v ∈ C (see the rightmost picture in Fig. 1). Vertex xC will be called support vertex

for cluster C = Li
j . In what follows, we assume that H is rooted at vertex s.

Let D be the largest diameter of a cluster in a layering partition LP of G, i.e., D :=

maxC∈LP maxv,u∈C{dG(u, v)}. Then, the following result (also implicitly used in [5, 6, 7] in

particular cases) shows that the additive distortion of the embedding of G intoH is essentially

D:

Proposition 1. For any vertices x, y of G, dH(x, y)− 2 ≤ dG(x, y) ≤ dH(x, y) +D.

Proof. Let Cx and Cy be the clusters containing the vertices x and y, respectively. Denote

by C the cluster which is the nearest common ancestor of Cx and Cy in the layering tree
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Γ of G. The assertion is trivial if Cx = Cy = C. For C 6= Cx, let x′, y′ ∈ C be the

ancestors of x and y, respectively, in a BFS(G,s)-tree. Then dΓ(Cx, C) = dG(x, x
′) and

dΓ(Cy, C) = dG(y, y
′). By construction of H, dH(x, y) is equal either to dΓ(Cx, C)+dΓ(Cy, C)

or to dΓ(Cx, C) + dΓ(Cy, C) + 2. Thus, by the triangle inequality,

dG(x, y) ≤ dG(x, x
′) + dG(x

′, y′) + dG(y, y
′) ≤ dΓ(Cx, C) + dΓ(Cy, C) +D ≤ dH(x, y) +D.

On the other hand, by definition of clusters, dG(x, y) ≥ dG(x, x
′)+dG(y, y

′) ≥ dH(x, y)−2. �

Note that tree H, like any BFS-tree, preserves graph distances between the root s and any

other vertex of G. We can locally modify H by assigning uniform weights to its edges or by

adding Steiner points to obtain a number of other desired properties (like, non-expansiveness,

non-contractibility, etc.). For example, assigning length w := D + 1 to each edge of H, we

will get a uniformly weighted tree Hw = (V, F,w) in which G embeds with multiplicative

distortion essentially equal to D + 1 :

Corollary 1. For any vertices u, v of G, dG(u, v) ≤ dHw(u, v) ≤ (D + 1)(dG(u, v) + 2).

By adding Steiner points and using edge lengths 0 and 1, the tree H can be easily trans-

formed into a tree H ′ which has the same additive distortion and satisfies the non-expansive

property. For this, for each cluster C := Li
j we introduce a Steiner point pC , and add an

edge of length 0 between any vertex of C and pC and an edge of length 1 between pC and

the support vertex xC for C, defined above.

Corollary 2. For any vertices u, v of G, dH′(u, v) ≤ dG(u, v) ≤ dH′(u, v) +D.

By replacing each edge in H ′ with edge of length w := D+1
2 , we obtain a tree H ′

w with the

following property:

Corollary 3. For any vertices u, v of G, dG(u, v) ≤ dH′
w
(u, v) ≤ (D + 1)(dG(u, v) + 1).

2.2. Embeddings with distortion λ of graph metrics. We continue with two auxiliary

standard results about embeddings.

Lemma 1. If G = (V,E) is an unweighted graph, G′ = (V ′, E′) is a weighted graph,

and ϕ : V 7→ V ′ is a mapping such that dG′(ϕ(u), ϕ(v)) ≤ λ for any edge uv of G, then

dG′(ϕ(x), ϕ(y)) ≤ λdG(x, y) for any pair of vertices x, y of G.

Proof. Consider a shortest path P of G between arbitrary vertices x, y of G. For each edge

uv of P , ϕ(u) and ϕ(v) are connected in G′ by a path Puv of length ≤ λ. Hence, ϕ(x) and

ϕ(y) can be connected in the subgraph of G′ induced by ∪{Puv : uv is an edge of P} by a

path with total length of edges at most λdG(x, y). Hence, dG′(ϕ(x), ϕ(y)) ≤ λdG(x, y). �

Lemma 2. If G = (V,E) is an unweighted graph, G′ = (V ′, E′) is a weighted graph, and

ϕ : V 7→ V ′ is a mapping such that dG′(ϕ(u), ϕ(v)) ≥ dG(u, v) for any edge ϕ(u)ϕ(v) of G′,

then dG′(ϕ(x), ϕ(y)) ≥ dG(x, y) for any pair of vertices x, y of G.
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Proof. We proceed by induction on the number of edges in a shortest path between ϕ(x)

and ϕ(y) in G′. If ϕ(x) and ϕ(y) are adjacent in G′, then we are done by our condition.

Otherwise, let ϕ(x′) be the neighbor of ϕ(x) in such a shortest path. By induction hypothesis,

dG′(ϕ(x′), ϕ(y)) ≥ dG(x
′, y). Since dG′(ϕ(x), ϕ(x′)) ≥ dG(x, x

′), the triangle inequality yields

dG′(ϕ(x), ϕ(y)) = dG′(ϕ(x), ϕ(x′)) + dG′(ϕ(x′), ϕ(y)) ≥ dG(x, x
′) + dG(x

′, y) ≥ dG(x, y), and

we are done. �

3. Approximation algorithm for embedding graph metrics into trees

We describe now a simple factor 6 algorithm for approximating the optimal distortion λ∗ =

λ∗(G, T ) of embedding finite unweighted graphs G into trees. For this, we first investigate

the properties of layering partitions of graphs which λ-embed into trees, i.e., for each such

graph G = (V,E) there exists a tree T = (V ′, E′) with V ⊆ V ′ such that

(1) dG(x, y) ≤ dT (x, y) (non-contractibility)

and

(2) dT (x, y) ≤ λ · dG(x, y) (bounded expansion)

for every x, y ∈ V . Denote by PT (x, y) the path connecting the vertices x, y in T. For x ∈ V ′

and A ⊆ V ′, we denote by dT (x,A) = min{dT (x, v) : v ∈ A} the distance from x to A. First

we show that the diameters of clusters in a layering partition of such a graph G are at most

3λ, allowing already to build a tree with distortion 8λ∗. Refining this property of layering

partitions, we construct in O(|V ||E|) time a tree into which G embeds with distortion ≤ 6λ∗.

Lemma 3. If a graph G λ-embeds into a tree, then for any x, y ∈ V, any path PG(x, y) of G

between x, y and any vertex c ∈ PT (x, y), we have dT (c, PG(x, y)) ≤ λ/2.

Proof. Removing c from T , we separate x from y. Let Ty be the subtree of T \ {c} containing

y. Since x /∈ Ty, we can find an edge ab of PG(x, y) with a ∈ Ty and b /∈ Ty. Therefore,

the path PT (a, b) must go via c. If dT (c, a) > λ/2 and dT (c, b) > λ/2, then dT (a, b) =

dT (a, c)+ dT (c, b) > λ and since dG(a, b) = 1, we obtain a contradiction with the assumption

that the embedding of G in T has distortion λ (condition (2)). Hence dT (c, PG(x, y)) ≤
min{dT (c, a), dT (c, b)} ≤ λ/2, concluding the proof. �

Lemma 4. If a graph G λ-embeds into a tree T , then the diameter in G of any cluster C

of a layering partition of G is at most 3λ, i.e., dG(x, y) ≤ 3λ for any two vertices x, y ∈ C.

In particular, λ∗(G, T ) ≥ D/3, where D is the maximal diameter of a cluster of a layering

partition of G.

Proof. Let PG(x, y) be a path of G connecting the vertices x and y outside the ball

Bk(s), where k = dG(s, x) − 1. Let PG(x, s) and PG(y, s) be two shortest paths of G

connecting the vertices x, s and y, s, respectively. Let c ∈ V (T ) be the unique vertex

in T that is on the intersection PT (x, y) ∩ PT (x, s) ∩ PT (y, s). Since c belongs to each of

the paths PT (x, y), PT (x, s), and PT (y, s), applying Lemma 3 three times, we infer that

dT (c, PG(x, y)) ≤ λ/2, dT (c, PG(x, s)) ≤ λ/2, and dT (c, PG(y, s)) ≤ λ/2.
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Let a be a closest to c vertex of PG(x, s) in the tree T, i.e., dT (a, c) = dT (c, PG(x, s)) ≤ λ/2.

Let z be a closest to a vertex of PG(x, y) in T. From condition (1) and previous inequalities

we conclude that dG(a, z) ≤ dT (a, z) = dT (a, PG(x, y)) ≤ dT (a, c)+dT (c, PG(x, y)) ≤ λ. Since

z ∈ PG(x, y) and PG(x, y) ∩Bk(s) = ∅, necessarily dG(s, z) ≥ dG(s, x) = dG(s, a) + dG(a, x),

yielding dG(a, x) ≤ dG(a, z) ≤ λ. Analogously, if b is a closest to c vertex of PG(y, s) in

T, then dG(b, y) ≤ λ and dT (b, c) ≤ λ/2. By non-contractibility condition (1) and triangle

condition, dG(a, b) ≤ dT (a, b) ≤ dT (a, c) + dT (b, c) ≤ λ. Summarizing, we obtain the desired

inequality dG(x, y) ≤ dG(x, a) + dG(a, b) + dG(b, y) ≤ 3λ. �

From Lemma 1 and Corollary 2 we immediately conclude

Corollary 4. If a graph G = (V,E) λ-embeds into a tree, then there exists an unweighted

tree H = (V, F ) (without Steiner points) and a {0, 1}-weighted tree H ′ = (V ∪ S′, F ′) (with

Steiner points), both constructible in linear O(|V |+ |E|) time, such that

dH(x, y)− 2 ≤ dG(x, y) ≤ dH(x, y) + 3λ

and

dH′(x, y) ≤ dG(x, y) ≤ dH′(x, y) + 3λ

for any vertices x, y ∈ V .

This corollary shows that, for any unweighted graph G, it is possible to turn its non-

contractive multiplicative low-distortion embedding into a weighted tree to a non-expanding

additive low-distortion embedding into a {0, 1}-weighted tree. This seems to be an interesting

result on its own (note that the additive distortion of embedding general finite metrics into

trees can be approximated within a factor of 3 [1, 8]).

Since the largest diameter D of a cluster in LP can be computed in at most O(|V ||E|)
time, from Corollaries 1 and 3, we obtain:

Corollary 5. If a graph G = (V,E) λ-embeds into a tree, then there exists a uniformly

weighted tree Hw = (V, F,w) (without Steiner points) and a uniformly weighted tree H ′
w =

(V ∪ S′, F ′, w) (with Steiner points), both constructible in O(|V ||E|) time, such that

dG(u, v) ≤ dHw(u, v) ≤ (3λ+ 1)(dG(u, v) + 2)

and

dG(u, v) ≤ dH′
w
(u, v) ≤ (3λ+ 1)(dG(u, v) + 1)

for any vertices u, v of G.

Note that, although the topologies H and H ′ of trees Hw and H ′
w can be constructed in

linear O(|V | + |E|) time, we need to compute the weights w = D + 1 and w = (D + 1)/2

assigned to each edge of H and H ′, and this requires O(|V ||E|) time.

Corollary 5 implies already that there exists a factor 12 approximation algorithm (resp.,

factor 8 approximation if Steiner points are used) for the problem of non-contractive em-

bedding an unweighted graph into a tree with minimum multiplicative distortion. Below we
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show that, by strengthening the result of Lemma 4, one can improve the approximation ratio

from 12 to 9 and from 8 to 6.

Lemma 5. Assume that G = (V,E) λ-embed into a tree T , let C = Li
j ∈ LP be a cluster of

a layering partition of G and v be an arbitrary vertex of C. Then, for any neighbor v′ ∈ Li−1

of v and any vertex u ∈ C, we have dG(v
′, u) ≤ max{3λ− 1, 2λ+ 1}.

Proof. Let c ∈ V (T ) be the nearest common ancestor in the tree T (rooted at s) of all vertices

of cluster C = Li
j . Let x and y be two vertices of C separated by c. Let PG(x, y) be a path

of G connecting vertices x and y outside the ball Bi−1(s). Then, as in the proof of Lemma 4,

we have dT (c, PG(x, y)) ≤ λ/2.

Pick an arbitrary vertex v ∈ C and a shortest path PG(v, s) connecting v with s in G.

Since c separates v from s in T , by Lemma 3, dT (c, PG(v, s)) ≤ λ/2

holds. Let av be a closest to c vertex of PG(v, s) in the tree T . Then, dT (av, PG(x, y)) ≤
dT (av, c)+dT (c, PG(x, y)) ≤ λ. The choice of the path PG(x, y) and inequality (1) imply that

dG(av, v) ≤ dG(av, PG(x, y)) ≤ dT (av, PG(x, y)) ≤ λ.

Consider now an arbitrary vertex u ∈ C, u 6= v. By the triangle inequality and (1),

we have dG(av, au) ≤ dT (av, au) ≤ dT (av, c) + dT (au, c) ≤ λ and, therefore, dG(av, u) ≤
dG(av, au) + dG(au, u) ≤ 2λ.

Let v′ ∈ Li−1 be a neighbor of v in PG(v, s). If av = v, then dG(v, u) = dG(av, u) ≤ 2λ,

i.e., dG(v
′, u) ≤ dG(v, u) + 1 ≤ 2λ + 1. Otherwise, if av 6= v, then dG(v

′, u) ≤ dG(v
′, av) +

dG(av, u) ≤ λ − 1 + 2λ = 3λ − 1, establishing the required inequality dG(v
′, u) ≤ max{3λ −

1, 2λ+ 1}. �

To make the embedding of G into the tree H non-contractive, it suffices to assign the

same length ` := max{3λ − 1, 2λ + 1} to each edge of H and get a uniformly weighted tree

H` = (V, F, `).

Corollary 6. For any vertices u, v of a graph G which λ-embeds into a tree, we have

dG(u, v) ≤ dH`
(u, v) ≤ max{3λ− 1, 2λ+ 1}(dG(u, v) + 2).

The tree H` provides a 9-approximation to the problem of non-contractive embedding an

unweighted graph into a tree with minimum multiplicative distortion. Note that the tree

H` does not have Steiner points. If we allow Steiner points, a better approximation can be

achieved. For this, we simply assign the same length ` := 3λ
2 to each edge of H ′ and get a

uniformly weighted tree H ′
`.

Corollary 7. For any vertices u, v of a graph G which λ-embeds into a tree, we have

dG(u, v) ≤ dH′
`
(u, v) ≤ 3λ(dG(u, v) + 1).

For a given graph G = (V,E), we do not know λ in advance, however we know from

Lemma 4 that λ∗(G, T ) ≥ D/3. Therefore, the length `, which needs to be assigned to each

edge of the tree H (which is defined in a canonical way, independently of the value of λ), can

be found as follows: ` = max{dG(u, v) : uv is an edge of H}. The length `, which needs to

be assigned to each edge of tree H ′, can be found as follows: ` = 1
2 max{D,max{dG(u, v) :
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uv is an edge of H}}. Hence, ` can be computed in O(|V ||E|) time. Our main result of this

section is the following algorithm and theorem.

Algorithm Approximation by Tree Metric

Input: A graph G = (V,E), a root vertex s and the corresponding layering partition

LP = {Li
1, . . . , L

i
pi : i = 0, 1, . . . , r} of G

Output: Trees H, H ′, H`, and H ′
` for G

1. Set initially H := H ′ := (V, ∅).
2. For i = r downto 1 do

3. For each cluster C from {Li
1, . . . , L

i
pi} do

4. Pick a vertex xC in Li−1 which has a neighbor in C.

5. Add to H edges {vxC : v ∈ C}.
6. Add to H ′ a Steiner point pC and edges {vpC : v ∈ C} and pCxC .

7. Set ` := max{dG(u, v) : uv is an edge of H}.
8. Set H` := H and assign length ` uniformly to all edges of H`.

9. Set ` := 1
2
max{D, `}, where D is the largest diameter of a cluster from LP .

10. Set H ′
` := H ′ and assign length ` uniformly to all edges of H ′

`.

11. Return trees H, H ′, H` and H ′
`.

Theorem 1. There exists a factor 6 approximation algorithm with running time O(|V ||E|)
for the optimal multiplicative distortion λ∗(G, T ) of non-contractive embedding an unweighted

graph G into a tree.

Our 6-approximation algorithm improves previously known 100-approximation [4] and 27-

approximation [3] algorithms. In fact, the approximation ratio 6 holds only for adjacent

vertices of G. It decreases when distances in G increase. For vertices at distance ≥ 2, the

ratio is ≤ 4.5. For vertices at distance ≥ 3, the ratio is ≤ 4. Our tree H` does not have any

Steiner points and the edges of both trees H` and H
′
` are uniformly weighted. The tree H ′

`,

with Steiner points, is better than the tree H` only for small graph distances. So, the Steiner

points do not really help, confirming A. Gupta’s claim [13].

Our technique works also in more general cases. In particular, if an

unweighted graph G = (V,E) admits a weighted tree T = (V ∪ S,U) with

dG(x, y) ≤ α · dT (x, y) + β and dT (x, y) ≤ λ · dG(x, y) + δ

for all x, y ∈ V , then each cluster of a layering partition of G has diameter at most 3(α(λ+

δ) + β). Moreover, H = (V, F ), weighted appropriately, will give a good approximation of T .

4. Minors, relaxed minors, and metric minors

In this section, we introduce the notions of relaxed minors and α-metric relaxed minors,

which, together with layering partitions, are used in the algorithm for approximating the

optimal distortion of embedding unweighted graphs into outerplanar graphs (i.e., K2,3-minor

free graphs approximation). These concepts and results may be helpful for designing approx-

imation algorithms for embedding graphs into other classes of minor closed graphs.
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4.1. Minors and relaxed minors. Recall that a graph H is a minor of a graph G if a

graph isomorphic to H can be obtained from G by contracting some edges, deleting some

edges, and deleting some isolated vertices [9]. Notice that the property of being minor is

transitive, i.e., if G′ is a minor of G and H is a minor of G′, then H is a minor of G. To

adapt the concept of minor to our embedding purposes, note that H = (V ′, E′) is a minor of

G = (V,E) provided there exists a map µ : V ′ ∪ E′ 7→ 2V , such that

(i) for any vertex v of H, G(µ(v)) is connected;

(ii) for any different vertices v, v′ of H, G(µ(v)) ∩G(µ(v′)) = ∅;
(iii) for any edge e = uv of H, G(µ(e)) is a path Pe of G with one end in G(µ(u)) and

another end in G(µ(v));

(iv) for any vertex v and any edge e of H with v /∈ e, Pe ∩G(µ(v)) = ∅;
(v′) for any two edges e = (x, y), e′ = (u, v) of H, the paths Pe and Pe′ intersect if and

only if {x, y} ∩ {u, v} 6= ∅ and if say, e = (x, y), e′ = (x,w) then Pe and Pe′ intersect

only in µ(x).

Indeed, if such a map µ exists, then contracting each connected subgraph µ(v), v ∈ V ′, to a

single vertex v and each path Pe to an edge e, the conditions (ii),(iii), and (v′) ensure that

the resulting graph will be isomorphic to H, i.e., H is indeed a minor of G. Note that if in

(v′) two paths Pe and Pe′ intersect, then they intersect in the subgraph G(µ(u)), where u is

the common end of e and e′. In particular, if the edges e, e′ are non-incident, then the paths

Pe and Pe′ are disjoint.

For our metric related theory we will need a weaker notion of minor by allowing intersecting

paths to intersect anywhere. A graph H = (V ′, E′) is called a relaxed minor of a graph

G = (V,E) if there exists a map µ : V ′ ∪ E′ 7→ 2V satisfying the conditions (i)-(iv) and the

following relaxation of (v′):

(v) for any two non-incident edges e, e′ of H, the paths Pe and Pe′ are disjoint.

The concept of relaxed minor is weaker than that of minor. For example, the triangle C3

(3-cycle) is not a minor of any tree, but it is a relaxed minor of the star K1,3 : µ maps the

three vertices of C3 to the three leaves of K1,3 and maps each edge uv of C3 to the unique

path of K1,3 between the leaves µ(u) and µ(v). The map µ satisfies the conditions (i)-(v) but

does not satisfy the condition (v′).

Relaxed and α-metric relaxed minors (see Subsection 4.2) are crucial because their exis-

tence corresponds to a witness that G cannot be embedded into H-relaxed-minor-free graphs

with small distortion (see Proposition 3). Thus it seems important to relate this notion to

standard minors. We conjecture that if the graph H is triangle-free, then the notion of relaxed

minor is not weaker than that of minor. Here we prove a weaker statement. We note that

while this leaves this graph theoretic point not settled, it has no bearing regarding the metric

consequences (proving the conjecture will improve the distortion lower bound of Proposition

3 only by a factor of 2). We established a weaker statement which is enough to deal with H

of special form: H will be bipartite H = (V, F ;E) with every vertex f ∈ F of degree two.
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Such subdivided graphs H can be seen as a subdivision of an arbitrary graph H ′ = (V,E′)

where (u, v) ∈ H ′ iff there is a member f ∈ F such that (u, f), (v, f) ∈ E.

Proposition 2. If a graph G = (V,E) has a subdivided graph H = (V ′, E′) as a relaxed

minor, then G has H as a minor.

Proof. We proceed by induction on the total number of vertices and edges of the graph G. The

base case for which H = G is trivial. Let H be a relaxed minor of G and let µ : V ′∪E′ 7→ 2V

be the map satisfying the conditions (i)-(iv) and (v). Suppose, by way of contradiction, that

H is not a minor of G, in particular, that µ does not satisfy the condition (v′). For each

edge uv of H, we will denote by u∗ ∈ µ(u) and v∗ ∈ µ(v) the end vertices of the path Pe.

Note that we can suppose that each such path Pe, e ∈ E′, intersects the connected subgraphs

G(µ(u)) and G(µ(v)) in a single vertex. Indeed, if say Pe intersects G(µ(u)) and/or G(µ(v))

in several vertices, then let x be the last vertex of Pe ∩ µ(u) while moving along Pe from u∗

to v∗ and let y be the first vertex of Pe ∩ µ(v) while moving from x to v∗. Replacing in the

definition of µ the path Pe by its subpath P ′
e between x and y, we will obtain a map µ which

still satisfies the definition of relaxed minors and such that |P ′
e∩µ(u)| = 1 and |P ′

e∩µ(v)| = 1.

So, we will further assume that µ obeys this additional condition, i.e., Pe ∩ µ(u) = {u∗} and

Pe ∩ µ(v) = {v∗} for any edge e = uv of H.

We assert now that for each vertex v of the graph H, the subgraph of G induced by µ(v)

consists of a single vertex. If this is not the case, then let G′ be the graph obtained from G

by contracting the connected subgraph G(µ(v)) to a single vertex v′. Then, G′ is a minor of

G. Denote by ψ the map from G to G′ defining this contraction, i.e., ψ(u) = u if u /∈ µ(v) and

ψ(u) = v′, otherwise. Then, the composition of µ with ψ is a map from H to G′ satisfying

the conditions (i)-(v), i.e., H is a relaxed minor of G′. By induction assumption, H is a minor

of G′ and therefore must be a minor of G as well, contrary to our assumption. Therefore, for

each vertex v of H, the set µ(v) consists of a single vertex of G, which we will further denote

by v∗. We can also suppose that the paths Pe, e ∈ E′, are induced paths of G, otherwise we

can shortcut them without violating the conditions (i)-(v). Similarly, it is easy to observe

that no edge of G is used by more than one path of the form Pe, as otherwise, such an edge

can be contracted leaving H as a relaxed minor in the contracted graph.

Since H is a subdivided graph, H is of the form (V, F ;E), where each vertex f ∈ F has

degree 2. Since µ does not satisfy the condition (v′) for minors, there exist two incident edges

e = uv and e′ = uw of H such that the paths Pe and Pe′ of G intersect in other vertices

except the vertex u∗ = µ(u). Suppose first that this happens for some u = f ∈ F . Namely,

Pe and Pe′ intersect in u
∗ and in addition in some x ∈ V (G), where x is the closest along Pe

to u∗. It is easy to see that one can change µ so that to map µ(u) to x, to map e to the suffix

of Pe from x to v∗, and Pe′ to the suffix from x to w∗, while still having H as a relaxed minor

of G. However, now the first edge (u∗, u′) in the former path Pe is not used anymore and can

be deleted, thus induction ends the proof. We conclude that for every f ∈ F the two paths

that correspond to the edges adjacent to f , intersect only in their ends points µ(f).

11



Assume then, that there is vertex in H, u ∈ V and two edges e1 = (u, f1), e2 = (u, f2) such

that the paths µ(e1) = P1 and µ(e2) = P2 intersect also at x 6= u∗. Let u∗u1, u
∗u2 be the

first edges in the paths P1, P2 respectively, and note that u1, u2 6= x otherwise, if say u1 = x,

then the edge u∗x could be contracted (and the map µ changed accordingly), preserving H

as a relaxed minor of the smaller resulting graph, implying the result.

Now, the edge (u∗, u1) cannot be contracted only if u1 is used by another path µ(e3) = P3

for some e3 ∈ H that is not adjacent to u (this is allowed as H is a relaxed minor). However,

as P3 intersects P1, it must be the case that e3 is adjacent to e1 at f1. This, however,

contradicts our conclusion before that the two paths adjacent to any µ(f), f ∈ F intersect

only at their end points. This contradiction completes the proof of the Proposition. �

4.2. α-Metric relaxed minors. We say that two sets A,B of a graph G are α-far if

min{dG(a, b) : a ∈ A, b ∈ B} > α. For α ≥ 1, we call a graph H = (V ′, E′) an α-metric

relaxed minor of a graph G = (V,E) if there exists a map µ : V ′ ∪ E′ 7→ 2V satisfying

the conditions (i)-(v) (i.e., H is a relaxed minor of G) and the following stronger version of

condition (v):

(v+) for any two non-incident edges e = uv and e′ = u′v′ of H, the sets µ(u) ∪ Pe ∪ µ(v)
and µ(u′) ∪ Pe′ ∪ µ(v′) are α-far in G.

Note that while the notion of a relaxed minor is a relaxation of the standard graph-minor

(and is weaker), the notion of metric relaxed minor is generally stronger.

To motivate the concept of α-metric relaxed minor, we establish first the following basic

property of embeddings with (multiplicative) distortion ≤ α of unweighted graphs G into

(possibly weighted) graphs G′.

Let ϕ be an embedding of a graph G = (V,E) into a graph G′ = (V ′, E′) having distortion

at most α. For a set S ⊆ V inducing a connected subgraph G(S) of G, we denote by [ϕ(S)] a

union of shortest paths of G′ running between each pair of vertices of ϕ(S) which are images

of adjacent vertices of G(S), one shortest path per pair.

Lemma 6. If a graph G α-embeds into a graph G′ and two edges e1 = a1a2 and e2 = b1b2
are α-far in G, then [ϕ(e1)] ∩ [ϕ(e2)] = ∅. More generally, if two sets of vertices A,B induce

connected subgraphs of G and are α-far, then [ϕ(A)] ∩ [ϕ(B)] = ∅.

Proof. For a vertex v of G, let v∗ = ϕ(v). Suppose, by way of contradiction, that the shortest

paths Pe1 = [ϕ(e1)] between a
∗
1, a

∗
2 and Pe2 = [ϕ(e2)] between b

∗
1, b

∗
2 intersect in a vertex x.

Since

1 = dG(a1, a2) ≤ dG′(a∗1, a
∗
2) ≤ α · dG(a1, a2) = α, dG′(a∗1, a

∗
2) = dG′(a∗1, x) + dG′(x, a∗2),

1 = dG(b1, b2) ≤ dG′(b∗1, b
∗
2) ≤ α · dG(b1, b2) = α, dG′(b∗1, b

∗
2) = dG′(b∗1, x) + dG′(x, b∗2),

we conclude that

min{dG′(a∗1, x), dG′(x, a∗2)} ≤ α/2 and min{dG′(b∗1, x), dG′(x, b∗2)} ≤ α/2.
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Suppose, without loss of generality, that dG′(a∗1, x) ≤ α/2 and dG′(b∗1, x) ≤ α/2. Since

dG(a1, b1) ≤ dG′(a∗1, b
∗
1) ≤ dG′(a∗1, x) + dG′(b∗1, x) ≤ α/2 + α/2 ≤ α, we obtain a contradiction

with the assumption that the edges e1 = a1a2 and e2 = b1b2 are α-far in G.

To establish the second assertion, suppose, by way of contradiction, that [ϕ(A)]∩ [ϕ(B)] 6=
∅. From the definition of the sets [ϕ(A)] and [ϕ(B)] we conclude that [ϕ(e1)]∩ [ϕ(e2)] 6= ∅ for

an edge e1 of G(A) and an edge e2 of G(B). From the first part of the proof, we know that

the edges e1 and e2 cannot be α-far, thus the sets A and B cannot be α-far either. �

We will show now that under some general conditions on H, the presence in a graph G of

an α-metric relaxed minor isomorphic to H is an obstacle for embedding G into a H-minor

free graph with distortion at most α.

Proposition 3. If a subdivided 2-connected graph H = (V ′, E′) is an α-metric relaxed minor

of a graph G = (V,E), then any embedding of G into an H-minor free graph requires distortion

> α.

Proof. Suppose, by way of contradiction, that G has an embedding ϕ with distortion ≤ α

into an H-minor free graph G′. Let µ : V ′∪E′ 7→ 2V be a map showing that H is an α-metric

relaxed minor of G. Before deriving a contradiction with this assumption, we consider some

properties of maps ϕ and µ. First note that we can extend ϕ from the vertex-set V of G to

the edge-set E by associating with each edge e of G the shortest path Pe := [ϕ(e)] of G′. Pick

any vertex v of H. Then, ϕ(µ(v)) is a connected subgraph of G′ because each of the maps

µ and ϕ maps connected subgraphs to connected subgraphs. Moreover, from Lemma 6 we

know that ϕ maps two α-far connected subgraphs of G to two disjoint subgraphs of G′. As

to the map µ, we assert that it satisfies the following two conditions:

(ii+) for any two different vertices v, v′ of H, the sets µ(v) and µ(v′) are α-far;

(iv+) for any vertex v and any edge e of H with v /∈ e, the sets µ(v) and µ(e) = Pe are

α-far.

Since H is 2-connected, any two distinct vertices v, v′ belong to a common cycle of H. Since

H is triangle-free, v and v′ belong to two non-incident edges e, e′ of this cycle. Applying

property (v+) to e and e′, we conclude that µ(v) and µ(v′) are α-far, establishing (ii+).

Analogously for (iv+), if v /∈ e then, by 2-connectivity of H, we can find a cycle passing via

v and e. Since G is triangle-free, one of two edges of this cycle containing v, say e′, is not

incident to e. Again, applying the condition (v+) to the edges e and e′, we conclude that the

sets µ(v) and Pe are α-far, establishing (iv+).

Now, we define the following map ν : V ′ ∪ E′ 7→ 2V (G′) from H to G′. For each vertex

v ∈ V ′, we set ν(v) = ϕ(µ(v)). For each edge e = uv of H, µ(e) = Pe is a path of the graph

G with end-vertices u∗ ∈ µ(u) and v∗ ∈ µ(v). Each edge f of Pe is mapped by ϕ to a path

ϕ(f) of G′. Define ν(e) to be any path of G′ between the vertices u′ = ϕ(u∗) and v′ = ϕ(v∗)

contained in the set
⋃
{ϕ(f) : f is an edge of Pe}. From definition of ν and properties of µ

and ϕ it immediately follows that the map ν satisfies the conditions (i) and (iii). We will

show now that ν satisfies the conditions (ii), (iv), and (v) as well. To verify (ii), pick two

distinct vertices u, v of H.
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By condition (ii+), the sets µ(u) and µ(v) are α-far, thus the second assertion of Lemma

6 implies that the sets ν(u) = ϕ(µ(u)) and ν(v) = ϕ(µ(v)) are disjoint, thus showing (ii).

Analogously, if v is a vertex and e is an edge of H with v /∈ e, then, by (iv+), the sets µ(v)

and Pe = µ(e) are α-far, thus, by Lemma 6, the sets ν(v) = ϕ(µ(v)) and ϕ(Pe) are disjoint.

Since ν(e) ⊆ ϕ(Pe), the sets ν(v) and ν(e) are disjoint as well, establishing (iv). The last

condition (v) can be derived in a similar way by using (v+) and Lemma 6. Hence, the map

ν satisfies the conditions (i)-(v), thus H is a relaxed minor of G′. Since H is triangle-free, by

Proposition 2, H is a minor of G′, contrary to the assumption that the graph G′ is H-minor

free. This concludes the proof of the proposition. �

4.3. Lower bounds for α-embeddings into K2,r-minor free graphs. We will use the

results of previous section to give lower bounds for the multiplicative distortion of embedding

an unweighted graph G = (V,E) into K2,r-minor free (possibly weighted) graphs.

Proposition 4. If for α > 1 a cluster C of a layering partition LP of a graph G contains

r ≥ 3 vertices v∗1, . . . , v
∗
r that are pairwise (4α + 2)-far, then any embedding ϕ of G into a

K2,r-minor free graph has distortion > α.

Proof. Suppose that the layering partition LP of G was defined with respect to the vertex s

and let T be a BFS tree rooted at s. Let k denote the distance from s to any vertex of the

cluster C. Since C contains (4α+2)-far vertices v∗1, . . . , v
∗
r , we conclude that k ≥ 2α+2. We

will define now a mapping µ from K2,r to G which will allow us to conclude that K2,r is an

α-metric relaxed minor of G. Then, since K2,r is 2-connected and triangle-free, Proposition 3

will show that any embedding of G into a K2,r-minor free graph has distortion > α. Denote

by u1, . . . , ur, v, w the vertices of K2,r, where v and w are the two vertices of degree r. Finally,

denote by ei the edge vui and by fi the edge wui, i = 1, . . . , r.

Let P1, . . . , Pr be the paths of the tree T of length α + 1 from the vertices v∗1, . . . , v
∗
r ,

respectively, towards the root s. Denote by u∗1, . . . , u
∗
r the other end vertices of the paths

P1, . . . , Pr. Let R1, . . . , Rr be the paths of T of length α + 1 from the vertices u∗1, . . . , u
∗
r ,

respectively, towards s. Denote by w∗
1, . . . , w

∗
r the other end vertices of the paths R1, . . . , Rr.

Set µ(ui) := u∗i , µ(ei) := Pi and µ(fi) := Ri for i = 1, . . . , r. Let µ(v) be the connected

subgraph of G induced by all (or some) paths connecting the vertices v∗1, . . . , v
∗
r outside the

ball Bk−1(s). Finally, let µ(w) := Bk−2α−2(s) (clearly, w∗
1, . . . , w

∗
r belong to µ(w)); for an

illustration, see Fig. 2. From the definition of the map µ and of the layering partition LP ,
we immediately conclude that µ satisfies the conditions (i) and (iii). We will show now that µ

also satisfies the conditions (ii+),(iv+), and (v+). Since µ(v) ⊆ ∪j≥kL
j , µ(w) = Bk−2α−2(s),

and the vertices u∗1 = µ(u1), . . . , u
∗
r = µ(ur) all belong to the sphere Lk−α−1, we conclude

that the µ-images of the vertices of K2,r are pairwise α-far in G, whence µ satisfies the

condition (ii+). Analogously, from the definition of the layering of G we conclude that any

vertex of µ(v) is at distance > α from any path Ri = µ(fi) and any vertex of µ(w) is at

distance > α from any path Pi = µ(ei). If a vertex u∗i is at distance ≤ α from a vertex

x of Pj ∪ Rj for j 6= i, then, by triangle inequality, we obtain dG(v
∗
i , v

∗
j ) ≤ dG(v

∗
i , u

∗
i ) +

dG(u
∗
i , x) + dG(x, v

∗
j ) ≤ α + 1 + α + dG(v

∗
j , x). Since x 6= w∗

j , dG(v
∗
j , x) ≤ 2α + 1, yielding
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Figure 2. To the proof of Proposition 4

dG(v
∗
i , v

∗
j ) ≤ α + 1 + α + 2α + 1 = 4α + 2, contrary to the assumption that v∗i and v∗j

are (4α + 2)-far. This contradiction shows that µ satisfies the condition (iv+). It remains

to show that µ also satisfies the condition (v+), namely that any two paths Pi and Rj

with i 6= j are α-far. If dG(x, y) ≤ α for x ∈ Pi \ {v∗i , u∗i } and y ∈ Rj \ {u∗j , w∗
j}, then

dG(v
∗
i , v

∗
j ) ≤ dG(v

∗
i , x) + dG(x, y) + dG(y, v

∗
j ) ≤ α + α + 2α + 1 ≤ 4α + 1, contrary to the

assumption that v∗i and v∗j are α-far. This contradiction shows that µ satisfies (v+), i.e.,

indeed K2,r is an α-metric relaxed minor of G. �

Notice that outerplanar graphs are exactly the graphs which do not contain K2,3 and K4

minors. From Proposition 4 we immediately obtain the following corollary:

Corollary 8. If for α > 1 a cluster C of a layering partition of a graph G contains three

vertices that are pairwise (4α+2)-far, then any embedding ϕ of G into an outerplanar graph

has distortion > α.

5. Approximation algorithm for embedding graph metrics into outerplanar

graphs

We present now the algorithm for constant-factor approximation of the distortion of the

best embedding of an unweighted graph into outerplanar metrics. Let λ be the best such

multiplicative distortion for an input graph G. We first study the structure of a layered

partition of G.

5.1. Small, medium, and big clusters. Let G = (V,E) be the input graph and consider

a layering partition LP of G into clusters. We assume that λ ≥ 1 is so that each cluster

C of LP contains at most two vertices which are (4λ + 2)-far (otherwise, by Corollary 8,
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the optimal distortion of embedding G into an outerplanar graph is larger than λ). Set

Λ := 4λ + 2. We call a cluster C bifocal if the maximum number of pairwise Λ-far vertices

of C is exactly two. Let c1 and c2 be two Λ-far vertices of such a cluster C. In addition, let

C1 = {x ∈ C : dG(x, c1) ≤ dG(x, c2)} and C2 = {x ∈ C : dG(x, c2) ≤ dG(x, c1)}, and call C1

and C2 the cells of C centered at c1 and c2, respectively (in what follows, we will suppose that

c1 and c2 form a diametral pair of C, i.e., dG(c1, c2) = diam(C) = max{dG(u, v) : u, v ∈ C}).
If diam(C) ≤ Λ (i.e., C is not bifocal), then the cluster C is called small. Then C has a unique

cell centered at an arbitrary vertex of C. A bifocal cluster C is called big if diam(C) > 16λ+12,

otherwise, if Λ < diam(C) ≤ 16λ + 12, then C is called a medium cluster. An almost big

cluster is a medium cluster C such that diam(C) > 16λ + 10. We say that a cluster C is

∆-separated if C is bifocal with cells C1 and C2 and dG(u, v) > ∆ for any u ∈ C1 and v ∈ C2.

Further, we will set ∆ := 8λ+ 6. We say that a bifocal cluster C ′ is spread if its father C is

bifocal and both cells C1, C2 of C are adjacent to C ′. Finally, we say that two disjoint sets A

and B are adjacent in G if there exists an edge of G with one end in A and another end in B.

Lemma 7. If C is a bifocal cluster of a layering partition LP of G, then the diameter of

each of its cells C1 and C2 is at most 2Λ.

Proof. Let x, y ∈ C1. Since C contains no vertex z such that {c1, c2, z} are pairwise (4α+2)-

far, dG(x, c1) ≤ 4λ + 2 and dG(y, c1) ≤ 4λ + 2. Therefore, by triangle inequality, dG(x, y) ≤
dG(x, c1) + dG(c1, y) ≤ 8λ+ 4 = 2Λ. �

Lemma 8. If C is a bifocal cluster of a layering partition LP of G such that diam(C) =

dG(c1, c2) > 12λ+ 6, then C has the following properties:

(i) C is (diam(C)− 2Λ− 1)-separated, in particular C1 ∩ C2 = ∅;
(ii) diam(C1) ≤ Λ and diam(C2) ≤ Λ.

If C is a big cluster, then C is (8λ+ 8)-separated, and if C is an almost big cluster, then C

is (8λ + 6)-separated. In particular, big and almost big clusters are ∆-separated. If C is a

big or an almost big cluster, then diam(C1) ≤ Λ and diam(C2) ≤ Λ.

Proof. Since the cluster C is bifocal, from the definition of its cells we conclude that, for

any two vertices u ∈ C1 and v ∈ C2, dG(u, c1) ≤ 4λ + 2 and dG(v, c2) ≤ 4λ + 2. Therefore,

12λ+6 < diam(C) = dG(c1, c2) ≤ dG(c1, u)+dG(u, v)+dG(v, c2) ≤ dG(u, v)+8λ+4, showing

that dG(u, v) > diam(C)− 2Λ− 1 and dG(u, v) > 4λ+ 2, whence C is (diam(C)− 2Λ− 1)-

separated as well as (4λ+ 2)-separated. Furthermore, from dG(u, v) ≥ diam(C)− 8λ− 4 we

obtain that any big cluster (i.e., a cluster C with diam(C) > 16λ+ 12) is (8λ+ 8)-separated

and any almost big cluster (i.e., a cluster C with 16λ+10 < diam(C) ≤ 16λ+12) is (8λ+6)-

separated. If C1 contains two vertices x, y with dG(x, y) > 4λ+2, then the vertices x, y, and

c2 are pairwise (4λ+ 2)-far, contradicting the assumption that C is bifocal. �

Given a cluster C located at distance k from the root s and its son C ′ (in the tree Γ),

we call the union of C with the connected component of G(V \ Bk(s)) containing C ′ the

CC ′-fiber of G and denote it by F(C,C ′). Note that the son-father relation between clusters

that we use here and in what follows is with respect to tree Γ.
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Lemma 9. If a cluster C of a layering partition LP of G is big, then C has a son C ′ which

is a bifocal spread cluster such that contracting the four cells of C and C ′ (but preserving the

edges between different cells), we will obtain a 2K2, an induced matching with two edges.

Proof. Let C = C1∪C2 be the partition of C into cells. Pick x ∈ C1 and y ∈ C2 and consider

a xy path P in the subgraph of G induced by V \ Bk−1(s), where k is the distance from

the root s to all vertices of C. Since C is big, from Lemma 8(i) we conclude that P cannot

entirely lie in C. On the other hand, we can assume, without loss of generality, that C has a

son C ′ such that P ∩ C ′ 6= ∅ and P is entirely included in the CC ′-fiber of G. Therefore, in

each of the cells C1 and C2 one can pick a vertex which is adjacent to a vertex of C ′. Let a1b1
and a2b2 be two edges of G such that a1 ∈ C1, a2 ∈ C2, and b1, b2 ∈ C ′. Since, by Lemma

8, dG(a1, a2) > ∆ + 2 = 8λ + 8, we conclude that dG(b1, b2) ≥ 8λ + 6 > 4λ + 2 = Λ, thus

C ′ is bifocal and the vertices b1 and b2 belong to different cells C ′
1, C

′
2 of C ′, say b1 ∈ C ′

1

and b2 ∈ C ′
2. Suppose now that G contains an edge uv with u ∈ C1 and v ∈ C ′

2. Then,

by Lemma 8(i), we conclude that 8λ + 8 = ∆ + 2 < dG(u, a2) ≤ 1 + dG(v, b2) + 1, whence

dG(v, b2) > 8λ+4 = 2Λ. Since v, b2 ∈ C ′
2, we obtain a contradiction with Lemma 7. Therefore,

contracting each of the cells C1, C2, C
′
1, C

′
2 into a vertex, we will indeed obtain a 2K2. �

Lemma 10. If a cluster C ′ of a layering partition LP of G is big or almost big, then its

father C is bifocal and the neighbors in C of the centers c′1 and c′2 of the cells C ′
1 and C ′

2 of

C ′ belong to different cells of C. In particular, any big or almost big cluster is spread.

Proof. Let z1 and z2 be two neighbors of c′1 and c′2, respectively, in C. If C is not bifocal,

then dG(z1, z2) ≤ 4λ+2, whence dG(c
′
1, c

′
2) ≤ 4λ+4 < 16λ+10, contrary to the assumption

that C ′ is big or almost big. Thus, C is bifocal. If z1 and z2 belong to the same cell C1 of C,

then dG(z1, z2) ≤ 2Λ, by Lemma 7, and therefore dG(c
′
1, c

′
2) ≤ 2Λ + 2 < 16λ+ 10, leading to

the same contradiction as before. �

Lemma 11. If a cluster C of a layering partition LP of G is big, then no son C ′ of C has

a cell adjacent to both cells of C. In particular, no big cluster C has a small son adjacent to

both cells of C.

Proof. Let C1, C2 be the cells of C. Suppose, by way of contradiction, that two vertices x′, y′

from the same cell of C ′ are adjacent to vertices x ∈ C1 and y ∈ C2, respectively. Then,

by Lemma 7, dG(x, y) ≤ 1 + dG(x
′, y′) + 1 ≤ 8λ + 4 + 2 = 8λ + 6 < ∆+ 2, contrary to the

fact that, according to Lemma 8, the cluster C is (∆+2)-separated. Recall also that a small

cluster is not bifocal by definition. �

5.2. The algorithm. We continue with the description of an algorithm which, for an in-

put graph G and a current value of “the optimal distortion” λ, either establishes that no

embedding with distortion ≤ λ of G into an outerplanar metric exists or returns such an

embedding but with distortion at most 100λ + 75. Namely, given a value of λ such that all

clusters of a layering partition LP of G contain at most two (4λ + 2)-far vertices, if some

cluster of LP has two big sons or if this cluster is big and has two spread sons, then any
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Figure 3. An outerplanar graph produced by the algorithmApproximation

by Outerplanar Metric

embedding of G in a K2,3-minor free graph requires distortion > λ, and the algorithm re-

turns the answer “not”. Otherwise, if each cluster has at most one big son and each big

cluster has at most one spread son, then the algorithm constructs an outerplanar graph

G′ = (V,E′). Then setting w := 20λ + 15 as the length of each edge of G′, the inequality

dG(x, y) ≤ dG′(x, y) ≤ 5wdG(x, y) holds for any two vertices x, y of V. To construct G′, the

algorithm processes the clusters of LP level by level in increasing order. To ensure that

the resulting graph G′ is outerplanar and the distortion of the embedding of G into G′ is

bounded, we need to be precise about how the algorithm “opens” and “closes” the cycles of

G′, without allowing cycles to “branch” and without incurring larger and larger distortion.

Roughly speaking, small and medium clusters of LP are used only to open or close cycles of

G′ or to build tree-components of G′. Big clusters of LP are used to build-up the cycles of

G′ : each cycle C of G′ starts and ends with vertices lying in small or medium clusters, all

other vertices of C are pairs of centers of cells of big clusters all lying in the same fiber. The

remaining vertices of each cell of a big cluster are made adjacent in G′ to the neighbor in C of

the center of this cell; for an illustration, see Fig. 3. Note that not every outerplanar graph

can occur as G′ returned by the algorithm because the cycles of G′ all have even length and

the 2-connected components of G′ are edges or cycles. Moreover, no two cycles of G′ have

a common origin. The precise local rules of constructing G′ are provided in lines 3-7 of the

algorithm described below.
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Algorithm Approximation by Outerplanar Metric

Input: A graph G = (V,E), a layering partition LP of G, and a value λ

Output: An outerplanar graph G′ = (V,E′) or an answer “not”

1. For each cluster C of the layering partition LP do

3. If C has two big sons or C is big and has two spread sons, then return the answer “not”.

3. Else for each son C′ of C do

4. Case 1: If C′ is small, then pick in C the center c of a cell of C adjacent to

C′ and in G′ make c adjacent to all vertices of C′.

5. Case 2: If C′ is medium and C is not big, or C′ is medium and not spread

and C is big, then pick in C the center c of a cell of C adjacent to C′ and in

G′ make c adjacent to all vertices of C′.

6. Case 3: If C′ is medium, C is big, and C′ is the (unique) spread son of C,

then in G′ make the center c1 of cell C1 of C adjacent to all vertices of C′.

Additionally, make the center c2 of cell C2 of C adjacent to every vertex of C′.

7. Case 4: If C′ is big with cells C′
1, C

′
2, such that C′

1 is adjacent to C1 and C′
2

is adjacent to C2, where C1 and C2 are the cells of C with centers c1 and c2,

then in G′ make c1 adjacent to all vertices of C′
1 and c2 adjacent to all vertices

of C′
2.

5.3. Correctness of the algorithm. Now, we formulate the main results establishing the

correctness and the approximation ratio of our algorithm. The proofs will be provided in

remaining subsections of this section.

Theorem 2. Let G = (V,E) be an input graph and let λ ≥ 1. If the algorithm Approx-

imation by Outerplanar Metric returns the answer “not”, then any embedding of G

into a K2,3-minor free graph requires distortion > λ. Otherwise, if the algorithm returns the

outerplanar graph G′ = (V,E′), then uniformly assigning to its edges weight w := 20λ + 15,

we obtain an embedding of G to G′ such that dG(x, y) ≤ dG′(x, y) ≤ 5wdG(x, y) for any two

vertices x, y of V. As a result, we obtain a factor 175 approximation of the optimal distortion

of embedding a graph distance into an outerplanar metric.

The proof of this theorem is subdivided into two propositions. We start with a technical

result, essentially showing that in both cases when our algorithm returns the answer “not”,

any embedding of G into an outerplanar metric requires distortion > λ:

Proposition 5. Let C be a big or an almost big cluster having two sons C ′, C ′′ such that

the two cells of C can be connected in both CC ′- and CC ′′-fibers of G. Then, any embedding

of G in a K2,3-minor free graph requires distortion > λ. These conditions are fulfilled in the

following two cases: (i) the cluster C is big and has two spread sons; (ii) C has two big sons

C ′, C ′′. In particular, if the algorithm returns the answer “not”, then any embedding of G in

a K2,3-minor free graph requires distortion > λ.

Now suppose that the algorithm returns the graph G′.We continue with the basic property

of the graph G′ allowing us to analyze the approximation ratio of the algorithm. First notice
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that, by construction, G′ is outerplanar. Denote by dG′(x, y) the distance in G′ between two

vertices x and y, where each edge of G′ has length w := 20λ+ 15.

Proposition 6. For each edge xy of the graph G, the vertices x and y can be connected in

the graph G′ by a path consisting of at most 5 edges, i.e. dG′(x, y) ≤ 5w. Conversely, for

each edge xy of the graph G′, we have dG(x, y) ≤ 20λ+ 15.

5.4. Proof of Proposition 6. We start with first assertion. First suppose that the edge xy

of G is horizontal, i.e., dG(s, x) = dG(s, y). Let C be the cluster of G containing this edge.

Then, either C is not big or C is big and x, y belong to the same cell of C. In both cases, by

construction of G′, we deduce that x and y will be adjacent in G′ to the same vertex from the

father C0 of C, implying dG′(x, y) = 2w. Now suppose that xy is vertical, say x ∈ C, y ∈ C ′

and C ′ is a son of C. Denote by C0 the father of C. Let z be a vertex of C to which y is

adjacent in G′. If C is small, medium, or C is big but x and z belong to the same cell, then in

G′ the vertices z and x will be adjacent to the same vertex xC0 of the father C0 of C, yielding

dG′(x, y) ≤ 3w. So, suppose that C is big and the vertices z and x belong to different cells C1

and C2 of C, say z ∈ C1 and x ∈ C2. By Lemma 11, the cluster C ′ is not small. According

to the algorithm, z is the center of the cell C1, i.e., z = c1. Note also that x and the center

c2 of its cell are both adjacent in G′ to a vertex xC0 ∈ C0, whence dG′(x, c2) = 2w. If C ′ is

big and say y ∈ C ′
1, then since y is adjacent to z in G′, from the algorithm we conclude that

a vertex of C ′
1 is adjacent in G to a vertex of C1. On the other hand, y ∈ C ′

1 is adjacent in

G to x ∈ C2. As a consequence, the cell C ′
1 is adjacent in G to both cells C1 and C2 of C,

which is impossible by Lemma 11. So, the cluster C ′ must be medium. If C has a big son C ′′,

then since both cells of C are adjacent in G to the medium son C ′, we obtain a contradiction

with Proposition 5(i). Hence, C cannot have big sons. Moreover, by Proposition 5, C ′ is the

unique spread son of C. According to the algorithm (see Case 3), the centers z = c1 and c2
of the cells of C are adjacent in G′ to a common vertex u from C ′, yielding dG′(z, c2) = 2w.

As a result, we obtain a path with at most 5 edges connecting the vertices y and x in G :

(y, z = c1, u, c2, xC0 , x). This concludes the proof of the first assertion of Proposition 6.

We continue with second assertion. Any edge xy of G′ runs between two clusters lying in

consecutive layers of G (and G′); let x ∈ C and y ∈ C ′, where C is the father of C ′. In G, the

vertex y has a neighbor x′ ∈ C. Let x′ 6= x, otherwise there is nothing to prove. If C is not

big, then dG(x, x
′) ≤ 16λ + 12, whence dG(x, y) ≤ 16λ + 13, and we are done. So, suppose

that the cluster C is big. If x and x′ belong to the same cell of C, then Lemma 7 implies

that dG(x, x
′) ≤ 2Λ = 8λ + 4, yielding dG(x, y) ≤ 8λ + 5. Now, suppose that x ∈ C1 and

x′ ∈ C2. By Lemma 11, C ′ is a medium or a big cluster. If C ′ is big and y ∈ C ′
1, since x and

y are adjacent in G′, according to the algorithm, C ′
1 contains a vertex that is adjacent in G

to a vertex of C1. Since y ∈ C ′
1 is adjacent in G to x′ ∈ C2, we obtain a contradiction with

Lemma 11. Hence C ′ is a medium cluster. According to the algorithm, x is the center of the

cell C1 and C1 contains a vertex z adjacent in G to a vertex v ∈ C ′. Since x, z ∈ C1 implies

dG(x, z) ≤ 4λ+ 2 and y, v ∈ C ′ implies dG(y, v) ≤ 16λ+ 12, we obtain dG(x, y) ≤ 20λ+ 15.
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Figure 4. The elements of the map µ.

5.5. Proof of Proposition 5. By Proposition 3, it suffices to show that G contains K2,3

as a λ-metric relaxed minor. Indeed, suppose that C is a big or an almost big cluster with

cells C1 and C2 having two sons C ′, C ′′, such that C1 and C2 can be connected by a path in

each of the CC ′- and CC ′′-fibers of G. Let k = dG(s, C). Denote by P ′ and P ′′ the shortest

two such paths connecting two vertices of C, one in C1 and another in C2, in F(C,C ′) and

F(C,C ′′), respectively. Denote by x′ ∈ C1 and y′ ∈ C2 the end-vertices of P ′ and by x′′ ∈ C1

and y′′ ∈ C2 the end-vertices of P ′′. Clearly, the choice of P ′ implies P ′ ∩ C = {x′, y′} and

the choice of P ′′ implies P ′′ ∩ C = {x′′, y′′}. Let w′ and w′′ be middle vertices of P ′ and P ′′,

respectively (if one of these paths has odd length, then it has two middle vertices, and we

pick one of them). Let a′ and b′ be the vertices of P ′ located at distance λ + 1 (measured

in P ′) from w′, where a′ is located between w′ and x′ and b′ is located between w′ and y′.

Denote by L′ the subpath of P ′ comprised between a′ and w′ and by R′ the subpath of P ′

comprised between w′ and b′. Analogously, for P ′′ we can define the vertices a′′, b′′ and the

paths L′′ and R′′ of length λ + 1 each. Finally, denote by P ′
1 and P ′

2 the subpaths of P ′

comprised between a′ and x′ and between b′ and y′. Analogously, define the supbaths P ′′
1

and P ′′
2 of P ′′. Pick any shortest path M ′ in G between the vertices x′, x′′ and any shortest

path M ′′ between y′, y′′. Let F ′ be a subpath of a shortest path P (x′, s) from x′ to the root

s starting with x′ and having length 3λ. Analogously, let F ′′ be a subpath of a shortest path

P (y′′, s) from y′′ to s starting with y′′ and having length 3λ. Let J ′ and J ′′ be the subpaths

of length λ + 1 of P (x′, s) and P (y′, s), which continue F ′ and F ′′, respectively, towards s;

see Fig. 4 for an illustration.

Now we are ready to define a mapping µ : V (K2,3) ∪ E(K2,3) 7→ V (G) certifying that

K2,3 is a λ-metric relaxed minor of G. Denote the vertices of K2,3 by a, b, c, q′, q′′, where

the vertices q′ and q′′ are assumed to be adjacent to each of the vertices a, b, c. We set
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µ(a) := {w′}, µ(b) := {w′′}, µ(q′) := P ′
1∪P ′′

1 ∪M ′∪F ′ =: Q′, µ(q′′) := P ′
2∪P ′′

2 ∪M ′′∪F ′′ := Q′′,

and µ(c) := Bk′ =: S, where k′ = k − 4λ − 1. Additionally, for each edge of K2,3, we set

µ(aq′) := L′, µ(aq′′) := R′, µ(bq′) := L′′, µ(bq′′) := R′′, µ(q′s) := J ′, µ(q′′s) := J ′′. We will call

the paths L′, L′′, R′, R′′, P ′
1, P

′
2, P

′′
1 , P

′′
2 , F

′, F ′′, J ′, J ′′,M ′,M ′′, the vertices w′, w′′, and the set

S the elements of the map µ. Notice first that each vertex of K2,3 is mapped to a connected

subgraph of G and each edge of K2,3 is mapped to a path of G, thus µ satisfies the conditions

(i) and (iii) of a metric relaxed minor. It remains to show that µ satisfies the conditions (ii+),

(iv+), and (v+). The proof of this is subdivided into several intermediate results.

Lemma 12. L′ ∪R′ and L′′ ∪R′′ are shortest paths of G.

Proof. Suppose, by way of contradiction, that the vertices a′ and b′ can be connected in G

by a path P0 shorter than L′ ∪R′, in particular, dG(a
′, b′) ≤ 2λ+1. Since the length of P ′ is

greater than ∆, we conclude that the vertices a′ and

b′ do not belong to the cluster C. From the choice of P ′, the path P0 necessarily contains

vertices of Bk−1(s), and therefore P0 necessarily traverses the cluster C. First, suppose that

P0 intersects only one cell of C, say C1. Let u be the last vertex of C1 ∩ P0, while moving

from a′ to b′ along P0. The length of the subpath Q0 of P0 comprised between u and b′ is

strictly less than the length of P0 and therefore than the length of L′ ∪ R′. Since b′ belongs

to the fiber F(C,C ′) but does not belong to C, we conclude that necessarily Q0 is contained

in F(C,C ′). As a result, the vertices u and y′ can be connected in the fiber F(C,C ′) by a

path Q0 ∪ P ′
2 shorter than P ′, contrary to the choice of P ′. Now, suppose that the path P0

intersects both cells of C. Pick u ∈ P0 ∩C1 and v ∈ P0 ∩C2. Since u and v can be connected

in G by the subpath of P0 comprised between them, we conclude that dG(u, v) ≤ 2λ + 1,

contrary to the assumption that C is a big or almost big cluster, and thus a ∆-separated

cluster. �

Lemma 13. If z ∈ L′ ∪ R′, then dG(z, C) ≥ 4λ + 3 − dG(z, w
′) ≥ 3λ + 2. Analogously, if

z ∈ L′′ ∪R′′, then dG(z, C) ≥ 4λ+ 3− dG(z, w
′′) ≥ 3λ+ 2. In particular, dG(w

′, C) ≥ 4λ+ 3

and dG(w
′′, C) ≥ 4λ+ 3.

Proof. Note that the length of the subpath of P ′ between x′ and w′ is at least 4λ + 3 as

C is (8λ + 6)-separated. Consequently, the length of the subpath of P ′ between x′ and

z ∈ L′ is at least 4λ + 3 − dG(z, w
′). Assume, by way of contradiction, that dG(z, C) <

4λ + 3 − dG(z, w
′). First suppose that dG(z, C) = dG(z, u) for u ∈ C1. Any shortest (z, u)-

path P (u, z) lies entirely in the fiber F(C,C ′) (and therefore outside the ball Bk−1(s)). Since

dG(z, u) < 4λ+3−dG(z, w′), dG(z, u) is less than the length of the subpath of P ′ between x′

and z. Hence, we conclude that the (u, y′)-path consisting of the path P (u, z) followed by the

subpath of P ′ between z and y′ is contained in F(C,C ′) and is shorter than P ′, contrary to

the choice of P ′. Now suppose that dG(z, C) = dG(z, u) for a vertex u ∈ C2. Since z ∈ L′ and

u ∈ C both belong to F(C,C ′), any shortest (z, u)-path P (u, z) also belongs to this fiber.

Note that P (u, z) has length < 4λ+ 3 while the subpath of P ′ between z and y′ has length

≥ 4λ+3. Therefore, the path between u and x′ consisting of P (u, z) followed by the subpath
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of P ′ between z and x′ is shorter than P ′ and is contained in the fiber F(C,C ′), contrary to

the choice of P ′. �

Lemma 14. The set S is λ-far from all elements of µ except J ′, J ′′ and itself.

Proof. From the definition of the layering it follows that S is λ-far from the paths F ′, F ′′,

and the cluster C. Since any path from a vertex of S to the CC ′- and CC ′′-fibers tra-

verses the cluster C, we conclude that S is λ-far from the vertices w′, w′′ and the paths

L′, R′, L′′, R′′, P ′
1, P

′
2, P

′′
1 , P

′′
2 . It remains to show that S is λ-far from the paths M ′ and

M ′′. Suppose, by way of contradiction, that dG(u, v) ≤ λ for u ∈ M ′ and v ∈ S. Let

dG(u, x
′) ≤ dG(u, x

′′). Since the length of M ′ is at most 4λ + 2 (by Lemma 8(ii)), we con-

clude that dG(u, x
′) ≤ 2λ + 1, whence dG(x

′, v) ≤ 3λ + 1, contrary to the assumption that

dG(s, x
′) = k and dG(s, v) ≤ k′ = k − 4λ− 1. �

Lemma 15. The vertex w′ is λ-far from all elements of µ except L′, R′ and itself. Analo-

gously, w′′ is λ-far from all elements of µ except L′′, R′′ and itself.

Proof. From Lemma 13 we conclude that dG(w
′, C) ≥ 4λ+3. Since any path between w′ and

a vertex of the set {w′′} ∪ L′′ ∪ P ′′
1 ∪ R′′ ∪ P ′′

2 ∪ F ′ ∪ F ′′ ∪ J ′ ∪ J ′′ ∪ S traverses the cluster

C, we conclude that w′ is λ-far from each of these elements of µ. Next we show that w′ is

λ-far from the paths M ′ and M ′′. Suppose, by way of contradiction, that dG(w
′, u) ≤ λ for a

vertex u ∈M ′ and assume, without loss of generality, that u is closer to x′ than to x′′, yielding

dG(x
′, u) ≤ 2λ+ 1. But then dG(w

′, x′) ≤ 3λ+ 1 < 4λ+ 3, contrary to the assumption that

dG(w
′, C) ≥ 4λ+3. Finally, we will show that w′ is λ-far from the paths P ′

1 and P ′
2. Suppose,

by way of contradiction, that dG(w
′, u) ≤ λ for a vertex u ∈ P ′

1. Let P (u,w
′) be a shortest

(u,w′)-path. Obviously, P (u,w′) belongs to the CC ′-fiber F(C,C ′). Hence, replacing in P ′

the subpath comprised between u and w′ (and comprising L′) by P (u,w′), we obtain a shorter

path connecting x′ and y′ in F(C,C ′). This contradiction shows that w′ is λ-far from P ′
1 and

P ′
2. �

Lemma 16. Each of the paths L′ and R′ is λ-far from each of the elements

L′′, R′′, P ′′
1 , P

′′
2 , J

′, J ′′ of µ. Analogously, L′′ and R′′ are λ-far from P ′
1, P

′
2, J

′, J ′′. In par-

ticular, the µ-images of any two non-incident edges of K2,3 are λ-far.

Proof. The cluster C separates the CC ′-fiber containing L′ ∪ R′ from the rest of the graph.

Therefore, any path connecting a vertex u ∈ L′∪R′ to a vertex v ∈ L′′∪R′′∪P ′′
1 ∪P ′′

2 ∪J ′∪J ′′

traverses C. Since dG(u,C) ≥ 4λ+3− dG(u,w
′) ≥ 4λ+3− λ− 1 = 3λ+2 > λ, we conclude

that dG(u, v) > λ. �

Lemma 17. The set Q′ is λ-far from the paths R′, R′′ and J ′′. Analogously, the set Q′′ is

λ-far from the paths L′, L′′, and J ′.

Proof. That J ′′ is λ-far from P ′
1 and P ′′

1 follows from the definition of J ′′ and the fact that

the cluster C separates J ′′ from P ′
1 ⊆ F(C,C ′) and P ′′

1 ⊆ F(C,C ′′). Now suppose that

dG(u, v) ≤ λ for u ∈ M ′ ∪ F ′ and v ∈ J ′′ \ S. If u ∈ F ′, then dG(x
′, u) ≤ 3λ, dG(v, y

′′) ≤ 4λ
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and, by triangle inequality, we conclude that dG(x
′, y′′) ≤ 8λ < ∆, contrary to the fact that

x′ ∈ C1, y
′′ ∈ C2 and the cluster C is ∆-separated. If u ∈ M ′, then since M ′ has length at

most 4λ + 2, we conclude that one of the vertices x′, x′′, say x′ has distance at most 2λ + 1

to u. Then, by triangle inequality, again we conclude that dG(x
′, y′′) ≤ 7λ+1, contrary with

∆-separability of C. This shows that Q′ and J ′′ are λ-far.

It remains to show that Q′ and R′ ∪R′′ are λ-far. Pick u ∈ Q′ and v ∈ R′′. By Lemma 13,

any vertex v ∈ R′′ is located at distance ≥ 3λ+ 2 from the cluster C. Since C separates R′′

from P ′
1 and F ′, we conclude that dG(u, v) ≥ 3λ + 2 for any vertex u ∈ P ′

1 ∪ F ′. If u ∈ M ′

and dG(x
′, u) ≤ dG(x

′′, u), then dG(x
′, u) ≤ 2λ+1, yielding dG(x

′, v) ≤ dG(x
′, u)+dG(u, v) ≤

2λ+1+ dG(u, v). Hence, if dG(u, v) ≤ λ, we get dG(x
′, v) ≤ 3λ+1, contrary to the fact that

dG(v, C) ≥ 3λ + 2. Finally, suppose that u ∈ P ′′
1 and dG(u, v) ≤ λ. Let P0 be any shortest

path between u and v. Replacing the subpath P ′′(u, v) of P ′′ comprised between u and v by

P0, we will obtain a path P shorter than P ′′ (because L′′ ⊂ P ′′(u, v) and, by Lemma 12, L′′

is a shortest path of length λ + 1 of G). The path P is completely contained in the union

of the fiber F(C,C ′′) and the ball Bk(s). Moreover, each time P moves from F(C,C ′′) to

Bk(s), it traverses the cluster C. Therefore, taking any subpath of P between two vertices

from different cells of C and completely contained in F(C,C ′′), we will obtain a contradiction

with the minimality choice of the path P ′′. This contradiction concludes the proof that Q′ is

λ-far from R′, R′′ and J ′′. �

Lemma 18. The sets Q′ and Q′′ are λ-far.

Proof. First notice that M ′ and M ′′ are λ-far. Indeed, pick u ∈ M ′, v ∈ M ′′, and suppose,

without loss of generality, that dG(x
′, u) ≤ dG(x

′′, u) and dG(y
′′, v) ≤ dG(y

′, v). If dG(u, v) ≤
λ, then, by triangle inequality, dG(x

′, y′′) ≤ dG(x
′, u) + dG(u, v) + dG(v, y

′′) ≤ 2λ + 1 + λ +

2λ+1 = 5λ+2 < ∆, contrary to assumption that C is ∆-separated. In a similar way one can

show that F ′ and M ′′ as well as M ′ and F ′′ are λ-far: if dG(u, v) ≤ λ for u ∈ F ′ and v ∈M ′′

with dG(y
′′, v) ≤ 2λ+ 1, then dG(x

′, y′′) ≤ 3λ+ λ+ 2λ+ 1 = 6λ+ 1 < ∆. Analogously, if F ′

and F ′′ are not λ-separated, then dG(x
′, y′′) ≤ 3λ+ λ+ 3λ = 7λ < ∆, a contradiction.

Suppose now that u ∈ Q′, v ∈ P ′′
2 , and dG(u, v) ≤ λ. Let P0 be a shortest path of G

between u and v. Since C is ∆-separated, P0 cannot intersect both cells C1 and C2 of C. On

the other hand, since v ∈ P ′′
2 ⊂ F(C,C ′′), the path P0 necessarily contains a vertex v0 ∈ C

such that the whole subpath of P0 between v0 and v is contained in F(C,C ′′). If v0 ∈ C1,

then the path constituted by the subpath of P0 between v0 and v, followed by the subpath

of P ′′
2 between v0 and y′′, is completely contained in the fiber F(C,C ′′) and is shorter than

P ′′ (because L′′ ∪R′′ has length 2λ+2), contrary to the minimality choice of P ′′. Therefore,

necessarily v0 ∈ C2, showing also that P0 ∩C = P0 ∩C2. Let also u0 be the first intersection

of P0 with C2 while moving from u to v.

If u ∈ F ′ then d(x′, u) ≤ 3λ and we conclude dG(x
′, u0) ≤ dG(x

′, u) + dG(u, u0) ≤ 3λ +

λ = 4λ < ∆, contrary to the fact that C is ∆-separated. Analogously, if u ∈ M ′ and

dG(x
′, u) ≤ dG(x

′′, u), then dG(x
′, u0) ≤ dG(x

′, u) + dG(u, u0) ≤ 2λ + 1 + λ < ∆. If u ∈ P ′
1,

then the subpath of P ′ between x′ and u followed by the subpath of P0 between u and u0
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forms a path contained in the fiber F(C,C ′) and that is shorter that P ′ (because L′ ∪R′ has

length 2λ+2), contrary to the choice of P ′. Finally, suppose that u ∈ P ′′
1 . Then, the subpath

of P ′′ between x′′ and u followed by the subpath of P0 between u and u0 constitute a path

contained in the fiber F(C,C ′′) and is shorter that P ′′, contrary to the choice of P ′′. This

contradiction shows that the sets Q′ and Q′′ are λ-far. �

This establishes the first assertion of Proposition 5. To prove the second assertion of

Proposition 5, first suppose that the cluster C is big and C has a big and a medium sons

C ′, C ′′ such that both cells C1 and C2 are adjacent to C ′′ or that C has two medium sons

C ′, C ′′ adjacent to both cells of C. By definition of the layering, each vertex of C ′ ∪ C ′′ is

adjacent to a vertex of C. If all vertices of C ′ are adjacent to vertices from the same cell of C,

say C1, then for any x′, y′ ∈ C ′ we have dG(x
′, y′) ≤ 2 + 4λ+ 2, contrary to the assumption

that C ′ is big. Hence, both cells of C are adjacent to C ′, say x ∈ C1 is adjacent to x′ ∈ C ′

and y ∈ C2 is adjacent to y′ ∈ C ′. By Lemma 11, x′ and y′ belong to different cells of C ′, say

x′ ∈ C ′
1 and y′ ∈ C ′

2. Let k := dG(s, C). Since x
′, y′ ∈ C ′, the vertices x′ and y′ are adjacent

in G(V \Bk(s)) by a path P (x′, y′). Then P (x, y) := xx′ ∪P (x′, y′)∪ y′y is a path between x

and y in the CC ′-fiber F(C,C ′). Analogously, since both cells C1 and C2 are adjacent to C ′′,

we conclude that two vertices from different cells of C can be connected by a path belonging

to the CC ′′-fiber, showing that the conditions of Proposition 5 are fulfilled. This concludes

the proof in case (i).

Now suppose that C has two big sons C ′ and C ′′. Then C is either a big or an almost big

cluster. By Lemma 9, each of the clusters C ′, C ′′ is (8λ + 8)-separated while the cluster C

is (8λ+ 6)-separated and that its cells C1 and C2 have diameters at most Λ. As in previous

cases, one can deduce that C1 is adjacent to one cell of each of the clusters C ′ and C ′′, while

C2 is adjacent to the second cell of these clusters, establishing the case (ii) and concluding

the proof of Proposition 5.

5.6. Proof of Theorem 2. The algorithm returns the answer “not” when a cluster C has

two big sons or a big cluster C has two spread sons. In this case, by Proposition 5 any

embedding of G into a K2,3-minor free graph requires distortion > λ, whence λ∗(G,O) > λ.

Now suppose that the algorithm returns the outerplanar graph G′ weighted uniformly with

w = 20λ + 15. Notice that in Case 4 of the algorithm, the required matching between the

four cells of the big clusters C and C ′ exists by Lemma 9 and because C ′ is the unique

spread son of C. By Proposition 6 we have dG(x, y) ≤ 20λ+ 15 = dG′(x, y) for each edge xy

of the graph G′. By Lemma 2 we conclude that dG(x, y) ≤ dG′(x, y) for any pair x, y ∈ V.

By Proposition 6, for any edge xy of G, the vertices x and y can be connected in G′ by a

path with at most 5 edges, i.e., dG′(x, y) ≤ 5w = 100λ + 75. By Lemma 1 we conclude that

dG′(x, y) ≤ (100λ + 75)dG(x, y) for any pair x, y of V. Hence dG ≤ dG′ ≤ (100λ + 75)dG,

concluding the proof of Theorem 2.
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6. Final remarks

All our non-algorithmic results hold for infinite graphs as well. Namely, given a connected

graph G with an arbitrary number of vertices, we can define a layering partition LP of G.

Then, as in Sections 2 and 3, the largest diameter of a cluster of LP can be used to upper

bound the optimal (additive or multiplicative) distortion of embedding G into a tree metric.

The trees H,H ′,H`, and H
′
` can be defined as in the algorithm Approximation by Tree

Metric and these trees have the same approximation qualities as the analogous trees defined

in the finite case (see Corollaries 4-7). Therefore, an infinite graph G admits an embedding

into a tree-metric with a finite distortion if and only if the diameters of clusters of an arbitrary

layering partition LP of G are uniformly bounded. Similar conclusions hold for approxima-

tion by outerplanar graphs: Propositions 4, 5, and 6 establish in what cases the optimal

distortion is > λ; otherwise, the construction provided by the algorithm Approximation

by Outerplanar Graph returns an infinite outerplanar graph G′ into which G embeds

with distortion ≤ 100λ + 75. The proof of Proposition 2 (done by induction on the number

of vertices and edges of G) seems to be an obstacle to this conclusion. However, if a graph G

has a finite graph H as a relaxed minor, then one can easily find a finite subgraph G0 of G

which still has H as a relaxed minor, and therefore we can apply Proposition 2 to G0 instead

of G to conclude that G0 (and therefore G) has H as a minor.

We conclude with two open questions. Our Proposition 4 presents a strong necessary

condition for embedding a graph G into a K2,r-minor free metric with a distortion ≤ λ.

However, we were not able to provide all structural conditions and to design a constant factor

approximation algorithm for this problem. An even more challenging problem is designing a

constant factor approximation algorithm for optimal distortion of embedding a graph metric

into a K4-minor free metric (series-parallel metric).

Note. After this manuscript was submitted to the journal, we learned about the paper by

B. Krön and R.G. Möller “Quasi-isometries between graphs and trees,” J. Combin. Theory

Ser. B 98 (2008), 994–1013, which using different terminology also establishes a relationship

between the diameters of clusters of a layering partition and the distortion of embedding a

graph-metric into a tree.
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