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Abstract. Hard metrics are the class of extremal metrics with respect
to embedding into Euclidean Spaces: their distortion is as bad as it pos-
sibly gets, which is £2(log n). Besides being very interesting objects akin
to expanders and good codes, with rich structure of independent interest,
such metrics are important for obtaining lower bounds in Combinatorial
Optimization, e.g., on the value of MinCut/MaxFlow ratio for multicom-
modity flows.

For more than a decade, a single family of hard metrics was known
(see [10, 3]). Recently, a different such family was found (see [8]), causing
a certain excitement among the researchers in the area.

In this paper we present another construction of hard metrics, different
from [10, 3], and more general yet clearer and simpler than [8]. Our results
naturally extend to NEG and to ¢;.

1 Introduction

A famous theorem of Bourgain [4] states that every metric space (X, d) of size
n can be embedded into an Euclidean space with multiplicative distortion at
most dist(d — £3) = O(logn). We call a metric space hard if dist(d — £5) =
(logn).

When studying a special class of metric spaces, perhaps the most natural first
question is whether this class contains hard metrics. Many fundamental results in
the modern Theory of Finite Metric Spaces may be viewed as a negative answer
to this question for some special important class of metrics. E.g., Arora et al. [1]
(improving on Chawla et al. [5]) show this for Negative Type metrics, Klein et
al. [9] for planar metrics, and Gupta et al. [6] for doubling metrics. For a long
time (since Linial, London and Rabinovich [10] and Rabani and Aumann [3]),
the only known family of hard metrics was, essentially, the shortest-path metrics
of constant-degree expander graphs. It was even conjectured that in some vague
sense this is always the case. Recently, however, Khot and Naor [8] constructed
a different family of hard metrics by considering certain quotient spaces of Z7%
equipped with the Hamming distance.

The starting point of the current research was a plausible conjecture that
a circular metric cannot be hard, where by circular we mean a metric on the
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underlying space Zp, such that d(a, b) depends solely on ((a—b) mod n). Rather
surprisingly, the conjecture turns out to be false, and, moreover, it fails not only
for Zy, but for any Abelian group H. More precisely, it is always possible to
choose a set A of generators for H, so that the shortest-path metric of the
corresponding Cayley graph G(H, A) is hard. In the special case of Z%, good
sets of generators are closely related to error-correcting codes of constant rate
and linear distance.

Our construction is both simple to describe and easy to analyze. It differs
from that of [10,3], as the degree of such Cayley graphs is necessarily non-
constant. It is more general than the construction of [8], since the latter, despite
very different description and analysis, can be shown to produce the same mertic
space as does our construction in the special case of Z7.

Note: Although in what follows we restrict the discussion to Euclidean
Spaces, the same method shows the hardness of the metrics that we construct
also with respect to much richer spaces of NEG, and consequently /.

2 General Abelian Groups

Let G be a d-regular connected graph on n vertices, and let ug be its shortest-
path metric. Our first step is to get a general lower bound on distortion of
embedding pe into an Euclidean space. We use a standard (dual) method of
comparing the so-called Poincare forms (see, e.g., [10,11], with further details
therein). Consider the following projective quadratic form:
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where Ave(pZ) is the average value of pZ (i, j) over all pairs of vertices of G. On
the other hand let ¢ be any Euclidean metric on V(G), i.e., a metric of the form

3(i,j) = llz" =a7|l2, where {z'}icv(q) CR™.

By a standard argument (see e.g., [11], Sect. 15.5), the minimum of F(§) over
all such §’s is precisely yg/n, where g is the spectral gap of G, i.e., (d — Ag)
where Ag is the second largest eigenvalue of the adjacency matrix of G. If the
minimum of F(§) over all Euclidean metrics is larger than F(ug), we conclude
that the square of distortion of any embedding of ug into an Euclidean space is
at least the ratio between these two values:

Proposition 1.
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In particular,

Corollary 1. If a graph G has a constant normalized spectral gap vg/d, and
Ave(u) = 2(log® n), then the above method yields an 2(logn) lower bound on
the distortion of embedding ug into an Euclidean space.

In the following we shall deal solely with vertex-transitive graphs; let us remark
that for such graphs Ave(u2) ~ Diam(G)?. Indeed, let r be the smallest radius
such that the corresponding r-ball in ug contains at least n/2 vertices. Clearly,
Ave(pZ) > r?/2, while Diam(G) < 2r + 1. Thus, it suffices to ensure that the
diameter of G is at least £2(logn).

Turning to Cayley graphs, it is well known that for (some) non-Abelian
groups, there exist Cayley graphs with constantly many generators, and a con-
stant spectral gap (see, e.g., [12], the section on Cayley expander graphs). Since
the constant number of generators guarantees that the diameter is 2(logn), this
yields a graph as required in Corollary 1. (This is precisely the construction
used in [10, 3]). For Abelian groups such construction is impossible, since in or-
der to ensure a constant normalized gap g /d, the number of generators must
be at least f2(logn) (see, e.g., [12]). This might seem to be a problem, since,
at least for general groups, that many generators may well cause the diameter
be O(logn/loglogn) = o(logn). For Abelian groups, however, this does not
happen! While the following simple fact is well known (see, e.g., [12], proof of
Prop. 11.5), it has been apparently overlooked in the context of hard metrics.
Let h(p) = —plog, p — (1 — p) log, (1 — p) be the entropy function.

Proposition 2. Let H be an Abelian group of sizen, andlet AC H, A= —A,
be a set of generators of size d = cologyn. Then, for any constant c¢; such
that (co + ¢1) - h(cr/(co + ¢1)) < 1, the diameter of the corresponding Cayley
graph G(H,A) is > c1logyn for a large enough n.

The proposition follows from the observation that the number of distinct
endpoints of paths of of length [ in G is at most (d;rl), since due to commutativity
of G it is at most the number of partitions of a set of [ (identical) elements to d
(distinct) parts. Therefore, the number of points reachable by a path of length
< ¢ logy n is at most
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Thus, as long as the number of generators is O(logn), our only concern is
getting a constant normalized spectral gap 7g/d. This is summed up in the
following theorem.

Theorem 1. Let H be an Abelian group of size n, let A C H be a symmetric
set of generators of size d = colog, n for a suitable universal constant co (a 100
would certainly suffice) and let G(H,A) be the corresponding Cayley graph. If
the normalized spectral gap va/|A| = 2(1), then ug is a hard metric.



It is well known that a random construction achieves this goal (see, e.g., [2],
in particular the section on Abelian groups):

Proposition 3. Let H be a an Abelian group of size n, and let A C H be a
random symmetric set of generators of size d = cglog, n for a suitable universal
constant co (a 100 would certainly suffice). Then, the corresponding Cayley graph
G(H, A) is almost surely connected, and has a normalized spectral gap > 0.5.

To prove the proposition, one needs first to realize that the eigenvectors of
G are the characters of H, i.e., functions x from H to the unit circle in C, such
that x(a + b) = x(a) - x(b). In particular, all such functions with the exception
of the constant one (that corresponds to the eigenvalue d), sum up to 0. From
here it is little more than an application of the Chernoff Bound. For an efficient
deterministic construction of such A’s see [13].

Combining Theorem 1 and Proposition 3, we arrive at the main result of this
section:

Theorem 2. Let G = G(H, A) be a Cayley graph obtained by taking a random
symmetric set of generators A C H of size d = cglog, |H| for a suitable uni-
versal constant co. Then, the shortest-path metric of G is almost surely a hard
metric.

Remark: It is natural to ask whether the Cayley graph whose shortest-path
metric is hard, may have super-logarithmic degree. The answer is positive, and
in fact for any Abelian H it is possible to get degree O(n'=¢) for any constant e.
We postpone the detailed discussion of this matter to the journal version of this

paper.

3 When the Group is Z3

In this case the group is just an n-dimensional vector space over Zs. Any set of
generators (vectors) A is automatically symmetric. Following the requirements of
Corollary 1, we have to ensure three conditions: a constant normalized spectral
gap, conectivity of G(Z%, A), and 2(n) diameter.

The construction is based on linear good codes. Let C C Z3* be a linear
code of dimension n, that is, C is generated by a set of n linearly independent
m~dimensional vectors. The distance D(C) of C is the minimum number of 1’s
in any ¢ € C. C is said to be of linear distance if D(C) = 2(m). In addition, if
m = O(n) the code is said to have a constant rate.

Let M be an n x m matrix whose rows are a basis for C (such an M is called
the generator matrix of C) and let A C Z%, |A| = m, be the set of columns M.
Tt is easy to see that for any such linear code, the graph G(Z%, A) is connected
due to the fact that the rank of M is n.

Proposition 4. Let C be a linear code of linear distance and let M and A be the
corresponding matriz and set of vectors as above. Then normalized spectral gap
Ya/n of G(Z%, A) is constant. Conversely, any A with this property is necessarily
the set of columns of a generator matriz of o linear code with linear distance.



The proposition is a folklore (see e.g. [2], proof of Proposition 2). Here is a sketch
of the proof.

Proof. The characters of Z%, indexed by the group elements, {x.}, u € Z%, are
of the form

Xu(@) = (=1,
where the inner product (with a slight abuse of notation) is (mod 2). Let A C Z%,
|A| = m, be a set of generators (vectors), and let M4 be an n x m matrix over
Z+ whose columns are the vectors of A. For a vector in v € ZJ* let w(v) be the
number of 1’s in v. The second largest eigenvalue Ag of G(Z%, A) is

A¢ = max (—=1)fwer = max {m — 2w(u" M)} .
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Let C C ZF be a linear code generated by M4, that is, all linear combinations

of rows of M4. Then C = {u"M4}ugz-C Z3 and hence A\g = m — 2D(C).
Keeping in mind that v = m — A\g we conclude that y¢ = 2D(C). Therefore,
va = 2(m) if and only C is a linear code of linear distace. O

It remains to ensure that the diameter of G(Z%, A) is £2(n). By Proposition 2,
this condition will necessarily hold provided m = O(n), that is, if C is of constant
rate. Thus,

Theorem 3. Let C be a linear code of constant rate and linear distance, and
dim(C) = n. Let M be an n X m matriz whose rows form a basis for C, and let
A CZ%3, be the set of M’s columns. Then the metric of G(Z%, A) is hard.

Such codes are at the core of the Coding Theory and they have received a consid-
erable attention. Their existence has been established by numerous randomized
and deterministic efficient constructions, with the first explicit construction due
to Justesen [7].

We conclude the paper with a discussion of the construction of hard metrics
due to Khot and Naor [8]. Let C C ZJ* be a linear code of constant rate and
linear distance, of dimension n. Let C* be the dual code, i.e., Ct = {u|Mu = 0}
where M is the generator matrix of C. Define an equivalence relation on Z3* by
r =y iff (z —y) € C*. Now, let X be a quotient metric space of ZJ* equipped
with the Hamming metric, with respect to =. That is, the distance between two
points @ and b in X is the Hamming distance between the two corresponding
cosets A, B C Z5'. Khot and Naor show that X with the induced metric is hard.

Proposition 5. The above construction is isometric to the construction de-
scribed in Theorem 3.

Proof. Let M be a matrix as in Theorem 3. Then X can be viewed as the image
of Z%* under the linear mapping ¢ : ZT* — Z%, ¢(x) = Mz. Define the edges of
X as the images of Hamming edges of Z7* under ¢. Clearly, the quotient metric
of X is precisely the shortest-path metric of the resulting graph. The images of
the Hamming edges are, however, precisely the column vectors of M, and the
isometry follows. O



Without diminishing the achievement of [8], which in addition to the result
discussed here contains a number of other wonderful results, it appears that our
construction, besides being more general, is simpler both in terms of description
and analysis.
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