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Abstract. Let A be a randomized, unlimited supply, unit demand,
single-item auction, which given a bid-vector b ∈ [h]n, has expected
profit E[P (b)]. Aggarwal et al. showed that given A, there exists a de-
terministic auction which given a bid-vector b, guarantees a profit of
E[P (b)]/4 − O(h). In this paper we show that given A, there exists a
deterministic auction which given a bid-vector b of length n, guarantees
a profit of E[P (b)]−O(h

√
n ln hn). As is the case with the construction

of Aggarwal et al., our construction is not polynomial time computable.

1 Introduction

For our good fortune, we were hired to design a mechanism for handling
the upcoming ‘world cup’ TV broadcasts. We are given a two sided com-
munication with the (numerous) potential costumers, the marginal cost
for adding one viewer is negligible, and our primary goal is to maximize
our revenue. The classical approach for maximizing the revenue on sce-
narios like this is to set up a fixed price, and charge it from any viewer.
However, the price can be fixed too high, causing a smaller number of
viewers, or too low, causing a low price collecting from each viewer. Ei-
ther way, the overall revenue might be too low.

This motivates the study of an unlimited supply, unit demand, single
item auction. These auctions can guarantee a revenue which is a constant
approximation to the best single price revenue (which is not necessarily
known). In this paper we study the derandomization of such truthful auc-
tions. Goldberg et al. [5] introduced randomized auctions that achieve
on expectation a constant fraction approximation of the optimal single
price revenue.1 They named these auctions competitive after the notion of
competitive analysis of online algorithms. They also proved that random-
ization is essential assuming the auction is symmetric (that is, assuming
the outcome of the auction does not depend on the order of the input

1 Actually, they looked on optimal single price where there are at least two buyers,
see [5] for farther details.



bids). Aggarwal et al. [1] later showed how to construct from any ran-
domized auction a deterministic, asymmetric auction with approximately
the same revenue. More accurately, given a randomized auction A which
accepts bid-vectors in [1, h]n, they constructed a deterministic, asymmet-
ric auction AD satisfying PAD

(b) ≥ E[PA(b)]/4−O(h) for every b ∈ [1, h]n;
here PAD

(b) is the profit of AD given a bid-vector b and E[PA(b)] is the
expected profit of A given a bid-vector b. The same result also holds in
the more restrictive case where A accepts bid-vectors in [h]n. In addition,
Aggarwal et al. showed that if the bid-vectors are restricted to be vectors
of powers of 2 then the multiplicative factor of 4 above can be improved
to 2.

In this paper we show that in the case where the bid-vectors come
from [h]n, one can improve the construction of AD above so as to guar-
antee a better lower bound for PAD

(b), for the cases where PAD
(b) =

ω(h
√

n ln hn). Formally we prove the following.

Theorem 1. Let A be a randomized auction which accepts bid-vectors
in [h]n. Assume that A has expected profit E[PA(b)] for every bid-vector
b ∈ [h]n. Then there exists a deterministic auction AD that guarantees a
profit of PAD

(b) ≥ E[PA(b)]−O(h
√

n ln hn) for every bid-vector b ∈ [h]n.

The proof of Theorem 1 can be outlined roughly as follows. Given a
randomized auction A, we first define a distribution over a set of deter-
ministic auctions. We then show that if we choose a deterministic auction
AD from that distribution at random, then E[PAD

(b)] = E[PA(b)] for ev-
ery bid-vector b (where the expectancy on the left-hand side is w.r.t. the
choice of AD and the expectancy on the right-hand side is w.r.t. the coin
tosses of A). In addition to that, our distribution has the property that
the event Badb, that PAD

(b) < E[PAD
(b)]− t, depends on a relatively few

number of other events Badb′ . Moreover, for every b, we have that the
probability of Badb is sufficiently small. We then apply the Lovász Local
Lemma to show that there exists a choice for AD for which none of the
events Badb occur. For our choice of t, this will give the theorem.

We stress the fact that the result of Aggarwal et al. [1] is more general
in the sense that it deals with bid-vectors in [1, h]n, while Theorem 1 only
deals with discrete bid-vectors. Still, discrete bid-vectors make more sense
in real life auctions, where for example, bids are being made in Dollars and
Cents. We also note that the construction used in the proof of Theorem 1
is not polynomial time computable and that this is also the case in the
construction of Aggarwal et al. [1].



2 Preliminaries

Definition 1 (Unlimited supply, unit demand, single item auc-
tion). An unlimited supply, unit demand, single item auction is a mech-
anism in which there is one item of unlimited supply to sell by an auc-
tioneer to n bidders. The bidders place bids for the item according to
their valuation of the item. The auctioneer then sets prices for every bid-
der. If the price for a bidder is lower than or equal to its bid, then the
bidder is considered as a winner and gets to buy the item for its price. A
bidder with price higher than its bid does not pay nor gets the item. The
auctioneer’s profit is the sum of the winners prices.

For a natural number k, let [k] denote the set {1, 2, ..., k}. A bid-vector
b ∈ [h]n is a vector of n bids in [h]. For b ∈ [h]n we denote by b−i the
vector which is the result of replacing the ith bid in b with a question
mark; that is, b−i is the vector (b1, b2, . . . , bi−1, ?, bi+1, . . . bn).

A truthful auction is an auction in which every bidder bids its true
valuation for the item. It is well known that truthfulness can be achieved
through bid-independent auctions (see for example [4]). A bid-independent
auction is an auction for which the auctioneer computes the price for
bidder i using only the vector b−i (that is, without the ith bid).

2.1 A structural lemma

Let A be a randomized truthful auction that accepts bid-vectors from
[h]n. We can view A’s execution in the following manner. The auction
maintains a set of nm functions {gi,j : i ∈ [n], j ∈ [m]}, where gi,j is a
function from vectors in ([h] ∪ {?})n with exactly one question mark to
[h]. On a bid-vector b ∈ [h]n, the auction tosses some coins, and chooses
accordingly an integer j ∈ [m]. We let pj be the probability that j ∈
[m] was chosen. The auction then offers bidder i the price gi,j(b−i). Let
accepti,j(b) be 1 if gi,j(b−i) ≤ bi and 0 otherwise. The expected profit of
the auction on input b is then:

E[PA(b)] =
∑

j

pj

∑
i

accepti,j(b) · gi,j(b−i).

One can define the following randomized auction A′, which is equivalent to
the above randomized auction A with respect to expected profits. First, A′

maintains the exact same list of functions as A. On a bid-vector b ∈ [h]n,
the auction performs the following independently for every i ∈ [n]: it
tosses the same coins that A does, chooses accordingly an integer j ∈ [m]



and then offers the ith bidder price gi,j(b−i). The expected profit of A′

on input b is given by:

E[PA′(b)] =
∑

i

∑
j

pj · accepti,j(b) · gi,j(b−i).

We call A′ the bidder-self-randomness-dual of A. The following clearly
follows from the discussion above.

Lemma 1. Let A be a randomized auction and A′ be its bidder-self-
randomness-dual auction. Then A and A′ have the same expected profit
on every bid-vector.

2.2 Probabilistic Tools

The proof of Theorem 1 makes use of the Lovász Local Lemma [3]. We
need the following version of the lemma [2].

Lemma 2 (The local lemma; symmetric case). Let Badi, 1 ≤ i ≤
N , be events in an arbitrary probability space. Suppose that each event
Badi is mutually independent of a set of all the other events Badj but at
most d, and that Pr[Badi] ≤ p for all 1 ≤ i ≤ N . If ep(d + 1) ≤ 1, where
e is the base of the natural logarithm, then Pr[

∧N
i=1 ¬Badi] > 0.

Let X be the average of n independent random variables Xi, where
Xi ∈ [ai, bi] for all i. We will need the following inequality [6]:

Lemma 3 (Hoeffding). Pr[X < E[X]− t] ≤ 2 exp
(

−2n2t2∑n
i=1 (bi−ai)2

)
3 Proof of Theorem 1

Let A be a randomized auction which accepts bid-vectors in [h]n. Let
{gi,j : i ∈ [n], j ∈ [m]} be the set of functions that A maintains. We
construct a deterministic auction AD. To do that, we first define a certain
tripartite graph G = (Lft , Cntr , Rght , E). Using this tripartite graph, we
define a distribution over deterministic auctions. We will then obtain a
deterministic auction AD by choosing an auction at random according to
that distribution. The proof of Theorem 1 will follow by showing that AD

satisfies the conclusion in the theorem with positive probability.
We first describe the tripartite graph G. We let Lft be the set of all

nhn−1 vectors b−i, where b ∈ [h]n is a bid-vector and i ∈ [n]. We let
Cntr be the set of all pairs {(b−i, gi,j(b−i)) : i ∈ [n], j ∈ [m]}. We let



Rght be the set of all possible hn bid-vectors in [h]n. The edges E are
defined as follows. A vertex b−i ∈ Lft is connected to all the vertices in
the set {(b−i, gi,j(b−i)) ∈ Cntr : j ∈ [m]}. A vertex (b−i, gi,j(b−i)) ∈ Cntr
is connected to all bid-vectors r ∈ Rght for which it holds that b−i = r−i

and accepti,j(r) = 1.
Observe that every subgraph G′ of G in which every b−i ∈ Lft has

exactly one adjacent edge induces naturally a deterministic auction AD.
To see that this is indeed the case, consider such a subgraph G′ of G. The
deterministic auction AD behaves as follows: on a bid-vector b ∈ [h]n, the
price offered to the ith bidder is gi,j(b−i) if and only if {b−i, (b−i, gi,j(b−i))}
is an edge in G′.

Let G′ be a subgraph of G chosen in the following way. Independently,
for every b−i ∈ Lft , choose a random edge {b−i, (b−i, gi,j(b−i))} according
to the distribution {pj}mj=1. Let AD be the deterministic auction that is
naturally induced by G′. Note that for every bid-vector b ∈ [h]n,

E[PAD
(b)] =

∑
i

∑
j

pj · accepti,j(b) · gi,j(b−i),

which by Lemma 1, is equal to E[PA(b)].
Let Badb be the event that PAD

(b) < E[PAD
(b)]− t, where we define

t := 10h
√

n ln hn. We need the following two claims.

Claim 1. For all b ∈ [h]n, Pr[Badb] < 1/(10hn).

Proof. Fix b ∈ [h]n and let Xi be the profit extracted from bidder i,
that is, Xi = accepti,j(b) · gi,j(b−i) (recall that j is determined by AD).
Note that Xi ∈ [1, h] for all i and that the Xi’s are independent random
variables. Let X be the average of the Xi’s. We have

Pr[Badb] = Pr[PAD
(b) < E[PAD

(b)]− t] = Pr[X < E[X]− t/n],

which by Lemma 3 is at most 2 exp
(−2t2

h2n

)
. The claim now follows since

t = 10h
√

n ln hn. ut

Claim 2. For all b ∈ [h]n, Badb depends on at most hn other events Badb′ .

Proof. Fix b ∈ [h]n. It is enough to show that there are at most hn vertices
b′ ∈ Rght with the following property: there is a vertex b−i ∈ Lft such
that there is a path of length 2 from b−i to b and from b−i to b′. Indeed,
for the vertex b ∈ Rght , there are at most n vertices b−i ∈ Lft which are
at distance 2 from b. In addition, for every b−i ∈ Lft there are at most h
vertices b′ ∈ Rght which are at distance 2 from b−i. ut



Combining the two claims above with the Lovász Local Lemma, we
get that with positive probability Badb does not occur for all b ∈ [h]n.
Hence, with positive probability, for every bid-vector b ∈ [h]n, PAD

(b) ≥
E[PAD

(b)]− t. This proves the theorem.
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