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Abstract4

A sequence f : [n] → R contains a pattern π ∈ Sk, i.e., a permutations of [k], iff there are indices5

i1 < · · · < ik, such that f(ix) > f(iy) whenever π(x) > π(y). Otherwise, f is π-free. We study the6

property testing problem of distinguishing, for a fixed π, between π-free sequences and the sequences7

which differ from any π-free sequence in more than εn places. Our main findings are as follows:8

• For monotone patterns, i.e., π = (k, k−1, . . . , 1) and π = (1, 2, . . . , k), there exists a non-adaptive9

one-sided error ε-test of (ε−1 log n)O(k2) query complexity. For any other π, any non-adaptive10

one-sided error test requires Ω(
√
n) queries.11

The latter lower-bound is tight for π = (1, 3, 2). For specific π ∈ Sk it can be strengthened to12

Ω(n1−2/(k+1)). The general case upper-bound is O(ε−1/kn1−1/k).13

• For adaptive testing the situation is quite different. In particular, for any π ∈ S3 there exists an14

adaptive ε-tester of (ε−1 log n)O(1) query complexity.15
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1 Introduction1

Property testing is a framework for studying sampling algorithms for approximately deciding if a large ob-2

ject has a given property or is far away from having that property. In this paper we consider property testing3

questions for forbidden patterns of sequences. In the early days of property testing, studying monotonicity4

of a sequence, i.e. the property of being sorted, was a major theme. The first testing algorithm for mono-5

tonicity was developed by Ergün et al. [21] and a matching lower bound was given by Fischer [22]. Later6

Bhattacharyya et al. [9] developed a very simple and elegant tester for this property.7

In this paper, we study generalizations of monotonicity of a sequence. The properties we are considering8

are defined by forbidden patterns. A forbidden pattern of size k is defined by a permutation π ∈ Sk9

of {1, . . . , k} in the following way: a sequence f : {1, . . . , n} → R contains a pattern π, iff there is a10

sequence of k indices i1 < i2 < · · · < ik such that f(ix) < f(iy) whenever π(x) < π(y). A sequence is π-11

free, if it does not contain π. For example, a (2, 1)-free sequence is sorted non-decreasingly, i.e. monotone.12

A (k, k − 1, . . . , 1)-free sequence is a sequence that can be partitioned into at most k − 1 monotone (non-13

decreasing) subsequences.14

One motivation to study pattern free sequences comes from combinatorics. The notion of being π-free15

has been extensively studied in the area of combinatorics of permutations (see, for example the books [13]16

and [35]). One of the major open questions in the area was the famous Stanley-Wilf conjecture from the17

80’s about the growth rate of the number of π-free permutations. I.e., if sn(π) denotes the number of π-free18

permutations, then limn→∞ sn(π)1/n exists, and is finite. This was proven by Marcus and Tardos [38] in19

2004. Later, Fox [25] proved that most Stanley-Wilf limits are exponential in contrast to previous belief that20

all are polynomial in the pattern length.21

Forbidden patterns in permutations have many applications in combinatorics. To bring one example, the22

permutations that can be obtained from the identity permutation using a Gilbreath shuffle are characterized23

by the forbidden patterns (1, 3, 2) and (3, 1, 2). A Gilbreath shuffle is a two step shuffling procedure for a24

deck of cards, where the deck is first cut into two piles putting the second one in a reverse order, and then25

riffling the piles together. A database of applications of permutations with forbidden patterns is available26

online [42].27

Another motivation comes from the study of patterns and motifs in time series analysis [8, 33, 40], for28

example, series of measurements from sensors, stock market data or data of an electrocardiogram. One29

difficulty in this area is that time series contain noise and may be sampled at different and varying frequen-30

cies. This implies that patterns have to be approximate. While the notion of pattern used in this paper is31

certainly less local than what is typically used in data analysis, we still believe that ideas from our paper32

could potentially be interesting for this area, for example, in the context of developing sampling algorithms33

for motif discovery.34

Although testing for a constant size pattern can be done in linear time using the sophisticated algorithm35

of Guillemot and Marx [29], this may be too slow if one would like to test several long sequences (and36

potentially also their subsequences) for several patterns. Therefore, we are considering a sampling approach.37

Given a fixed pattern π ∈ Sk, a sampling algorithm that accepts with probability at least 2/3 all π-free38

sequences and rejects with probability 2/3 all sequences that differ in more than εn values from every π-39

free sequence is called property tester. If the algorithm always accepts when the input is π-free, we say the40

property tester has one-sided error. In this paper only the latter type of testers will be considered.41

1.1 Summary of results42

Let π ∈ Sk be a fixed pattern. We establish the following results about one-sided-error testers for being43

π-free:44
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1. The monotone patterns i.e., π = (1, . . . , k) or π = (k, . . . , 1), can be non-adaptively ε-tested for,1

making
(
ε−1 log n

)O(k2) queries.2

2. For every non-monotone pattern π ∈ Sk, any non-adaptive 1
9k -tester for π must make Ω(

√
n) queries.3

Moreover, for every odd k ≥ 3, there exists a pattern π ∈ Sk such that any non-adaptive 1
3k -tester for4

π must make Ω
(
n1−2/(k+1)

)
queries. The above was recently improved [5] to Ω

(
n1−1/(k−1)

)
queries.5

3. Every pattern π ∈ Sk can be non-adaptively ε-tested making O
(
ε−1/k · n1−1/k

)
queries. More-6

over, for k = 3, this can be improved to Õ(
√
n/ε) queries. The above was recently improved [5] to7

O
(
n1−1/(k−1)

)
queries.8

4. Any non-monotone π ∈ S3, can be adaptively ε-tested making
(
ε−1 log n

)O(1) queries. The adap-9

tive tester runs a binary search in a nearly sorted array as a subroutine, and its analysis may be of10

independent interest.11

To sum up, we show that the complexity of the problem of testing for π-freeness crucially depends on12

the structure of π, a phenomenon similar to the one occurring in the Stanley-Wilf circle of problems.13

The testers above can be extended to testing avoidance of finite collections of permutations, e.g., test-14

ing for {(1, 3, 2), (3, 1, 2)}-freeness, which is testing whether the given sequence can be obtained by a15

Gilbreath shuffle of a monotone sequence. But the lower bounds do not extend. In fact, we note that being16

{(1, 3, 2), (3, 1, 2)}-free can be tested non-adaptively with poly-log queries (Section 4.3).17

Item (4) provides a new example of a natural property having an exponential gap between adaptive and18

non-adaptive query complexity of order based testers. Earlier examples of such problems were designed19

in [22].120

A last remark is that our results apply to arbitrary sequences rather than permutations.21

1.2 Our techniques22

It is easy to prove that a sequence that is ε-far from being π-free must contain many disjoint copies of π. It23

follows, via a standard probabilistic argument, that we can test π-freeness using O(ε1/kn1−1/k) queries. We24

can improve this running time in some interesting cases by exploiting the structure of π.25

The case of monotone patterns is special because they allow for a relatively simple recursive attack.26

Assume that f : [n] → R is ε-far from (1, . . . , k)-free. We start by guessing (in a particular non-uniform27

way) two disjoint but adjacent intervals IL and IR of [n] such that there is a collection T of relatively many28

forbidden (1, . . . , k)-tuples with their first l points in IL and the last k − l points in IR, for some fixed29

l ∈ [k − 1]. The concatenation of a (1, . . . , l)-tuple from IL and a (1, . . . , k − l)-tuple from IR will be a30

(1, . . . , k)-tuple whenever the last value of the first piece is smaller than the first value of the second piece.31

Hence we can employ a “median-split and concatenate” argument to reduce the problem of (1, . . . , k)-32

testing to testing for two monotone patterns of smaller length. This yields a poly-logarithmic tester for33

monotone patterns.34

This approach, unfortunately, works only for monotone patterns. For example, let us consider the pattern35

(1, 3, 2). Even if we find two adjacent intervals IL and IR as before with relatively many (1, 3, 2)-tuples with36

their first two coordinates in IL and the third coordinate in IR, we do not have a median-split argument to37

take us forward. It may as well turn out that, for every (1, 2)-pair in IL there may be at most one coordinate38

in IR that can complete it to a (1, 3, 2)-tuple. Hence finding that using random sampling is very unlikely39

using o(
√
n) queries. We exploit this possibility to establish a lower bound of Ω(

√
n) for the running time40

of non-adaptive (1, 3, 2)-testers. Moreover, we combine our (1, 2)-tester and a uniform sampler to design a41

non-adaptive (1, 3, 2)-tester with Õ(
√
n) running time. On the other hand, this extreme situation described42

1A tester for sequence properties is called order based if it makes decisions based only on the relative order of the queried values
and not on their actual values [22]. All our testers are order based.
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above forces a lot of structure on the sequence in IL. If we allow ourselves the power of adaptivity, we1

can use this structure using a slightly modified randomized binary search to find that unique coordinate in2

IR which can complete the chosen (1, 2)-pair in IL to a (1, 3, 2)-tuple. This leads to a poly-logarithmic3

adaptive tester for the (1, 3, 2)-tuple. The version of randomized binary search that we employ and analyze4

may be of an independent interest.5

1.3 Generalizations of the problem6

The definition of π-freeness can easily be extended to partially ordered domains. Given a function f : D →7

R whose domain is partially ordered by � contains a pattern π ∈ Sk, if there are i1 � i2 � · · · � ik such8

that f(ix) > f(iy) whenever π(x) > π(y). Now the pattern (2, 1) corresponds to monotonicity testing over9

partially ordered domains, one of the most widely studied problem in property testing.10

We remark that the result of testing π-freeness for a pattern of constant length k in timeO(ε1/k|D|1−1/k)11

extends to this more general setting implying that we can always test the problem in sub-linear query com-12

plexity. The question of classifying the patterns that can be efficiently tested in this more general setting is13

an interesting open problem.14

Delete distance vs. Hamming distance. The delete distance between two functions f and g in R[n] is n15

minus the length of a longest common subsequence of f and g. Since one can delete the entries where f and16

g differ from both of them to get a common subsequence of length n−d(f, g), the delete distance is at most17

the Hamming distance. But on the other hand, the Hamming distance can be much larger than the delete18

distance. For example, f : i 7→ i and g : i 7→ i+ 1 has delete distance 1 and Hamming distance n between19

them. Nevertheless, it can be seen that for any pattern π ∈ Sk, for any k ≤ n, the Hamming distance of f20

to the set Fπ of π-free functions is at most the delete distance of f from Fπ. Hence, our results continue to21

hold when the metric used to define the notion of being ε-far from a class of functions is the delete distance.22

1.4 Other related work23

Property testing was introduced by Rubinfeld and Sudan [41]. The study of combinatorial properties was24

initiated by Goldreich, Goldwasser and Ron [27]. Works on string properties related to forbidden or oc-25

curring patterns in labeled posets include the papers on testing sortedness [21, 9] and the lower bound of26

Fischer [22], and many others, see e.g., [7, 37, 3, 24], and citations therein.27

The problem of testing hereditary properties of permutations has been studied before by Hoppen et28

al. [31] under the rectangular distance (discrepancy of intervals) and by Klimošová and Král [36] under29

Kendall’s tau-distance (the normalized number of transpositions). Unlike the edit distance used in this30

paper, in both the distance measures discussed above, local changes do not contribute much to the distance:31

For example, the sequence (2, 1, 4, 3, . . . , n, n − 1) is close to being monotone with respect to these two32

distances, while according to the edit distance it is not. Therefore, the results are not comparable.33

Another line of research relevant to our problem (mostly to the extension to partial orders discussed in34

the previous subsection) is monotonicity testing [28, 11, 20, 30, 23, 14, 2, 21, 9, 18, 34, 12, 4, 19]. Recently,35

Chakrabarty and Seshadhri gave an optimal tester for this problem on the hypercube and on hypergrids36

[15, 16]. In another paper they prove that the important special case of monotonicity of Boolean functions37

over the d-dimensional hypercube can be tested in o(d) query complexity [17]. This was improved by Khot,38

Minzer and Safra to an Õ(
√
d) tester, which is nearly optimal for the problem [34]. More recently, Black et39

al. [10] proved that one can test monotonicity of Boolean functions over [n]d with o(d) logO(1) n queries.40

Finally, we note that some progress on the exact decision problem for π-freeness for permutations was41

obtained in [1], and a more efficient O(f(k) · n) time algorithm was presented in [29] where f is a doubly42
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exponential function in the length of the pattern k. Importantly, due to the existence of this algorithm, the1

running times of all the testers developed in this paper are linear in the number of queries they make.2

1.5 Organization of the paper3

We describe and analyze the poly-logarithmic non-adaptive tester for monotone patterns in Section 3. The4

poly-log adaptive tester and the optimal non-adaptive tester for the pattern (1, 3, 2) are in the Section 4. In5

Section 5, we prove the polynomial lower bound for non-adaptive testing of the pattern (1, 3, 2) and then6

extend the result to all non-monotone patterns. We discuss how this technique can be used for deriving better7

lower bounds for some specific patterns in Appendix Section A. We conclude with a few remarks and some8

open problems in Section 6.9

2 Notation and preliminaries10

We denote the set {1, . . . , n} by [n] and the symmetric group of permutations of [n] by Sn. We represent a11

permutation π ∈ Sn in the one-line notation (π(1), . . . , π(n)). Our domain is the set of functions f : [n]→12

R equipped with the (Hamming) distance: d(f, g) = |{i : f(i) 6= g(i)}|. We may speak about a function13

f : [n]→ R, equivalently, as an array f of real numbers.14

A function (array) f : [n] → R is said to contain a pattern π ∈ Sk for some k ≤ n, if there exists15

a subsequence of f that is order-isomorphic to π; namely, a sequence of indices i = (i1, . . . , ik) ∈ [n]k,16

i1 < · · · < ik, such that, for every pair a, b ∈ [k], f(ia) < f(ib) whenever π(a) < π(b). The function f17

is called π-free if it does not contain π. Otherwise, every k-tuple i = (i1, . . . , ik) ∈ [n]k, i1 < · · · < ik,18

such that the subsequence in f(i1) . . . , f(ik) is order-isomorphic to π is called a π-tuple in f and we write19

f |i ∼ π. For example, f is nondecreasing if and only if it is (2, 1)-free.20

We say that a function f : [n] → R is ε-far from being π-free, for a pattern π ∈ Sk if d(f, g) ≥ εn for21

every π-free function g : [n] → R. We say that a pattern π ∈ Sk is ε-testable with one-sided error using22

q = q(ε, n) queries, if there exists a randomized algorithmA which makes at most q queries to any function23

f : [n]→ R and accepts it with probability 1 if it is π-free, and rejects it with probability at least 0.5 if it is24

ε-far from being π-free. Here, a query to f is made by specifying an index i ∈ [n] on which the answer is25

f(i). We say that A is non-adaptive if it chooses all the q query locations before it makes the first query to26

f .27

The definitions above are made for one fixed permutation π ∈ Sk, as most results are for this case.28

However, the definitions can be extended to collection of forbidden permutations A of maximum length k.29

Namely, f is A-free if it does not contain any π ∈ A. The distance to being A-free is defined appropriately.30

Most of our analysis start by picking a collection of disjoint k-tuples. The next basic proposition will be31

used recurrently.32

Definition 2.1 Let T be a set of k-tuples of [n]. We denote by T (i), for each i ∈ [k], the set of the i-33

th coordinates of the k-tuples in T : e.g., T (1) = {a1| (a1, . . . , ak) ∈ T}. We call the set of k-tuples34

T ∗ = T (1) × · · · × T (k) the closure of T . We say that T is a matching if every pair of k-tuples in T are35

disjoint as sets.36

Proposition 2.2 Let f : [n] → R be ε-far from being π-free for some pattern π ∈ Sk. Then there is a37

matching T of π-tuples in f with |T | ≥ εn/k.38

Proof. Let T be a maximal matching of π-tuples in f and let I = T (1) ∪ · · · ∪ T (k). By definition, f39

restricted to the set [n] \ I is π-free. We can make function f π-free for the whole domain [n] by replacing40

for each i ∈ I the value f(i) by f(j), where j is the largest integer j /∈ I with j < i. Since f is ε-far from41
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being π-free, |T (1) ∪ · · · ∪ T (k)| ≥ εn. Therefore |T | ≥ εn/k.
1

2

Next we discuss a simple result that shows that testing for a constant size set of forbidden patterns is3

essentially as difficult as testing for each forbidden pattern individually.4

For constant-size A, it is obvious that if one can test π-freeness for every π ∈ A in at most q queries,5

then being A-free can be tested in O(q) queries. The other way around is not necessarily true, at least for6

non-adaptive testing as we show by a counter example in Section 6.7

Proposition 2.3 Let A be a set of forbidden permutations of maximum length k. If a function f : [n] → R8

is ε-far from A-free then f is ε
|A| -far from π-free for at least one π ∈ A. In particular, if one can test π-9

freeness with 1-sided error for every π ∈ A in at most q(n, k, ε) queries, then being A-free can be tested in10

|A| · q(n, k, ε
|A|) queries. If one can test π-freeness with 2-sided error for every π ∈ A in at most q(n, k, ε)11

queries, then being A-free can be tested in O(|A| log |A| · q(n, k, ε
|A|)) queries.12

Proof. For sake of contradiction assume that f is ε-far from A-free but ε/|A|-close to being π-free all13

patterns π in A. Then for each π ∈ A we can delete fewer than εn/|A| elements from f (viewed as a se-14

quence) to obtain a π-free sequence. Thus, overall we can delete fewer than εn elements from f to obtain an15

A-free sequence. Hence f is ε-close toA-free, which is a contradiction. This implies the result for one-sided16

error using |A| · q(n, k, ε
|A|) queries by applying each tester individually. If the tester has 2-sided error, we17

first need to amplify the tester so that it errs with probability at most 1/(3|A|) (which can be done with an18

O(log |A|) factor overhead by repeating each of the tests and taking the majority of the outcomes. The tester19

for A-freeness rejects, if one of the individual testers rejects. The result then follows from the union bound.20

21

22

Consider a function f : [n] → R which contains a matching T of εn π-tuples for some π ∈ Sk. A23

standard second moment argument implies that if one samples O(ε−1/kn1−1/k) indices from [n] uniformly24

at random, then with high probability there is a π-tuple in f among the sampled indices. Hence the next25

result.26

Theorem 2.4 Every pattern π can be tested in O
(
ε−1/kn1−1/k

)
queries using a non-adaptive one-sided-27

error algorithm, where k is the length of π.28

Proof. It suffices to show that if a function f : [n]→ R is ε-far from being π-free, then a random uniform29

subset Q ⊂ [n] of size q = (ε/k)−1/kn1−1/k contains the pattern π with a constant positive probability.30

Then by standard amplification (two times would be enough) we would reach a probability 1/2 of rejection.31

By Proposition 2.2, f : [n]→ R which is ε-far from being πk-free, containsm = εn/k disjoint π-tuples.32

Let Ai be the event that that Q contains the i’th member of this set. Then, the probability that Q contains a33

pattern π is at least34

P [∪Ai] ≥
m∑
1

P [Ai]−
∑

1≤i<j≤m
P [Ai ∩Aj ] = m ·

(
n− k
q − k

)
/

(
n

q

)
−
(
m

2

)
·
(
n− 2k

q − 2k

)
/

(
n

q

)
=

35

= m·
∏k−1
i=0 (q − i)∏k−1
i=0 (n− i)

−
(
m

2

)
·
∏2k−1
i=0 (q − i)∏2k−1
i=0 (n− i)

=
εn

k

( q
n

)k
·(1−o(1)) − 1

2

[
εn

k

( q
n

)k]2
(1−o(1)) = 0.5−o(1)

36

37
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3 Monotone patterns1

For every k ∈ N, we call the permutations (1, . . . , k) and (k, . . . , 1) monotone patterns. Since testing for the2

monotone increasing pattern (1, . . . , k) is the same as testing for the monotone decreasing pattern (k, . . . , 1)3

in the reversed sequence, we restrict our discussion to testing for πk = (k, . . . , 1). The goal of this section4

is to prove:5

Theorem 3.1 Every monotone pattern πk can be tested in (kε−1 log n)O(k2) queries using a non-adaptive6

one-sided-error algorithm.7

The tester is conceptually simple. We show that sampling a k-tuple of points, under a suitable dis-8

tribution will return a πk-tuple in f with sufficient probability. We do not explicitly state the distribution9

according to which we sample the k-tuples. Instead, we explicitly describe the sampling procedure:10

Algorithm 3.2 (DYADICSAMPLER(I, k)) The input to the algorithm consists of an interval I of m natural11

numbers and a natural number k ≤ m. The output is a k-tuple t ∈ Ik generated as described below.12

1. If k = 1, return t ∈ I picked uniformly at random and terminate.13

2. Otherwise, pick a “split-point” ` ∈ [k − 1] uniformly at random. The k-tuple t returned by the14

algorithm will be a concatenation of an `-tuple and a (k − `)-tuple sampled recursively from two15

adjacent and disjoint subintervals IL and IR of I to be selected next.16

3. Fix a “slice-width” W = 2w, where w is chosen uniformly at random from {0, 1, . . . , blogmc − 1}.17

Slice I into consecutive disjoint intervals I1, . . . , Idm/W e, each of length W (except possibly the last18

one).19

4. Pick a “slice-number” s uniformly at random from {1, . . . , dm/W e}. Define IL to be the union of the20

2` consecutive slices up to s, and IR to be the union of the 2(k− `) consecutive slices after s. That is,21

IL = Is−2`+1 ∪ · · · ∪ Is, and IR = Is+1 ∪ · · · ∪ Is+2(k−`).22

In the above expressions, assume Ii = ∅ if i 6∈ {1, . . . , dm/W e}23

5. Recursively sample (t1, . . . , t`) from IL and (t`+1, . . . , tk) from IR. That is,

(t1, . . . , t`) = DYADICSAMPLER(IL, `),

(t`+1, . . . , tk) = DYADICSAMPLER(IR, k − `).

6. Return the concatenated tuple t = (t1, . . . , tk) and terminate.24

Theorem 3.1 follows immediately from the following stronger theorem. We need the following defini-25

tions for its proof:26

Definition 3.3 Let t = (t1, . . . , tk) be a k-tuple of positive integers with t1 < · · · < tk. We define the27

leap-start of t to be the smallest i ∈ [k − 1] such that ti+1 − ti ≥ tj+1 − tj ,∀j ∈ [k − 1] and the leap-size28

of t to be blog(ti+1 − ti)c, where i = leap-start(t).29

Theorem 3.4 Let t be the k-tuple generated by a call to Algorithm 3.2 with arguments ([n], k). For any30

function f : [n] → R which contains a matching T of πk-tuples, the joint probability that t is a πk-tuple in31

f and t ∈ T ∗ is at least (|T |/n)k(2k2 log n)−(k+1
2 )+1.32

6



Proof. The proof is by an induction on k. The statement is easily verified for k = 1 (where the only1

nontrivial event is t ∈ T ∗).2

The event that the k-tuple t = (t1, . . . , tk) returned by Algorithm 3.2 is a πk-tuple in f is denoted by3

f |t ∼ πk. We want to estimate the probability of the joint event [f |t ∼ πk, t ∈ T ∗].4

Since Algorithm 3.2, at its top level, makes three independent and uniform random choices, namely5

split-point, slice-width, and slice-number, we can write the total probability of success as the expected value6

of the conditional probabilities P [f |t ∼ πk, t ∈ T ∗ | E`,w,s], where the expectation is over uniform choice7

of the split-point ` from [k − 1], uniform choice of the slice-width W from {2w : 0 ≤ w ≤ blog nc − 1},8

and uniform choice of the slice-number s from [dn/W e] and E`,w,s is the event that the three choices made9

by Algorithm 3.2 are ` as the split point, W = 2w as the slice-width and s as the slice number. That is,10

P [f |t ∼ πk, t ∈ T ∗] = E (P [f |t ∼ πk, t ∈ T ∗ | E`,w,s]) (1)

where11

E() =
k−1∑
`=1

1

k − 1

blognc−1∑
w=0

1

log n

dn/2we∑
s=1

1

dn/2we
()

Now we estimate P [f |t ∼ πk, t ∈ T ∗ | E`,w,s] for an arbitrary but fixed `, w, s. Let T`,w,s ⊂ T be12

all the k-tuples t in T with leap-start(t) = `, min{leap-size(t), blog nc − 1} = w, and t` ∈ Is, where13

Is = [(s − 1)W + 1, sW ]. Notice that every k-tuple (t1, . . . , tk) ∈ T`,w,s has t1, . . . , t` ∈ IL and14

t`+1, . . . , tk ∈ IR, where IL and IR are the intervals selected by Algorithm 3.2 once the event E`,w,s15

has occurred. Moreover, we include every k-tuple t with leap-size(t) > blog nc − 1 in T`,w,s, where16

` = leap-start(t), w = blog nc − 1 and s chosen so that for the corresponding IL and IR, we have17

t1, . . . , t` ∈ IL and t`+1, . . . , tk ∈ IR. Hence18

T =
k−1⋃
`=1

blognc−1⋃
w=0

dn/2we⋃
s=1

T`,w,s. (2)

The key combinatorial observation we make here is that if u and v are two k-tuples in T`,w,s such that19

f(u`) > f(v`+1), the k-tuple (u1, . . . , u`, v`+1, . . . , vk) is a πk-tuple in T ∗`,w,s (caution: do not confuse20

T ∗`,w,s with T`,w,s here). In particular, if we choose any x ∈ R and define L`,w,s(x) = {(t1, . . . , t`) :21

(t1, . . . , tk) ∈ T`,w,s, t` ≥ x} and R`,w,s(x) = {(t`+1, . . . , tk) : (t1, . . . , tk) ∈ T`,w,s, t` ≤ x}, we see22

that the concatenation of any π`-tuple in L`,w,s(x)∗ and any πk−`-tuple in R`,w,s(x)∗ results in a πk-tuple in23

T ∗`,w,s. Hence the following claim is true.24

CLAIM 3.4.1. For every x ∈ R, the probability P [f |t ∼ πk, t ∈ T ∗ | E`,w,s] is at least p1 · p2, where

p1 = P
[
f |(t1,...,t`) ∼ π`, (t1, . . . , t`) ∈ L`,w,s(x)∗

]
,

p2 = P
[
f |(t`+1,...,tk) ∼ πk−`, (t`+1, . . . , tk) ∈ R`,w,s(x)∗

]
.

25

We will choose x to be the maximum value so that the corresponding set L = L`,w,s(x) has size at least26

`
k |T`,w,s|. This also ensures that the corresponding R = R`,w,s(x) has size at least k−`k |T`,w,s|27

By the induction hypothesis, we know that

p1 ≥
(
|L|

2`W

)` (
2`2 log(2`W )

)−(`+1
2 )+1

≥
(
|T`,w,s|
2kW

)` (
2k2 log n

)−(`+1
2 )+1

,
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and similarly1

p2 ≥
(
|T`,w,s|
2kW

)k−` (
2k2 log n

)−(k−`+1
2 )+1

.

Thus, p1p2 ≥
(
|T`,w,s|
2kW

)k (
2k2 log n

)−(k2)+1
.2

Substituting this lower bound for P [f |t ∼ πk, t ∈ T ∗ | E`,w,s] in Eqn. (1), and using the standard fact3

that for nonnegative xi’s4

m∑
i=1

1

m
xki ≥

(
m∑
i=1

1

m
xi

)k
successively three times, we get,5

P [f |t ∼ πk, t ∈ T ∗] ≥
(2k2 log n)−(k2)+1

(2nk2 log n)k
|T |k, (3)

as claimed in the theorem.
6

7

As we noted before, non-adaptive one-sided-error monotonicity testers with query complexityO(ε−1 log n)8

are known. This complexity is asymptotically optimal by [22]. Theorem 3.4 (for k = 2) is a monotonicity9

tester with query complexity O(ε−2 log2 n), which is not optimal. However, as far as we know, none of the10

asymptotically optimal testers have the additional useful property that the tester will return a π2-tuple which11

belongs to T ∗, the closure of an implicitly assumed collection T of π2-tuples. This property is quite useful12

for many inductive arguments as demonstrated in the previous proof. It will be used again in the adaptive13

tester for the pattern (1, 3, 2). The (2, 1)-tester we designed has a further useful property which helps us in14

using it as a subroutine in the non-adaptive and adaptive (1, 3, 2)-testers. We defer the discussion of this15

property to Section 4 (Definition 4.1, Claim 4.2) where we describe those (1, 3, 2) testers.16

4 Adaptive and non-adaptive testers for (1, 3, 2)-freeness17

Unlike for the monotone patterns, a non-adaptive one-sided-error tester for (1, 3, 2)-pattern needs to make18

Ω(
√
n) queries to f . This will be shown in Section 5.1. Nevertheless we describe an adaptive one-sided-19

error tester for the (1, 3, 2)-pattern which makes only poly-log many queries (Section 4.1). This is the most20

technical part of the paper.21

We also describe a non-adaptive one-sided-error tester with Õ(ε−1
√
n) queries showing that the lower22

bound is nearly tight (Section 4.2). Before proceeding to the testers for the pattern (1, 3, 2), we prove one23

additional property of the dyadic sampler (Algorithm 3.2), which will play a crucial role there.24

Definition 4.1 For a function f : [n]→ R, the f -interval of an ordered pair (i, j) ∈ [n]2 is25 (
min{f(i), f(j)},max{f(i), f(j)}

)
. We say that an ordered pair (i, j) dominates an ordered pair (i′, j′)26

in f (and denote it by (i, j) �f (i′, j′)), if the f -interval of (i, j) contains the f -interval of (i′, j′). In27

particular every pair dominates itself. Further, we say that (i, j) dominates a set T of pairs (and denote it28

by (i, j) �f T ), if it dominates at least one pair in T .29

Claim 4.2 Let t = (t1, t2) be the ordered pair generated by a call to Algorithm 3.2 with arguments ([n], 2).30

For any function f : [n] → R which contains a matching T of (2, 1)-tuples, the probability that t is a31

(2, 1)-tuple in f , t ∈ T ∗, and t �f T is at least (|T |/n)2(8 log n)−2.32

8



Proof. Note that the lower bound on probability stated above is equal to the one guaranteed by Theo-1

rem 3.4 for k = 2. So this claim is stronger only because of the demand that t �f T . We reexamine the2

proof of Theorem 3.4, with k = 2, to show that this additional requirement is obtained for free.3

Claim 3.4.1 in the previous proof bounds the probability P [f |t ∼ πk, t ∈ T ∗ | E`,w,s] from below by4

the product of the probabilities p1 and p2. When k = 2 (and hence ` = 1) they reduce to p1 = P [t1 ∈5

L`,w,s(x)] and p2 = P [t2 ∈ R`,w,s(x)]. Recall that L`,w,s(x) = {t1 : (t1, t2) ∈ T`,w,s, f(t1) ≥ x} and6

R`,w,s(x) = {t2 : (t1, t2) ∈ T`,w,s, f(t1) ≤ x}.7

For a t2 ∈ R`,w,s, let t′2 denote the partner of t2 in T (i.e., (t′2, t2) ∈ T ), which is unique since T is a8

matching. Then, for every t1 ∈ L`,w,s, we have f(t1) ≥ x ≥ f(t′2) (by definition of the set R`,w,s) and thus9

(t1, t2) �f (t′2, t2) ∈ T . That is, any pair from L`,w,s(x)×R`,w,s(x) dominates T and hence p1p2 is a valid10

lower bound on P [f |t ∼ πk, t ∈ T ∗, t �f T | E`,w,s].
11

12

4.1 An adaptive (1, 3, 2)-tester13

The goal of this section is to prove14

Theorem 4.3 The pattern (1, 3, 2) can be tested with one-sided-error in (ε−1 log n)O(1) queries using an15

adaptive algorithm.16

The ε-test that we are going to describe will make queries to f and reject f if and only if it finds a17

(1, 3, 2)-tuple among the queried points. The one-sidedness is obvious. We will only need to show that the18

test rejects an ε-far input with high enough probability.19

Consider a function f : [n]→ R that is ε-far from being (1, 3, 2)-free. Then by Proposition 2.2, there is20

a matching T of (1, 3, 2)-tuples of size |T | ≥ εn/3. The set T is partitioned into two types of tuples based21

on their leap-start (Definition 3.3): T1 = {(i, j, k) ∈ T | j − i ≥ k − j} and T2 = T \ T2. That is, all the22

tuples in T1 have leap-start 1 while those in T2 have leap-start 2.23

The two cases are of a different nature. We will present two tests; the first has high probability of success24

when |T1| is large, while the second has high probability of success when |T2| is large. The full test will run25

both these tests. Notice that at least one of T1 or T2 has size εn/6 or more.26

Test 1: Test for the case |T1| ≥ εn/6:27

The tester for this case is again DYADICSAMPLER([n], 3), and the analysis is also similar to the case28

of (3, 2, 1)-testing. Intuitively, the structural reason for the success of the dyadic sampler when T1 is large29

is the following. When the sampler chooses 1 as the split point at the top level, and recursively samples30

an index t1 ∈ IL and a pair (t2, t3) ∈ I2R, their concatenation (t1, t2, t3) is a (1, 3, 2)-tuple if (t2, t3) is a31

(2, 1)-pair with f(t3) > f(t1).32

Lemma 4.4 Let t be the 3-tuple sampled by a call to Algorithm 3.2 with arguments ([n], 3). For any function33

f : [n] → R which contains a matching T of (1, 3, 2)-tuples, all of which have leap-start 1, the probability34

that t is a (1, 3, 2)-tuple in f is at least (|T |/n)3(18 log n)−5.35

Proof. In fact, we will prove that under the same hypothesis, the joint probability that t is a (1, 3, 2)-36

tuple in f and t ∈ T ∗ is at least (|T |/n)3(18 log n)−5. Notice that this bound is the same as the one in37

Theorem 3.4 with k = 3. The proof is similar to that of Theorem 3.4 with the pattern π = (1, 3, 2) taking38

the role of π3 = (3, 2, 1) there, once we make the following two observations:39

The first observation is that, in Eqn. (2), for every w and s, T2,w,s is empty by definition since all tuples40

in T have leap-start 1. So we can ignore the case ` = 2 in the analysis.41
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The second observation is that, when ` = 1, we can make a claim similar to Claim 3.4.1 for the proba-
bility P [f |t ∼ (1, 3, 2), t ∈ T ∗ | E`,w,s]. Redefine

L1,w,s(x) = {t1 : (t1, t2, t3) ∈ T1,w,s, t1 ≤ x}, and

R1,w,s(x) = {(t2, t3) : (t1, t2, t3) ∈ T1,w,s, t1 ≥ x}.

Then the concatenation of any t1 ∈ L1,w,s(x) and any (2, 1)-tuple (t2, t3) in R1,w,s(x)∗ is a (1, 3, 2)-tuple1

in T ∗1,w,s. Therefore, the probability P [f |t ∼ (1, 3, 2), t ∈ T ∗ | E1,w,s] is bounded below by p1p2 where p12

and p2 are as defined in the proof there.
3

4

Test 1 repeats the dyadic sampler O(ε−3 log5 n) times. By Lemma 4.4, we see that it finds a (1, 3, 2)-5

tuple in f , and therefore rejects f with probability close to 1 when |T1| ≥ εn/6.6

Test 2. Test for the case |T2| ≥ εn
6 .7

This case is different from the previous one since we cannot make a claim similar to Claim 3.4.1 for8

the probability P [f |t ∼ (1, 3, 2), t ∈ T ∗ | E`,w,s] when ` = 2. The concatenation of a (1, 2)-pair (t1, t2)9

from the left interval IL and an index t3 from the right interval IR is a (1, 3, 2)-tuple in f only if f(t3) ∈10

(f(t1), f(t2)). Hence we cannot do the earlier median-split and concatenate argument. In fact, Theorem 5.111

shows that this limitation is grave enough to rule out poly-log non-adaptive testers for the pattern (1, 3, 2).12

To explain the intuition behind the adaptive tester (Algorithm 4.12 below) without getting into the quan-13

titative details, let us assume that for two disjoint intervals IL and IR in [n] (with IL to the left of IR), there14

is a large matching T of (1, 3, 2)-tuples with T (1) ∪ T (2) ⊂ IL and T (3) ⊂ IR. Let i0 ∈ IL be an index15

such that f(i0) is smaller than the median f -value in T (1). Let I ′R = {i ∈ IR : f(i) > f(i0)}.16

We sample a pair (j, k) from IR using the dyadic sampler. If f |I′R has many (2, 1)-tuples, then with17

good probability, (j, k) is a (2, 1)-tuple from I ′R. In this case, (i0, j, k) is a (1, 3, 2)-tuple and we are done.218

On the other hand, if the dyadic sampler on IR does not succeed after sufficiently many trials, one can19

infer that f |I′R is very close to monotone. Next, we run the dyadic sampler on IL to get a pair (i, j). With20

good probability, (i, j) is a (1, 2)-pair with f(i) ≥ f(i0) and which dominates a (1, 2)-pair in {(t1, t2) :21

(t1, t2, t3) ∈ T} (Claim 4.2). Finally, we search for t3 in IR using a version of random binary search22

that performs well in a nearly sorted array. If the search succeeds in finding an index k ∈ IR such that23

f(k) ∈
(
f(i), f(j)

)
, we return the (1, 3, 2)-tuple (i, j, k).24

Remarks 4.5 We use the domination property of the dyadic sampler (Claim 4.2) for (1, 2)-tuples rather25

than (2, 1)-tuples. A proof for it follows by symmetry. We chose to write the proof for (2, 1)-tuples to have26

notational consistency with the proof of Theorem 3.4.27

Before we formally state and analyse Test 2 (Algorithm 4.12), we discuss the version of random binary28

search that is used as a subroutine in Algorithm 4.12.29

Problem 4.6 (SEARCH IN NEARLY MONOTONE EMBEDDED SEQUENCES) The input for the problem con-30

sists of a function f : I → R, where I is an interval of m natural numbers; a “filter-range” F which is31

an open interval in R; a “query-range” Q ⊂ F which is also an open interval in R; and a positive real32

number ε. The interval I and the ranges F and Q are explicitly given, while f is available via query access.33

Furthermore, the following three promises are also given: (i) the preimage A = f−1(F ) has size at least34

εm. (ii) f |A contains a monotone increasing sequence of length at least (1 − ε/ log5m)|A|, and (iii) there35

exists an index i in the above monotone sequence such that f(i) ∈ Q. The goal is to find (w.h.p.) an index36

i ∈ I such that f(i) ∈ Q using at most poly(ε−1 logm) queries to f .37

2In fact, this part of the tester actually subsumes the tester for Case 1 (large T1) and hence we can choose not to run the tester
for Case 1 separately. For the sake of clarity, we do not analyze the performance of Algorithm 4.12 for Case 1.
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Algorithm 4.7 (FILTEREDBINARYSEARCH(f , F , Q, ε)) The input to the algorithm consists of a function1

f : I → R, where I is an interval of m natural numbers; a “filter-range” F which is an open interval in R;2

a “query-range” Q ⊂ F which is also an open interval in R; and a positive real number ε. The output is3

either an index i ∈ I such that f(i) ∈ Q or FAIL.4

The algorithm repeats the following two steps as long as I 6= ∅ and the total number of queries made to f5

is less than 1000ε−2 log4m. If either of the above happens, then the algorithm returns FAIL.6

1. Pick i ∈ I independently and uniformly at random till f(i) ∈ F .7

2. If f(i) ∈ Q, then return i and terminate. Otherwise, continue after narrowing the search interval I to8

either the left or right of i based on whether f(i) ≥ sup(Q) or f(i) ≤ inf(Q), respectively.9

Notice that Algorithm 4.7 is a standard random binary search in which a basic random query is replaced10

with independent random queries until one gets a value in a specified filter range; the filter range being11

specified along with the input. We analyze the performance of this algorithm for Problem 4.6 and show that12

there exists a very large subset A′ of indices in f−1(F ) for which this strategy works (Theorem 4.11).13

Assume that f : [n] → R is a function that is represented by the sequence of f -values in an array of14

size n; f(1), . . . , f(n). The goal is to search for a value x in the array. That is, to find i such that f(i) = x.15

When f is monotone, a deterministic binary search is the optimal search algorithm making 1+log n queries16

in the worst case. Many variants of binary search were considered in the literature, mainly to accommodate17

noisy answers of different types, see [32, 6]. We need a different variant that is closely related to the above,18

but as far as we know, not simply reducible to any of the previous results.19

In our case, f is not necessarily monotone or even close to be so, however, there will be a filter range20

F ⊆ R, so that I(F ) = f−1(F ) is relative large and f |f−1(F ) is very close to monotone. Moreover, F is21

available to the algorithm by an explicit decision oracle that for a given a, it will answer whether a ∈ F .22

Our intention is to do a randomized binary search for i. If f would be monotone on f |f−1(F ), a simula-23

tion of the deterministic binary search would still find a required i ∈ Q, if one exists, in O(logm) queries.24

The only difficulty is to sample the next query so as to be in f−1(F ) and to split f−1(F ) into two large25

enough subsets. Since f−1(F ) has large enough density in [m], the first event will happen with high proba-26

bility once we choose enough uniform samples from [m]. Moreover, the algorithm can immediately verify27

whether this event has occurred. The second event will happen with high enough probability for the random28

query x, conditioned on the event that x ∈ f−1(F ) (This event cannot be verified by the algorithm, but the29

correctness does not need this).30

In our case, f |f−1(F ) is not monotone but is guaranteed to be extremely close to monotone. That is,31

there exists a large subset M of f−1(F ) in which f is monotone. This is not enough to carry the above32

argument though, as after making some queries, even if all queries are what a perfectly monotone f would33

be consistent with, the interval [m] shrinks to possibly an interval in which M is not dense enough , which34

will prevent further success. This brings in the need for the next definition and lemma which maps a global35

density condition to a local density condition.36

Definition 4.8 Given a set S ⊂ [n] and a γ ∈ [0, 1], an element i ∈ S is called γ-deserted, if there exists an37

interval I ⊂ [n] containing i such that |S ∩ I| < γ|I|.38

Suppose f : [n] → R is a function (array) that is monotone increasing over a set S ⊂ [n]. Given39

x = f(i) for some i ∈ S, we would like to find i using a randomized binary search. The binary search will40

be on the “right track” as long as we compare x to values of f on points in S alone. If i is γ-deserted, then41

the binary search for it may fall into an interval of [n] in which the density of S-elements is low, and then42

continuing on the right track will be unlikely. So we would like the number of γ-deserted elements to be43

small. This motivates the following lemma.44
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Lemma 4.9 Let S ⊂ [n] with |S| ≥ δn. For every γ < 1, at most 3γ(1 − δ)n/(1 − γ) elements of S are1

γ-deserted.2

Proof. Let Sγ ⊂ S be the set of γ-deserted elements in [n]. We bound |Sγ | from above using an argument3

similar to the one used in a standard proof of the Vitali covering lemma [43].4

We define the measure of an interval I ⊂ [n] be µ(I) = |S ∩ I|. For each i ∈ Sγ , let Ii denote a5

maximal interval in [n] containing i with µ(Ii) < γ|Ii|. Let I = {Ii : i ∈ Sγ}. Notice that no interval in I6

is properly contained in another.7

Consider the greedy procedure which constructs a maximal collection P ⊂ I of pairwise disjoint inter-8

vals, by iteratively choosing a maximum-measure interval from among the intervals in I which are disjoint9

with every interval already added to P .10

Let P =
⋃
I∈P I . Observe that

|P | ≤ |S ∩ P |+ (1− δ)n, and

|S ∩ P | =
∑
I∈P

µ(I) <
∑
I∈P

γ|I| ≤ γ|P |.

Combining the two estimates, we conclude that11

|S ∩ P | ≤ γ(1− δ)
(1− γ)

n.

Next, we bound |Sγ |. If i ∈ Sγ is not in P , then the greedy procedure did not include Ii in P . By12

definition of the greedy procedure, if the interval Ii ∈ I is not in P , then there exists an interval I ∈ P13

overlapping with Ii such that µ(I) ≥ µ(Ii). Hence, if we enlarge each interval I ∈ P so that it covers the14

nearest µ(I) more elements from S on both sides, then this collection of enlarged intervals from P cover all15

the elements of Sγ . Hence |Sγ | ≤
∑

I∈P 3µ(I) = 3|S ∩ P |.
16

17

Remarks 4.10 Lemma 4.9 will be used in two different regimes. The first regime is when δ is extremely close18

to 1. Then one can choose γ also quite close to 1 and still have very few elements of G to be γ-deserted. In19

particular, if δ = 1−ε/ log5 n and γ = 1−1/ log3 n, then at most 3εn/ log2 n elements inG are γ-deserted.20

A second regime is when δ is close to 0. In this case, we choose γ � δ so that at most 3γn� δn elements21

in G are γ-deserted.22

Theorem 4.11 Let f : [m] → R, F ⊂ R and ε > 0 be such that A = f−1(F ) has size εm and f |A is23

(ε/ log5m)-close to monotone increasing. Then there exists a set A′ ⊂ A with |A′| ≥ |A|(1− ε/ logm), so24

that if f−1(Q) contains any element of A′, Algorithm 4.7 succeeds with probability at least (1− 1/ logm).25

Proof. Our first application of Lemma 4.9 is to A ⊂ [m] with γ1 set to ε2/ log2m. By the lemma, the set26

Aγ1 ⊂ A of γ1-deserted elements has size at most 3γ1m ≤ 3ε|A|/ log2m. Since f |A is (ε/ log5m)-close to27

monotone, there exists a monotone nondecreasing sequence of length δ|A| in A, where δ = 1− ε/ log5m.28

Let M ⊂ A be the support of this large monotone sequence. A second application of Lemma 4.9 is to M as29

a subset of A with γ2 = 1− 1/ log3m. (Technically, we apply the lemma to the set M ′ which corresponds30

to M once we remap A to an interval [|A|] preserving the order.) We conclude that the set Mγ2 ⊂ M of31

γ2-deserted elements in A has size at most 3ε|A|/ log2m. The set A′ in the statement of the theorem is32

M \ (Aγ1 ∪Mγ2). It is clear that |A′| � |A|(1− ε/ logm).33

Let i ∈ A′ be such that i ∈ f−1(Q). When we run Algorithm 4.7, we say that the algorithm is on the34

right track if i ∈ I , where I is the current search interval. Since i is not γ1-deserted in [m], as long as the35
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binary search is on the right track, a single query has a probability at least γ1 of hitting an element in A. Let1

Ak be the event that the algorithm, while it is in its k-th iteration, hits an element i ∈ A in Step 1 within2

the first 10γ−11 log logm trials. Then P (Ak) � 1 − 1/ log3m,∀k. Let Mk denote the event that, the first3

element from A that the algorithm hits in its k-th iteration belongs to M . Since i is not γ2-deserted in A,4

P (Mk) ≥ γ2 = 1 − 1/ log3m. Once both these events happen, the algorithm takes one more step in the5

right track by spending at most 10γ−11 log logm queries in the k-th iteration.6

The probability that either Ak or Mk fail to happen for some k ≤ 100 logm is, by union bound, at7

most (100 logm)(1/ log3m+1/ log3m) ≤ 1/(2 logm). The probability that a random binary search takes8

more than 100 logm steps on an array of length m is much smaller than 1/(2 logm). Hence the algorithm9

succeeds with probability at least (1− 1/ logm).10

Since Ak happens for all k ≤ 100 logm, the total number of queries made to f in this case is at most11

1000γ−11 logm · log logm ≤ 1000ε−2 log4m.
12

13

Now we are ready to give the complete description of Test 2.14

Algorithm 4.12 (A2(f, ε)) The input is a function f : [n] → R. The output is either a (1, 3, 2)-tuple in f15

or FAIL.16

1. Let q = 100ε−4 log20 n.17

(The total number of queries made to f will be limited to O(q).)18

2. Fix a “slice-width” W = 2w, where w is chosen uniformly at random from {0, 1, . . . , dlog ne − 1}.19

Slice [n] into consecutive disjoint intervals I1, . . . , Idn/W e, each of length W (except possibly the last20

one).21

3. Pick a “slice-number” s uniformly at random from {1, . . . , dn/W e − 1}.22

Define IL = Is−2 ∪ Is−1 ∪ Is and IR = Is+1 ∪ Is+2.23

(In the above expressions, assume Ii = ∅ if i 6∈ {1, . . . , dn/W e})24

4. Query f at q points chosen independently and uniformly at random from IL. Let i0 be the index with25

a smallest f -value among these q points.26

Let I ′L = {i ∈ IL : f(i) > f(i0)} and I ′R = {i ∈ IR : f(i) > f(i0)}.27

5. Repeat DYADICSAMPLER(IR, 2) independently q times. If it returns a (2, 1)-pair (j, k) in I ′R × I ′R,28

then return the (1, 3, 2)-tuple (i0, j, k) and terminate.29

(Otherwise we show that, with high probability, f |I′R is nearly monotone.)30

6. Run DYADICSAMPLER(IL, 2) once. If it returns a (1, 2)-pair (i, j) in I ′L × I ′L, then proceed to next31

step. Otherwise return FAIL.32

7. Let fR = f |IR . Define the “query range” Q =
(
f(i), f(j)

)
, and the “filter-range” F =

(
f(i0),∞

)
.33

Run FILTEREDBINARYSEARCH(fR, F,Q, ε
′) (Algorithm 4.7) where ε′ = 1

8ε log−1 n. If it succeeds34

in returning an index k ∈ IR with f(k) ∈ Q, then return the (1, 3, 2)-tuple (i, j, k). Otherwise return35

FAIL.36

Lemma 4.13 Let f : [n] → R contain a matching T2 of εn (1, 3, 2)-tuples with leap-start 2. Then Algo-37

rithm 4.12 called with arguments (f, ε) returns a (1, 3, 2)-tuple in f with a probability at least Ω
(
ε3/ log6 n

)
.38

Moreover, the algorithm makes at most O
(
ε−4 log20 n

)
queries to f .39

Proof. The claim on query complexity is obvious once we notice that the the FILTEREDBINARYSEARCH40

called in Step 7 makes at most (ε′)−2 log4 n queries which is O(q). We only need to analyze the probability41

of success. Next, we define success for each step of Algorithm 4.12 and provide a lower bound on the42

success probability of each step conditioned on the event that every step prior to it is successful.43
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Step 2. For eachw ∈ {0, . . . , dlog ne−1} let T2,w denote the tuples (i, j, k) in T2 with leap-size blog(k − j)c =1

w. Step 2 is considered successful if it chooses a w so that |T2,w| ≥ εn/ log n. Since
⋃dlogne−1
w=0 T2,w = T ,2

there exists at least one w with |T2,w| ≥ εn/ log n. Hence Step 2 succeeds with probability p2 ≥ 1/ log n.3

Step 3. For the w chosen in previous step, and for each s ∈ [dn/2we], let T2,w,s denote the tuples4

(i, j, k) in T2,w with j ∈ Is, where Is is the s-th slice of width W = 2w in [n]. Step 3 is consid-5

ered successful if it chooses an s so that |T2,w,s| ≥
(
1
2ε log−1 n

)
W . If the previous step is successful,6

we have |T2,w| ≥ εn/ log n. A Markov inequality over s implies that |T2,w,s| ≥
(
1
2ε log−1 n

)
W , for7

at least
(
1
2ε log−1 n

)
fraction of choices of s from [dn/W e]. Hence, Step 3 succeeds with probability8

p3 ≥
(
1
2ε log−1 n

)
, conditioned on the event that Step 2 is successful.9

Step 4. In what follows, we assume that the previous steps are successful and thus |T2,w,s| ≥
(
1
2ε log−1 n

)
W .10

Let T = T2,w,s and mT be the median f -value in T (1). Step 4 is considered successful if f(i0) < mT . Let11

IL and IR be the intervals chosen by Algorithm 4.12 in Step 3. In particular, |IL| ≤ 3W and |IR| ≤ 2W .12

Notice that every tuple (i, j, k) ∈ T2,w,s satisfies i, j ∈ IL (since j−i < k−j < 2W ) and k ∈ IR. The prob-13

ability that a single i chosen uniformly at random from IL has f(i) > mT at least 1
2 |T |/|IL| ≥

1
12ε log−1 n.14

So the probability that no i from the q trials has f(i) < mT is o(1). That is, when steps 2 and 3 are15

successful, Step 4 succeeds with probability p4 = 1− o(1).16

Step 5. Step 5 is considered successful if it returns a (2, 1)-pair (j, k) in I ′R × I ′R. In this case the entire17

algorithm is successful and hence it terminates. We expect this step to succeed only if f |I′R is (ε log−5 n)-18

far from monotone. Otherwise, we rely on the next two steps. If f |I′R is (ε log−5 n)-far from monotone,19

then f contains a matching M of (2, 1)-pairs from I ′R × I ′R with |M | ≥ 1
2(ε log−5 n)|I ′R|. When all the20

previous steps are successful, |I ′R| ≥
1
2 |T | ≥

1
4

(
ε log−1 n

)
W and so |M | ≥ 1

8

(
ε2 log−6 n

)
W . So a21

single call to the dyadic sampler returns a (2, 1)-pair from I ′R × I ′R with probability at least Ω(ε4 log−14 n)22

(Theorem 3.4). Therefore at least one of the q trials succeed with probability 1− o(1). That is, in this case,23

Step 5 succeeds with probability p5 = 1 − o(1) and thus the whole algorithm succeeds with probability24

Π5
t=2pi = Ω(ε log−2 n).25

Step 6. In what follows, we assume that the steps 2 to 4 were successful and Step 5 was not successful.26

Step 6 is considered successful if it returns a (1, 2)-pair from IL × IL which can be extended to a (1, 3, 2)-27

tuple (i, j, k) where k is a member of I ′R that can be quickly found by running Algorithm 4.7 in the interval28

IR with filter-range F = (f(i0),∞) and query-range Q = (f(i), f(j)). The set I ′R plays the role of A in29

Theorem 4.11. Since Step 4 is successful, We know that |A| = |I ′R| ≥ ε′|IR| where ε′ = 1
8

(
ε log−1 n

)
.30

Moreover, since Step 5 failed, we are already under the assumption that f restricted to A is (ε/ log5 n)-31

close to monotone increasing. Hence the theorem guarantees the existence of a set A′ ⊂ A with size32

(1− ε′/ logm))|A| of “quickly searchable” indices.33

Consider the matching of (1, 2)-pairs S = {(i, j) : (i, j, k) ∈ T, f(i) > f(i0)} and its subset S′ =34

{(i, j) : (i, j, k) ∈ T, f(i) > f(i0), k ∈ A′}. Since Step 4 is successful, f(i0) < mT and thus |S| ≥ 1
2 |T |.35

By Theorem 4.11, |S′| ≥ (1 − o(1))|S|. By Claim 4.2, Step 6 returns a (1, 2)-pair (i, j) from (S′)∗ which36

dominates S′ with probability p6 = Ω(ε2 log−4 n). (Remark: We would have repeated this step also q times37

if there was any way of deciding whether a pair dominates S. )38

Step 7. If Step 6 is successful, then Algorithm 4.7 succeeds in finding k with probability 1− o(1). Thus the39

whole algorithm succeeds with probability Ω(ε3 log−6 n).
40

41

Repeating Algorithm 4.12 O(ε−3 log6 n) times returns a (1, 3, 2)-tuple in f with probability close to 142

when |T2| ≥ εn/6. Thus, Theorem 4.3 follows from Lemmas 4.4 and 4.13.43

14



4.2 A non-adaptive (1, 3, 2)-tester1

Recall that only Test 2 in the adaptive (1, 3, 2)-tester was adaptive. When the majority of the tuples in2

the matching T of (1, 3, 2)-tuples have leap-start 1, Test 1 succeeds in finding a (1, 3, 2)-tuple with high3

probability using only O(ε−3 log5 n) queries. Now we describe a non-adaptive Õ(
√
n) tester which will4

succeed with high probability when the majority of tuples in T have leap-start 2.5

To explain the intuition behind the non-adaptive tester without getting into the quantitative details, let6

us assume that for two disjoint intervals IL and IR of length m in [n] (with IL to the left of IR), there is7

a large matching T of (1, 3, 2)-tuples with T (1) ∪ T (2) ⊂ IL and T (3) ⊂ IR. If |T | ≈ ε|IL|, then, if we8

sample a pair (i, j) from IL using the dyadic sampler, with probability at least Ω(ε2 log−2m), the pair (i, j)9

is a (1, 2)-pair which dominates a (1, 2)-pair in T (1, 2) = {(t1, t2) : (t1, t2, t3) ∈ T} (Claim 4.2). If we10

repeat this dyadic sampling Ω(ε−1
√
m log2m) times, then with high probability, we get a collection D of11

Ω(ε
√
m) many (1, 2)-pairs in IL, each of which dominates a different (1, 2)-pair in T (1, 2).12

Since T is a matching, for each pair (i, j) ∈ D, there is a distinct index k ∈ IR, such that (i, j, k)13

is a (1, 3, 2)-tuple. Let K ⊂ IR be the collection of such indices. Then |K| ≥ |D| = Ω(ε
√
m). Now14

any collection of Ω(ε−1
√
m) uniform samples from IR hits a member of K with high probability. Hence15

if we sample Ω(ε−1
√
m log2m) pairs from IL using the dyadic sampler and an equal number of uniform16

point-samples from IR, we hit a (1, 3, 2)-tuple with very high probability.17

Wrapping this up inside the dyadic slicing argument that we have used twice before, we can conclude18

that testing for (1, 3, 2)-pattern can be done in Õ(ε−1
√
n) queries. As [5] proves a similar result for any19

further details in this paper.20

4.3 A non-adaptive {(1, 3, 2), (3, 1, 2)}-tester21

Here we justify the note made in Section 1.1 about the testability of Gilbreath shuffling, i.e., {(1, 3, 2), (3, 1, 2)}-22

freeness. In general, ε-testing for a finite set of forbidden patterns A ⊆ Sk can be done as discussed in23

Proposition 2.3. However, the lower bounds do not follow, and indeed {(1, 3, 2), (3, 1, 2)}-freeness can be24

tested using poly(log n) queries.25

We sketch here why such non-adaptive 1-sided error testing works. If the given sequence if ε-far from26

being {(1, 3, 2), (3, 1, 2)}-free, then there exists an (εn/6)-sized matching of either (1, 3, 2) or (3, 1, 2)27

tuples. Let us assume the former to be the case (the analysis for the latter being similar). If a majority28

of (1, 3, 2)-tuples in this large matching have leap-start 1, then the Dyadic Sampler succeeds in finding a29

(1, 3, 2)-tuple with high probability because a median-split and concatenate works in this case. Otherwise30

we can assume that there exists two adjacent intervals IL and IR (IL to the left of IR) such that there exists31

a “large” matching T of (1, 3, 2)-tuples with T (1) ∪ T (2) ⊂ IL and T (3) ⊂ IR. By “large”, we mean that32

the size of T is of the order of of ε|IL| and ε|IR| up to poly-logarithmic factors. Now we partition T into T1,33

T2 and T3 by sorting the tuples in T according to their value of the third coordinate and assigning the first34

one-third among the tuples to T1, the middle one-third to T2 and the rest to T3. The pertinent combinatorial35

observation to make here is that if we find some i ∈ T1(1), j ∈ T3(2) and k ∈ T2(3), then if i < j, (i, j, k)36

forms a (1, 3, 2)-tuple and if i > j, (j, i, k) forms a (3, 1, 2)-tuple. A uniform sampling in IL and IR has37

sufficient probability to find such an i, j and k.38

5 Lower bounds for non-adaptive testers39

5.1 The pattern (1, 3, 2).40

The permutation (1, 3, 2) ∈ S3 is a smallest pattern that is not monotone. Note that testing a function41

f : [n] → R for the pattern (2, 3, 1) is equivalent to testing for the (1, 3, 2) pattern in the reversal of f42
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and testing for (3, 1, 2) and (2, 1, 3) patterns are, respectively, equivalent to testing for (1, 3, 2) and (2, 3, 1)1

patterns in (−f). Hence (1, 3, 2)-testing is equivalent to testing of every non-monotone pattern in S3.2

Theorem 5.1 Any one-sided-error non-adaptive ε-tester for the pattern (1, 3, 2) has query complexity Ω(
√
n),3

for every ε ≤ 1/4.4

Proof. For the sake of contradiction, assume that there exists a one-sided error non-adaptive (1/4)-tester,5

A, for the pattern (1, 3, 2) with query complexity q <
√
n/2. We will show that the success probability6

of A is less than 1/4, contradicting the assumption that A is a tester. Note that, by success probability, we7

mean the probability by which A rejects an input that is (1/4)-far from being (1, 3, 2)-free.8

We do so using Yao’s principle. That is, we define a distribution D over the inputs and show that9

any deterministic algorithm for the task has probability of success at most 1/4 when inputs are sampled10

according to D. A deterministic algorithm for the problem is allowed to query the values of the input f on a11

predetermined set Q ⊂ [n] of q indices and either accept or reject f . It is easy to see that if f restricted to Q12

is (1, 3, 2)-free, there exists an f ′ : [n] → R which is (1, 3, 2)-free and ∀i ∈ Q, f ′(i) = f(i). For instance,13

one can construct f ′ by setting ∀j ∈ [n], f ′(j) = f(j∗), where j∗ ∈ [n] is the nearest index to j that is also14

in Q. This means that, an algorithm which has to accept all the (1, 3, 2)-free inputs, can reject an input only15

if it finds a (1, 3, 2)-tuple in f among the indices in Q.16

The distribution D over input arrays of length n = 4m is formed by picking a number k uniformly at17

random from [m] and selecting the input to be the array fk defined as follows.18

fk(2m− 2i+ 1) = 3i+ 1, i ∈ [m]
fk(2m− 2i+ 2) = 3i+ 3, i ∈ [m]
fk(2m+ i) = 3(i− k) + 2, i ∈ [2m]

Figure 5.1 illustrates fk when m = 5 and k = 3. Notice that, for every i ∈ [m], the tuple (2m − 2i +19

1, 2m − 2i + 2, 2m + i + k) is a (1, 3, 2)-tuple in fk and hence fk is (1/4)-far from being (1, 3, 2)-free.20

Moreover, these are the only (1, 3, 2)-tuples in fk because (i) the first half of f is (1, 3, 2)-free, (ii) the second21

half is (2, 1)-free, and (iii) the only (1, 2)-pairs in the first half are (2m− 2i+ 1, 2m− 2i+ 2), i ∈ [m].22

LetA′ be any deterministic one-sided error algorithm for the problem. Let Q ⊂ [n] be the set of indices23

for which A′ queries the input. For the family of inputs fk defined above, Q will contain a (1, 3, 2)-tuple24

only if ∃i ∈ [m] such that {2m − 2i + 1, 2m − 2i + 2, 2m + i + k} ⊂ Q. Hence the set D defined as25

D = {(y − 2m) − b(2m− x+ 1)/2c : x, y ∈ Q, x ≤ 2m < y} should contain k. Since |D| ≤ (q/2)226

which is less than n/16, and k is chosen uniformly at random from [n/4], the probability that D contains k27

is less than 1/4. Therefore, the probability that A succeeds in rejecting inputs sampled according to D is at28

most 1/4.
29

30

Remarks 5.2 A more complicated argument which could be used to show for each m ≥ 2, the existence31

of a pattern of length (2m − 1) for which every non-adaptive tester needs to have a query complexity of32

Ω(n1−1/m) was used in a preliminary version of this draft (SODA2017). We are moving that argument to33

the appendix since these lower bounds for m ≥ 3 were recently improved in [5].34

5.2 General non-monotone patterns35

Intuitively it sounds natural that testing for not containing a longer non-monotone pattern is as hard as testing36

(1, 3, 2)-freeness, as discovering a non-monotone π in f discovers also a (1, 3, 2) subpattern (or one of the37

other similarly hard to test non-monotone length-3 patterns). However, this does not make a formal proof.38

In this section we present such a proof in a strong setting (which includes also 2-sided error testing). We39
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Figure 1: An illustration of the function fk used in the proof of Theorem 5.1 with m = 5 and k = 3. The
shaded region contains one of the (1, 3, 2) triples in fk.

show that the problem of (1, 3, 2)-freeness can be reduced to the problem of testing for any non-monotone1

pattern.2

Theorem 5.3 Let π be a non-monotone pattern in Sk, k ≥ 4. Testing for π-freeness can be reduced to3

(3, 1, 2)-freeness (for adaptive / non-adaptive setting, and for 1-sided / 2-sided error testers). In particular4

this implies that any one-sided-error non-adaptive ε-tester for π has query complexity Ω(
√
n), for every5

ε ≤ 1
9(k−2) .6

For the set of input functions f : [n] → R that the theorem holds for, we assume that there is a known7

positive real M such that f([n]) ⊆ [−M,M ].8

We first observe that any non-monotone pattern π ∈ Sk contains a length-3 non-monotone pattern with9

values in a contiguous interval of [k].10

Proposition 5.4 Let k ≥ 4, and π ∈ Sk a non-monotone pattern. Then there exists i ∈ [k − 2] such that11

π|{π−1(i),π−1(i+1),π−1(i+2)} is non-monotone.12

We break the non-monotone pattern π into two subsequences π̂ ∈ S3, and π′ ∈ Sk−3 as follows.13

Let i be the smallest value so that π|{π−1(i),π−1(i+1),π−1(i+2)} is non-monotone. Define Î = {π−1(i), π−1(i+14

1), π−1(i + 2)} and I ′ = [k] \ Î . Let π̂ ∈ S3 and π′ ∈ Sk−3 be the permutations order isomorphic to the15

restriction of π on, respectively, Î and I ′.16

17



Let f : [n] → R be any function for which we want to test for π̂-freeness. We construct a function1

fπ : [m] → R, m = (k − 2)n + (k − 3), with the goal that f contains π̂ if and only if fπ contains π.2

Moreover, if f is far from being π̂-free then fπ is far (with somewhat smaller distance) from being π-free.3

Doing it in a “local” way will imply the reduction, and the corresponding lower bound.4

To better understand the construction, consider first the following example. Let k = 8 and π =5

(1, 2, 3, 6, 8, 4, 7, 5). The interval {i, i+1, i+2} of Proposition 5.4 in this case is [4, 5, 6]; values that appear6

non-monotonically in π, namely in the order (6, 4, 5) corresponding to the order permutation π̂ = (3, 1, 2).7

Hence i = 4. π′ = (1, 2, 3, 5, 4) in this case, as this is the induced order in π on the values not in [4, 5, 6].8

Let f : [n] → R that we want to test for being (3, 1, 2)-free (that is π̂-free). In fπ we construct,9

fπ(6j) = f(j), j = 1 . . . n. Thus every (3, 1, 2)-tuple (t1, t2, t3) in f will also correspond to a (3, 1, 2)-10

tuple in fπ in the places (6t1, 6t2, 6t3). In the 5-consecutive indices before each 6j we will insert values11

that are independent of the value of f , and are outside [−M,M ]. They will augment any (3, 1, 2)-tuple of12

the form (6t,6t2, 6t3) to a π-tuple. This will be done by placing in the 5 values before each 6j, the values13

−M − 3, −M − 2, −M − 1,M + 2,M + 1. Note that by doing so, the (3, 1, 2)-tuple (6t1, 6t2, 6t3) is14

augmented to the π-tuple (6t1 − 5, 6t1 − 4, 6t1 − 3, 6t1, 6t2 − 2, 6t2, 6t3 − 1, 6t3).15

Further, due to the above local augmentation, a matching of (3, 1, 2) tuples in f will correspond to the16

same size matching of π-tuples in fπ. Moreover, no other π-tuples will be formed. Thus testing (3, 1, 2)-17

freeness for f will be reduced to testing π freeness for fπ (1/6 of the distance parameter as the length is18

increased by a factor of 6).19

We end now with a formal description of the reduction. Let f : [n] → [−M,M ], and π, π̂, π′ and i as20

above.21

For every s ∈ {0, . . . , n} and t ∈ [k − 3],

fπ(s(k − 2)) = f(s), if s 6= 0,

fπ(s(k − 2) + t) =

{
+M + π′(t), if π′(t) ≥ i
−M − k + π′(t), if π′(t) < i.

One can verify that if (s1, s2, s3) is a π̂-tuple in f , then fπ contains π-tuple in the “(k−3)-neighborhood”22

of (s1, s2, s3), that is, among the set of indices
⋃3
i=1{j ∈ [m] : |j − (k − 2)si| ≤ k − 3}. Moreover, if f23

contains a matching of t π̂-tuples, then fπ contains a matching of t π-tuples.24

On the other hand, let (p1, . . . , pk) be a π-tuple in fπ. Let P̂ be the set of indices in (p1, . . . , pk)25

corresponding to Î in π (in the order-isomorphism). The first observation is that, fπ(i) ∈ [−M,M ] if and26

only if i = 0 mod (k − 2). Furthermore, we observe that the image of fπ has exactly i− 1 values smaller27

than −M and exactly (k− i− 3) values larger than M . The third observation is that, for every p ∈ P̂ , there28

are at least (i − 1) indices in [m] (in fact, in P ) that are strictly smaller in fπ-value than fπ(p) and at least29

(k − i− 3) indices in [m] that are strictly larger in fπ-value than fπ(p). These three observations suffice to30

conclude that fπ(p) ∈ [−M,M ]. Thus, p = 0 mod (k − 2), ∀pi ∈ P̂ . Therefore, P̂ (after scaling down31

by (k − 2)) corresponds to a π̂-tuple in f .32

Based on these two observations we conclude that, if f is π̂-free, then fπ is π-free and if f is ε-far from33

being π̂-free, then fπ is ε/(k − 2)-far from being π-free. Hence an ε-tester for π̂ reduces to an ε/(k − 2)-34

tester for π. Since testing for any non-monotone pattern in S3 is equivalent to testing for the pattern (1, 3, 2),35

Theorem 5.3 follows from Theorem 5.1.36

6 Open problems and further discussion37

In a preliminary version of this draft (SODA2017), we posed three open problems, of which two where38

already solved. We give an account of these problems, with an additional one here below.39
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1. The main open problem concerns the complexity of general testing for non-monotone patterns. We1

have seen that for length-3 patterns there is a poly-logarithmic adaptive tester, while we have shown2

the impossibility of non-adaptive tester of poly-logarithmic complexity.3

Could it be that for any constant-size pattern π there there exists a poly-logarithmic adaptive tester for4

π-freeness? What happens if we allow 2-sided error testing?5

2. How does the structure of a pattern π correlate with the complexity of an optimal non-adaptive tester6

for π-freeness? There are partial results in this direction. Ben-Eliezer and Canonne have given char-7

acterizations for the hardest patterns for non-adaptive testing [5]. In particular, they also construct8

patterns of arbitrary large constant length k, that can be tested non-adaptively in say O(n2/3).9

3. Being π-free is an hereditary property of strings. Being hereditary here means that if f : [n]→ R has10

the property, then so does f |[n]\{i} for any i ∈ [n]. In the SODA17 proceedings we have posed the11

question whether any hereditary property of sequences can be tested with sub-linear query complexity?12

This was answered negatively in [26].13

4. Our upper bounds hold of course for f : [n] → [n] being a permutation. However, our lower bounds14

do not hold for permutations. Is it true that permutations can be tested for being π-free much more15

efficient than general sequences?16
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A More complex non-monotone patterns37

In this section, we prove38

Theorem A.1 Any one-sided-error non-adaptive ε-tester for the (2m−1)-pattern (1, 2m−1, 2m−2, 2, 3, 2m−39

3, ..,m) has query complexity Ω(n1−1/m) for every ε ≤ 1/(6m− 3).40
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Our strategy is to define a certain search task, which we call the “intersection-search”. Let C be the1

class of algorithms for this search task. We show that every algorithm from C has a large query complexity.2

Finally, we reduce the intersection-search task to the testing of (1, 3, 2)-freeness.3

Problem A.2 (Intersection-search) The input to the problem consists of m arrays Aj , j ∈ [m], each con-4

taining 3n distinct integers in ascending order. It is promised that at least n elements are common to all the5

m arrays. The goal is to find an m-tuple (i1, . . . , im) ∈ [3n]m such that A1[i1] = · · · = Am[im].6

Notice that this is an easy task for a randomized adaptive algorithm. Selecting constantly many elements7

from A1 uniformly at random and searching for their location in each of Aj , j ≥ 2 using a binary search is8

bound to succeed with high probability. This suggests an adaptive algorithm of O(m log n) query complex-9

ity. However, we are interested here in non-adaptive algorithms. In this setting it can be seen, as in Theorem10

2.4, that O
(
n1−1/m

)
query locations from each Aj , j ∈ [m] independently and uniformly at random will11

contain a witness with high probability. We argue next that one cannot do much better. For this we first12

define formally the class of algorithms C that we are willing to accept.13

Definition A.3 An algorithm for intersection-search is in the class C if it operates as follows:14

It first chooses m sets Qj ⊂ [3n], j ∈ [m], according to some distribution, before seeing any values in15

the input arrays. It then queries each array Aj at the indices in Qj . After it sees all the query outcomes, it16

is free to do any amount of computation. It then outputs one of two types of answers: either an m-tuple in17

[3n]m or “fail”. If it outputs an m-tuple (i1, . . . , im), then surely A1[i1] = · · · = Am[im]. That is, for every18

possible input (A1, . . . , Am) consistent with the values viewed, it holds that A1[i1] = · · · = Am[im].19

The algorithm is said to succeed if it returns an m-tuple. The success probability of the algorithm is the20

worst-case success probability, i.e., the minimum over all inputs. The query complexity of the algorithm is21 ∑m
j=1 |Qj |.22

Lemma A.4 Let A be an algorithm in class C for Problem A.2 on m arrays. If A makes q < n/2 queries,23

then the success probability of A is at most (q/m)m/nm−1.24

Proof. We use Yao’s principle to lower bound the success probability of A. That is, we define a dis-25

tribution D on the valid inputs to the problem, and show that any deterministic non-adaptive algorithm for26

Problem A.2 has a probability of success at most (q/m)m/nm−1, when the inputs are sampled according27

to D. Recall that the deterministic algorithms we need to consider are those which output (i1, . . . , im) only28

when it is sure that A1[i1] = · · · = Am[im] and output “fail” otherwise. The success probability of such29

a deterministic algorithm is the proportion of inputs (under the distribution D) for which it outputs a tuple30

(i1, . . . , im).31

We define D by prescribing a randomized procedure to select m monotone increasing length-3n arrays32

A1, . . . , Am with n elements common to all of them. The randomness is four-fold; (i) we pick a 0-1 vector33

x = (x1, . . . , x3n) uniformly at random, (ii) independently pick a set S ⊂ [2n] of size n uniformly at34

random, (iii) independently pick a vector p = (p1, . . . , p3n) ∈ {2, . . . ,m}3n uniformly at random, and35

(iv) independently pick a vector k = (k2, . . . , km) ∈ [n]m−1 uniformly at random. The first three types36

of randomness will be used to ensure that a 0-error algorithm can return a tuple (i1, . . . , im) only if it hits37

the tuple, i.e., the algorithm indeed queries Aj [ij ] for all j ∈ [m]. The fourth randomness makes such hits38

unlikely within O(n1−1/m) queries.39

The arrays A1, . . . , Am are defined as follows:40

A1[i] = 2i+ xi, 1 ≤ i ≤ 3n,

22



and for 2 ≤ j ≤ m,

Aj [i] =



2(i− kj), 1 ≤ i ≤ kj ,
2(i− kj) + xi−kj , kj < i ≤ 3n,

pi−kj 6= j

2(i− kj) + xi−kj , kj < i ≤ 3n,

pi−kj = j,

i− kj ∈ S,
2(i− kj) + 1− xi−kj , kj < i ≤ 3n,

pi−kj = j,

i− kj /∈ S.

With this, the input distribution D is fully defined, the following properties are immediate. All the m1

arrays Aj , j ∈ [m] are strictly increasing arrays of length 3n. We have A1[i1] = · · · = Am[im] if and only2

if ij = i1 +kj ,∀j ∈ [2,m] and i1 ∈ S. In particular, exactly n elements are common to all the arrays. Also,3

given only the arrays, for every i1 ∈ [2n], one can know with certainty that i1 ∈ S only if either one knows4

all the values A1[i1], A2[i1 + k2], . . . , Am[i1 + km] or if one knows S completely. Since the total number5

of queries allowed is less than n, no algorithm under our consideration can determine S completely.6

Let A′ be a deterministic algorithm for Problem A.2. Let Qj , j ∈ [m] be the set of indices for which7

A′ queries the values from Aj . Recall that the sets Qj are fixed and do not depend on the input. Let8

q = |Q1|+ · · ·+ |Qm|.9

As discussed before, if A′ outputs a tuple (i1, . . . , im), then it means (i) ij − i1 = kj ,∀j ∈ [2,m] and10

(ii) i1 ∈ S. Since A′ knows with certainty that i1 ∈ S (condition (ii) above), it is necessary that A′ knows11

the values of Aj [ij ], ∀j ∈ [m]. Therefore, ij ∈ Qj , ∀j ∈ [m]. Combining this observation with condition12

(i) above, we see that the vector k = (k2, . . . , km) should belong the set D = {(i2 − i1, . . . , im − i1) : ij ∈13

Qj , ∀j ∈ [m]}. Since each element of Q1 × · · · × Qm results in at most one new element of D, we have14

|D| ≤ |Q1 × · · · ×Qm| ≤ (q/m)m. As there are nm−1 choices for the vector k, the success probability of15

A′ is at most |D|/nm−1 ≤ (q/m)m/nm−1.
16

17

It is not difficult to reduce the intersection-search problem on m arrays to one-sided testing for a partic-18

ular pattern of length 2m + 1. We illustrate the technique by reducing the intersection-search problem on19

three arrays to testing for the pattern (1, 5, 4, 2, 3).20

Let (A1, A2, A3) be an input instance of Problem A.2. That is, A1, A2 and A3 are each arrays of 3n
integers sorted in ascending order, with at least n elements in common to all three. Define m = 15n and Arj
to be the reversal of Aj (i.e., Arj [i] = Aj [3n + 1 − i]). We construct an injective function f : [m] → R as
follows.

f(2i− 1) = Ar1[i]− (1/3), i ∈ [3n],

f(2i) = Ar1[i] + (1/3), i ∈ [3n],

f(6n+ 2i− 1) = A2[i] + (1/4), i ∈ [3n],

f(6n+ 2i) = A2[i]− (1/4), i ∈ [3n],

f(12n+ i) = Ar3[i], i ∈ [3n].

We have designed f so that for every (i1, i2, i3) that is a solution for the intersection-search problem, i.e21

A1[i1] = A2[i2] = A3[i3], the 5-tuple (2i′1−1, 2i′1, 6n+2i2−1, 6n+2i2, 12n+i′3), where i′1 = 3n+1−i122
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and i′3 = 3n + 1 − i3, is a (1, 5, 4, 2, 3)-tuple in f . Since there are n such disjoint pairs at least, f is ε-far1

from being (1, 3, 2)-free, where ε = 1/15.2

Moreover, these are the only (1, 5, 4, 2, 3)-tuples in f . This is because (i) f is (1, 5, 4)-free, or equiv-3

alently (1, 3, 2)-free in the range [6n], (ii) f is (5, 4, 2)-free and (4, 2, 3)-free in the range [6n + 1, 12n],4

(iii) f is (4, 2, 3)-free in the range [12n + 1, 15n], and (iv) the only (1, 5)-pairs of f in the range [3n] and5

(4, 2)-pairs of f in the range [6n+ 1, 12n] are adjacent odd and even indices.6

In short, whenever a tester for (1, 5, 4, 2, 3)-pattern finds a (1, 5, 4, 2, 3)-tuple in f , it produces a solution7

for the intersection-search problem. Hence the next result follows from Lemma A.4 with m = 3.8
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