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LOCAL VERSUS GLOBAL PROPERTIES OF METRIC SPACES∗

SANJEEV ARORA† , LÁSZLÓ LOVÁSZ‡ , ILAN NEWMAN§ , YUVAL RABANI¶, YURI

RABINOVICH§ , AND SANTOSH VEMPALA‖

Abstract. Motivated by applications in combinatorial optimization, we study the extent to
which the global properties of a metric space, and especially its embeddability into �1 with low
distortion, are determined by the properties of its small subspaces. We establish both upper and
lower bounds on the distortion of embedding locally constrained metrics into various target spaces.
Other aspects of locally constrained metrics are studied as well, in particular, how far are those
metrics from general metrics.
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1. Introduction. Suppose that we are given a finite metric space (X, d), and
we are told that the induced metric on every small subset of X embeds isometrically
into �1. What can we say about the distortion of embedding the entire metric into
�1? In this paper we study this and related questions.

One reason to study such problems is the intimate relation between certain ques-
tions concerning low-distortion embeddings and problems in combinatorial optimiza-
tion. In particular, since finite �1 metrics correspond exactly to combinations of cuts
(see, e.g., [12]), good approximation algorithms for embedding metric spaces into �1

yield good approximation algorithms for NP-hard cut problems such as the sparsest
cut. Indeed, the best known algorithms for the sparsest cut problem used this rela-
tion; see, e.g., [24, 6, 5, 9, 4]. The first observation is that the exact solution to this
problem can be obtained by optimizing a linear function over the convex cone of all
�1 metrics on n points. However, expectedly, even deciding the membership in this
cone is NP-Complete. It is thus a natural strategy to relax this cone to a larger, more
tractable metric cone, optimize over it, and then find an �1 metric d that approximates
the optimal non-�1 metric d′. The price in the objective function, in moving from d′

to the approximate d, turns out to be precisely the multiplicative distortion between
d′ and d (see section 2 for exact definitions). In the earlier papers from the list above,
the relaxed cone is the cone of all metrics on n points. In the later papers the relaxed
cone is the cone of all negative type metrics on n points. Finding the approximating
�1-metric d is the crux of this approach in both cases, and is highly nontrivial.
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In this paper we examine the possibility of using other relaxed metric cones, or
classes of metrics containing the �1 metrics. Making some natural assumptions about
them (e.g., being closed under taking submetrics, being closed under additions, being
closed under the permutations of the points of the underlying space, etc.) we arrive at
a notion of baseline classes of metrics. While the bulk of this paper is dedicated to the
study of special baseline classes of metrics defined in terms of their local properties,
one section deals with issues in the theory of general baseline metric classes.

We start with a detailed study of some classes of metrics whose local structure is
close to that of �1 metrics. For example, for the metrics on a large set of points with
the property that for every subset of points of size k (for small enough k), the induced
metric embeds isometrically into �1. This metric class is interesting in its own right, it
allows fast membership testing, and it supports fast LP-based algorithms as long as k
is not too large. Such metric classes arise naturally when applying k rounds of a lift-
and-project procedure such as Lovász–Schrijver, Sherali–Adams, or Lasserre to cones
containing the �1 metrics. These procedures start with an initial LP or SDP relaxation
and then systematically derive and plug in, round after round, all inequalities valid for
the current integral hull. It turns out that the better (as a function of k) such metric
classes approximate the original �1 cone, the faster should the related lift-and-project
procedure converge to the optimum. We address the interested reader to [3, 16].

Other metric classes of interest whose local structure resembles that of �1 include
the k-gonal metrics, and the metrics for which all induced k-size submetrics embed into
�1 with distortion c. See section 3.2 for precise definitions, discussion, and some results
about such metrics. In general, the hope is that by imposing a simple (and useful)
local structure on metrics, e.g., that all submetrics that are induced on subsets of k
points are close to �1 in sense of low multiplicative distortion, one should get metrics
with a simple global structure; e.g., the entire metric is also close to �1. Namely, we
seek local-global phenomena in the context of finite metric spaces.

Our main results can be described as follows. First, we show (Theorem 3.1) that
if every subset of size n

c of an n-point metric space embeds isometrically into �1, then
the entire space embeds into �1 with distortion O(c2). A similar result holds if the
isometric embedding of subsets is replaced by low-distortion embedding. Using the
reduction of the sparsest cut problem to �1 embeddability [24, 6], this yields a 2o(n)-
time O(c2)-approximation algorithm for sparsest cut for any c = c(n) → ∞. We note
that recent reductions [10] show that such an approximation is hard (namely, they
cannot be done in poly(n)), assuming the unique games conjecture [22].

Next, in Theorem 3.7, we show a negative result by constructing metric spaces
where every k-size subset embeds isometrically into �1 (or even in �2), yet the entire
space requires distortion (log n)Ω( 1

k ) when embedded into �1. Thus, these metrics
require a superconstant distortion as long as k = o(log log n). This construction also
implies a polylogarithmic separation between �1 and k-gonal metrics (namely, there
are k-gonal metrics for k = θ(1) that require (log n)θ(1)-distortion when embedded
into �1). This answers in negative an open question by Deza whether any 5-gonal
metric embeds into �1 with a constant distortion [26].

In a next result, we consider the setting where the small subsets are embeddable
into �1 with constant distortion, rather than being isometrically embeddable into �1.
We construct (in Theorem 3.9) n-point metrics that require Ω(log n) distortion to
embed into �1, but every subset of size n1−ε embeds into �1 with distortion O(1/ε3).
This result indicates that the local structure of a metric (in the context of distortion
of embedding into �1) has a very limited effect on its global structure, making our
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algorithmic approach much less promising. A significant contribution of our work
is a new insight into shortest path metrics derived from random graphs of bounded
degree. These metrics are known to be extremal for many metric-theoretic properties,
e.g., embeddability into �1. Surprisingly, their local structure turns out to be possibly
rather simple even when the size of the submetrics is as large as n1−ε (see section 3.3).
In addition, some new building bocks for obtaining the upper bound (on the distortion
of small submetrics) are constructed for the proof of this result. We believe that these
new methods for approximate embedding into �1 are of independent interest.

Having established these results, we proceed to study the local-global phenomena
in other settings. First, we show that a result similar to Theorem 3.9 holds when in-
stead of measuring the proximity to �1 one measures the proximity to �2, the Euclidean
spaces. Namely, there exist metric spaces of size n such that all their subspaces of
size n1−ε are almost Euclidean, while the entire space requires

√
Ω(log n) distortion

when embedded into a Euclidean metric (of any dimension).
We also study the local-global phenomena in the context of ultrametrics, i.e., met-

rics satisfying the following (local) condition: ∀x, y, z, d(x, z) ≤ max{d(x, y), d(z, y)}.
These metrics are a class of tree metrics used, e.g., in hierarchical clustering and
metric Ramsey theory (see [15, 14, 7] and the references therein). In particular, they
form a (very restricted) subset of �2 metrics. By definition, if every subset of size
three is an ultrametric, then so is the whole space. On the other hand, we show
(Theorem 5.3) that the situation changes dramatically if we relax the requirement
that small subsets be isometrically embeddable into an ultrametric to that they be
embeddable with small distortion. For every c and k we construct metric spaces on
n points such that every subset of cardinality (n − 1)1/k embeds into an ultrametric
with distortion bounded by c, yet the entire metric space does not embed into an
ultrametric with distortion less than ck. We show that this bound is essentially tight
by establishing a nearly matching upper bound on the distortion.

The last issue addressed in this paper is motivated by the negative result of
Theorem 3.9, namely that locally constrained metrics can be as far from �1 (require
large multiplicative distortion) as the general metrics. Could it be that for any fixed k,
the class of the general metrics is equivalent, up to a constant multiplicative distortion,
to the class of k-locally constrained metrics? A positive answer would yield a very
good understanding of such metrics. We show, however, that the answer is negative.
Furthermore it applies not only to the k-locally constrained metrics, but also for any
nontrivial class C of baseline metrics. A similar conclusion can also be deduced from
a theorem of Matousek from [25]. Yet, unlike the result in [25], our lower bound is
of a quantitative nature. We show that a nontrivial baseline class of metrics over the
entire Rn is Ω(nα) far from �n

∞ for a suitable α.1

Local-global phenomena play an important role in many areas such as the con-
struction of probabilistically checkable proofs, program checking, property testing,
etc. In these settings one usually has to infer a global property from the knowledge
that the local property holds for many (but not necessarily all) small subsets. Al-
though we are mostly interested here in the situation where the local conditions are
required for all small subsets, we establish at least one positive result for the case that
the local constraints hold only for “many” small subsets (see Lemma 3.4).

Let us remark that our results are related to the study of Ramsey phenomena in
metric spaces, a line of work motivated both by some lower bound techniques in online
computation, and by deep questions about the local theory of metric spaces (see [7]

1Note that here n is the dimension rather than the cardinality of the subspace.
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and the references therein). For example, the main lower bound of section 3.3 provides
a (weak) partial answer to an open question from [7]. Ramsey theory, in general, shows
that in the midst of global “disorder” there is always a significant subset exhibiting
“order.” In this phrasing, our upper bounds suggest that global “disorder” implies
the existence of large “disordered” subsets. For example, Theorem 3.1 implies that if
a metric space on n points does not embed into �1 with distortion α, there must be a
subset of the points (in fact, many subsets) of cardinality O(n

√
β/α) for which the

induced metric does not embed into �1 with distortion less than β.
Subsequent work. Since the appearance of the preliminary version of this paper

in SODA’06, some of its results have been improved in two main directions. Charikar,
Makarychev, and Makarychev [8] start where this paper ends and, using finer yet
related methods, improve the results of sections 3.1 and 3.3. In particular, the upper
bound of Theorem 3.1 is improved from O(c2) to the essentially optimal Õ(log c). The
lower bound of Theorem 3.9 about the existence of n-point metric spaces where every
subset of size k = n1−ε embeds into �1 with a constant distortion cε while the entire
space requires Ω(log n)-distortion to embed into �1 is shown to (almost) carry on even
if all the small subsets embed isometrically into �1. This is a huge improvement over
our Theorem 3.9, and it implies that imposing k-local restrictions on the metric cone
cannot significantly help, e.g., in resolving the sparsest cut problem.

An important paper of Mendel and Naor [27], motivated by ideas from Banach
spaces and the present paper, contains a proof of a conjecture from the conference
version of this paper, concerning the universality of nontrivial baseline metric classes.
In fact, the only property of the metric class they use is that it is closed under taking
submetrics.

We think that some results of the present paper, as well as some of the methods
used in their proofs, are of independent value. A number of questions and research
directions raised here remain unexploited. We delay the discussion of some of them
to the concluding remarks.

2. Preliminaries. A distance space A = (X, d) is a pair where X is a set and
d : X2 �→ R+ is a nonnegative symmetric function (that is, d(x, y) = d(y, x)), for
which d(x, x) = 0 for every x ∈ X . Let A = (X, d) and B = (X ′, d′) be two distance
spaces. An embedding of A into B is just a map φ : X �→ X ′. The multiplicative
distortion, or simply the distortion of embedding A into B, is defined as2

dist(d, d′) = min
φ:X→X′

max
x,y∈X

d′(φ(x), φ(y))
d(x, y)

· max
x,y∈X

d(x, y)
d′(φ(x), φ(y))

.

We call the first term in the above expression the stretch of d′ w.r.t. d, and the second
term the contraction of d′ w.r.t. d. Sometimes we refer to the expression above as
the distortion between d and d′ (rather than A and B), when the exact point set
plays no particular importance. Similarly, we sometime refer to d instead of (X, d)
when X is understood from the context. For two distance functions d, d′ and a real
γ ≥ 1, we say that d is γ-close to d′ if d can be embedded into d′ with distortion
upper bounded by γ. Distance functions are Real-functions; thus we can add distance
functions, multiply by a constant, etc. We say that (X, d) dominates (X, d′) (or just
“d dominates d′”) if d(x, y) ≥ d′(x, y) for every two points x, y ∈ X .

For a class C of distance functions, we use dist(d ↪→ C) to denote the minimum
distortion between d and d′ ∈ C. If dist(d ↪→ C) ≤ γ, we say that d is γ-close to C.

2If d′(x, y) = 0 for every pair of points x, y while d(x, y) > 0 for some pair, we define dist(d, d′) =
∞.
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A metric space is a distance space that in addition satisfies the triangle inequality
(sometimes also called “semimetric,” as we allow 0-distance between two distinct
points). We denote by met the set of all metric spaces. For some background on
metric spaces, see [12].

Let d be a distance function (on an underlying point set X), and let f : R → R
be a monotonically nondecreasing function with f(0) = 0. We denote by f(d) the
distance function where ∀p, q ∈ P , f(d)(p, q) = f(d(p, q)). Notice that if d is a metric
and f is concave, then f(d) is a metric. The power scale f(x) = xc, c ∈ [0, 1],
plays an important role in this paper. It is worth noting the following simple fact:
dist(dc, (d′)c) = (dist(d, d′))c

.
Let d be a distance function, and let Q be a subset of the points on which d is

defined. We use dQ to denote the restriction of d to the pairs of points in Q.
We use the terms Euclidean metrics and �2-metrics interchangeably. The negative

type metrics, neg∩met, mentioned in the introduction, are the squares of Euclidean
metrics that satisfy the triangle inequality.

A rather large collection of metric spaces that we define below is the baseline class
of metrics. It can be easily verified that the classes �1,neg ∩ met,hyp, and Mk to
be discussed later (see section 3.3) are all baseline.

Definition 2.1 (baseline sets of metrics). A nontrivial class of metrics C (that
is, it contains a metric that is not everywhere zero) is called baseline if it satisfies the
conditions below:

1. It is invariant under permutation of points; namely, for every (X, d) ∈ C, any
metric d′ derived from d by permuting the members of X is also in C.

2. It is a closed cone. That is, for every (X, d), (X, d′) ∈ C, and every two
nonnegative Reals, a, a′ ≥ 0, a · d + a′ · d′ ∈ C.

3. It is hereditary. Namely, for every (X, d) ∈ C and a subset Q ⊆ X, (Q, dQ) ∈
C.

4. For every (X, d) ∈ C, consider any metric d′, obtained from d by performing
the following cloning operation: Pick any point p ∈ X, add a “clone” q /∈ X,
and set d′(p, q) = 0 and d′(q, x) = d(p, x) for all points x. Then, (X ∪
{q}, d′) ∈ C.

Observe, by item 4 above, that every baseline set of metrics includes all cut
metrics,3 and therefore all metrics that embed isometrically into �1. Further notice
that if C is a baseline set of metrics, then for every γ ≥ 1, the set of metrics Cγ =
{d : dist(d ↪→ C) ≤ γ} is also baseline.

3. Baseline sets of metrics. Here we study the local versus global properties
of general metrics w.r.t. embeddability into a baseline set of metrics. Namely, our
assumption will be that the metric restricted to each small subset embeds well (ei-
ther isometrically, or with small distortion) into a baseline class C, and we study to
what extent this guarantees that the whole metric embeds well into C. We prove
both upper bounds on the distortion of the whole metric, along with some algorith-
mic applications, and then lower bounds for two different assumptions on the local
constraints.

3.1. Upper bounds—Local low distortion implies global low distortion.
The main result of this section is the following upper bound on the distortion, implied

3For a subset S ⊂ X, the cut metric δS on X is defined as δS(x, y) = 1 if x ∈ S, y /∈ S, and 0
otherwise. The fact that �1 metrics are nonnegative linear combinations of cut metrics is basic in
the theory of metric spaces; see, e.g., [12].
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by the local properties of the metric.
Theorem 3.1. Let m, n ∈ N , m ≤ n, let γ ≥ 1, and let C be a baseline set

of metrics. Let d be a metric on n points such that for every m-point subspace Q,
dist(dQ ↪→ C) ≤ γ. Then,

dist(d ↪→ C) = O

(
γ ·

( n

m

)2
)

.

We use the following definition. Let (X, d) be a metric space. A tree-like extension
of (X, d) is a metric space obtained from (X, d) by repeatedly performing the following
attachment operation: Pick a point p ∈ X and a weight w ≥ 0, and “attach” to p a
new point q �∈ X by an edge of weight w, i.e., set d′(q, x) = d′(p, x) + w for all points
x ∈ X , and augment X by q.

Lemma 3.2. Let C be a baseline set of metrics, let d ∈ C, and let d′ be a tree-like
extension of d. Then d′ ∈ C.

Proof. Clearly, it suffices to prove this for a single attachment operation. Let dp

be the metric obtained from d by adding a clone q of a point p. Let δ be the cut metric
defined by δ(x, y) = 1 if exactly one of the points x, y is q, and δ(x, y) = 0 otherwise.
Both dp and δ are in C (the former by definition, the latter because C must contain
all cut metrics). Attaching q to p at distance w gives the metric d′ = dp + w · δ. As
C is a closed cone, d′ ∈ C.

Proof of Theorem 3.1. Let d be a metric on a finite set of points X = {p1, p2, . . . , pn}.
It will be assumed w.l.o.g. that for any pi ∈ X , the distances between pi and the other
points in X are all distinct. (Otherwise just perturb the distances slightly keeping
the triangle inequality. This will only introduce a very small distortion.) Let σ ∈ Sn

be a permutation on {1, 2, . . . , n}. The metric dσ is defined as follows. We start
with restriction of d to {pσ(1), pσ(2), . . . , pσ(m)}. Then, for i = m + 1, . . . , n, the new
point pσ(i) is attached to pσ(i∗) at distance wσ

i , where i∗ ∈ {1, 2, . . . , i− 1} minimizes
d(pσ(i), pσ(i∗)), and wi = d(pσ(i), pσ(i∗)). Finally, we define d∗ on X as the average of
all dσ’s: For every p, q ∈ X ,

d∗(p, q) =
1
n!

·
∑

σ∈Sn

dσ(p, q).

We will next show that d∗ ∈ C and that dist(d, d∗) is small, which will complete
the proof. In the following m is fixed, while n and d vary. Let Tn,m, n ≥ m, denote
the supremum of dist(d, d∗), over all n-point metrics, d. Clearly, Tm,m = 1 since
d∗ = d for this case. Notice that for every p, q ∈ X , dσ(p, q) ≥ d(p, q), and therefore
d∗ dominates d. To bound the stretch, observe that

d∗(p, q) = Eσ[dσ(p, q)](1)

=
2
n
· Eσ [dσ(p, q) |σ(n) ∈ {p, q}] +

(
1 − 2

n

)
· Eσ [dσ(p, q) |σ(n) �∈ {p, q}] .

Notice that Eσ [dσ(p, q) |σ(n) �∈ {p, q}] ≤ Tn−1,m · d(p, q).
For the case σ(n) = p let p∗ ∈ X be the point in X that is closest to p. By our

assumptions, p∗ is unique and hence it will be the point to which p will be attached.
As d(p, p∗) ≤ d(p, q), the triangle inequality implies that d(p∗, q) ≤ 2d(p, q) and thus,
(2)
Eσ[dσ(p, q)|σ(n) = p] = d(p, p∗)+Eσ[d∗(p∗, q)|σ(n) = p] ≤ d(p, q)+ Tn−1,m · 2d(p, q).
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The case when σ(n) = q is analogous. Therefore,

(3) Tn,m ≤
(

1 − 2
n

)
· Tn−1,m +

2
n
· (2Tn−1,m + 1) =

(
1 +

2
n

)
· Tn−1,m +

2
n

.

Solving the recurrence, we get that Tn,m = O
((

n
m

)2)
.

Next, recall that Cγ is a baseline set of metrics. By the conditions of the theorem,
for every m-point subset Q, dQ ∈ Cγ . Therefore, Lemma 3.2 implies that dσ ∈ Cγ

for every permutation σ. As Cγ is a closed cone, this further implies that d∗ ∈ Cγ .
Finally, since dist(d, d∗) = O(

(
n
m

)2), the theorem follows.
Theorem 3.3. A metric d̃ ∈ C, which is an embedding of d satisfying the state-

ment of Theorem 3.1, can be computed in randomized polynomial time.
Proof. We use the same terminology as in the proof of Theorem 3.1. The con-

struction of d̃ is based on the construction of d∗. The difficulty with the explicit
construction of d∗ is that it is written as an average of exponentially many metrics.
We show that this average can be estimated using a much smaller space of metrics.
Let K ⊆ Sn be a subset of permutations, with |K|/|Sn| = κ ≤ 1. Extending the
definition of d∗, let d∗K = Eσ[dσ |σ ∈ K]. Observe that

(4) d ≤ d∗K ≤ κ−1d∗.

The first inequality holds since each dσ dominates d and the second since d∗ =
d∗K · κ + d∗

K̄
· (1 − κ) .

Let G = {σ | dσ ≤ 10n2Tn,m ·d} ⊆ Sn. By Theorem 3.1, the expected stretch of d∗

with respect to any pair of points in the space is ≤ Tn,m. Therefore, using Markov’s
inequality and the union bound on all pairs we get that |G| ≥ 0.9|Sn|. Equation (4)
and the fact that d∗G dominates d imply then that

(5) d ≤ d∗G ≤ 1.1d∗ < 1.1Tn,m.

Next, let G̃ be a random sample from G of size N and let d∗
G̃

= 1
N

∑
σ∈G̃ dσ be

the average of the sampled metrics. Thinking of dσ as a random variable (defined by
the uniform distribution on G), for two fixed points, x, y ∈ X , dσ takes values in the
interval [d(x, y), 10n2Tn,md(x, y)] and with expectation d∗G(x, y).

By Hoeffding’s large deviation bound [19] (see also4 exercise 4.7, page 98 in [29]),
for any pair of points x, y in the space,

Pr
[
d∗

G̃
(x, y) > 3.3Tn,md(x, y)

]
≤ Pr

[
d∗

G̃
(x, y) − d∗G(x, y) > 2.2Tn,md(x, y)

]
≤ e

−
2(2.2)2T2

n,m·N
(10n2Tn,m−1)2 ≤ e−

8N
100n4 ,

where the first inequality is by (5). Thus, choosing N = 50n4 log2 n, this probability
is smaller than 1/n4. Using the the union bound on all pairs of points from X , we
conclude that d∗

G̃
≤ 3.3d∗ with probability close to 1. Finally, to create a random

sample G̃, we sample permutations σ from Sn, construct dσ, and discard dσ if it
stretches an edge by more than 10Tn,m log2 n. Since a 0.9 fraction of the permutations
in Sn are in G, this gives a polynomial time randomized algorithm.

The proof of Theorem 3.3 has the following interesting structural implication.

4We use the standard statement for Hoeffding’s bound. Note that in [29] the random variable is
assumed to take values in [0, 1].



8 ARORA, LOVÁSZ, NEWMAN, RABANI, RABINOVICH, VEMPALA

Lemma 3.4. The assumption of Theorem 3.1 that all size-m subspaces are γ-
close to C can be replaced by a weaker assumption that only a κ-fraction of the size-m
subspaces have this property, at the cost of an additional multiplicative factor of κ−1

in the upper bound.
Proof. For σ ∈ Sn let its m-prefix denote the set of points Sσ = {pσ(1), pσ(2), . . . ,

pσ(m)}. We say that σ ∈ Sn is good with respect to d if the restriction of d to Sσ, dSσ ,
is γ-close to C.

By the assumption of the lemma, the good permutations constitute a κ-fraction
of all permutations in Sn. Thus (4) applies for K, the set of all good permutations.
The proof then follows along the lines of the proof of Theorem 3.1.

We now show that Theorems 3.1 and 3.3 imply a subexponential time algorithm
for approximating sparsest cut to within any superconstant factor.

Theorem 3.5. Sparsest cut can be approximated to within a factor of O(c2) in
time exp

(
n log c

c

)
, where n is the number of nodes in the input graph.

Proof. Let (G, w, T, h) be an instance of sparsest cut. Here G = (V, E) is an
undirected graph with |V | = n, w : E → N is a weight function on the edges of G,
T = {(s1, t1), (s2, t2), . . . , (sk, tk)} is a set of pairs of nodes of G (called terminals),
and h : T → N is the demand function. Let D be the set of semimetrics d on V , such
that for every U ⊂ V with |U | ≤ 1

c |V |, the restriction of d to U embeds isometrically
in �1. Let

(6) z∗ = min

{ ∑
e∈E w(e)d(e)∑

(s,t)∈T h(s, t)d(s, t)
: d ∈ D

}
.

It is known that if we replace d ∈ D with d ∈ �1 in (6), we get the value of the sparsest
cut (see, e.g., [12, 24]). Hence, z∗ is a lower bound on the value of the sparsest cut.

On the other hand, since z∗ is achieved by a metric d ∈ D, Theorem 3.1 implies
that d is O(c2)-close to an �1 metric d′. By the results of [24, 6], given an �1 metric
d′, one can find, in time polynomial in the representation of d′, a cut (S, V \ S) in G
such that

(7)

∑
e∈E: |e∩S|=1 w(e)∑

(s,t)∈T : |{s,t}∩S|=1 h(s, t)
≤

∑
e∈E w(e)d′(e)∑

(s,t)∈T h(s, t)d′(s, t)
= l(d).

Thus, as l(d) = O(c2z∗) (since as shown above d is O(c2)-close to d′), the cut for
which (7) holds approximates the sparsest cut as claimed.

To compute z∗ we make use of the following (quite standard) way of optimizing
over �1 metrics using exponentially large linear programs: First note that by the form
in (6), defining z∗ is invariant to a scaling of d; hence one can impose, say, the extra
condition that

∑
(s,t)∈T d(s, t)h(s, t) = 1. With this, z∗ can be expressed as minimiza-

tion of the linear function
∑

e∈E w(e)d(e), for d ∈ D and
∑

(s,t)∈T d(s, t)h(s, t) = 1.
Thus it is enough to show that d ∈ D can be expressed as a set of linear constraints.

Indeed, for d given by a set of variables d(x, y), x, y ∈ V , consider the following
collection of linear constraints.5

First, for every x, y, z ∈ V we take the triangle inequality constraint 0 ≤ d(x, z) ≤
d(x, y) + d(y, z). This asserts that d is a (semi-) metric. In addition, for each set
U ⊂ V with |U | ≤ 1

c |V |, the following set of variables is added: {αU
C | C ⊆ U},

and the following constraints: (a) αU
C ≥ 0 for every C, and (b) for every x, y ∈ U ,

5Here we consider unordered pairs; hence d is symmetric by definition.
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d(x, y) =
∑

C⊆U αU
CδC(x, y), where δC(x, y) = 1 if |{x, y} ∩ C| = 1 and 0 otherwise.

Namely, δC is the cut metric induced by C on U .
These constraints, for specific U , assert that the restriction of d to U is in �1 (as

it is given by a positive combination of cut metrics). Thus the set of solutions to the
above constraints assures that d ∈ D.

Note that there are 2O(n/c) ·
(

n
n
c

)
= 2O(n log c/c) many variables and a similar

number of constraints. Hence z∗ and the corresponding d that achieves it can be
computed by the linear program in time polynomial in its size, which is 2O(n log c/c).

Once z∗ is found, to find the cut we need to compute the low-distortion embedding
of d into �1, and then, as mentioned above, the cut can be found in time polynomial
in the representation of d. By Theorem 3.3, it is sufficient to compute the (isometric)
embedding of poly(|V |) tree-like extensions of subsets U of size n/c (at the cost of
an extra O(1) factor in the approximation guarantee). The embedding of a tree-like
extension of a subset U is trivial to compute, given the embedding of U , and this can
be read from the solution to the linear program above (this is just the corresponding
sum of cut metrics, as given by the solution to the variables αU

C).

3.2. Lower bounds—When the local structure is isometric to �1 or is
k-gonal. We first address the situation when the subspaces embed isometrically into
an interesting class of metrics, rather than with small distortion. The latter situation
is considered in section 3.3. We need the following definitions (see, e.g., [12]).

A distance function d is k-gonal iff for every two sequences of points p1, p2, . . . , p
k/2�
and q1, q2, . . . , q�k/2 (where points are allowed to appear multiple times in each se-
quence) the following inequality holds:


k/2�∑
i=1

�k/2∑
j=1

d(pi, qj) ≥

k/2�∑
i=1


k/2�∑
i′=1

d(pi, pi′) +
�k/2∑
j=1

�k/2∑
j′=1

d(qj , qj′).

We use Mk to denote the class of all k-gonal distance functions. k-gonal distance
functions were studied extensively as such; see Deza and Maehara [13] and an extensive
survey and reference for the following facts by Deza and Laurent [12]. Clearly, M3 is
simply met, the class of all metrics. Also, for every k ∈ N , k ≥ 2, Mk+2 ⊂ Mk and
M2k−1 ⊂ M2k. On the other hand, for every k ∈ N , k ≥ 1, distance functions in
M2k are not necessarily metrics; that is, they do not necessarily satisfy the triangle
inequality. The class of all negative type distance functions is

neg =
∞⋂

k=2

M2k.

Schoenberg showed that d ∈ neg iff
√

d embeds isometrically into �2 [31]. The class
of all hypermetrics is

hyp =
∞⋂

k=2

M2k−1.

Thus, all hypermetrics are negative type metrics. It is known that all �1 metrics are
hypermetrics.

The main theorem of this section establishes a polylog(n) separation between
r-gonal metrics, or even locally Euclidean metrics, from neg ∩ met. In particular,
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by the discussion above this also shows similar separation between locally Euclidean
metrics and �1 metrics. We need the following theorem implicit in [13].

Theorem 3.6 (see [13]). For any metric d on k points, the following hold:
1. dlog2(1+1/(�k/2−1)) ∈ Mk .
2. dlog2(1+1/(k−1)) is a hypermetric.
3. d

1
2 ·log2(1+1/(k−1)) is Euclidean.

The main result of this section is as follows.
Theorem 3.7. For every integer n ≥ 2 and for every k ∈ N , k ≤ n, the following

statements are true:
1. There exists an n-point k-gonal metric d, such that dist(d ↪→ (neg∩met)) =

Ω
(
(log n)log2(1+1/(�k/2−1))

)
.

2. There exists an n-point metric d for which every k-point subspace is a hyper-
metric, yet dist(d ↪→ (neg ∩met)) = Ω

(
(log n)log2(1+1/(k−1))

)
.

3. There exists an n-point metric d such that every k-point subspace embeds
isometrically in �2, yet dist(d ↪→ (neg ∩ met)) = Ω

(
(log n)

1
2 log2(1+1/(k−1))

)
.

Proof. Consider, e.g., the third statement; the other two are proved in the same
manner using the corresponding item in Theorem 3.6. Let D be the metric of a
unit-weighted constant-degree expander on n points. It is well known that it incurs
an Ω(log n) distortion in embedding into neg ∩ met [24, 6]. Observe also that all
the distances in D are between 1 and Θ(log n). Fix an integer k ≥ 2 and let d =
D

1
2 ·log2(1+1/(k−1)). We claim that d has the properties as claimed in item 3 in Theorem

3.7. Indeed d restricted to any k points is Euclidean, as asserted by the third item of
Theorem 3.6. Since the maximum distance in D is O(log n), and D dominates d, we
conclude that

dist(d, D) = O
(
(log n)1−

1
2 log2(1+1/(k−1))

)
.

On the other hand, for any d′ ∈ neg∩met, dist(D, d′) = Ω(log n) . Since dist(d, d′)·
dist(d, D) ≥ dist(D, d′) , we conclude that dist(d, d′) = Ω

(
(log n)

1
2 log2(1+1/(k−1))

)
,

as claimed.
Corollary 3.8. For k = o(log log n), there exist an n-point metric d such that

every k-point subspace is in �2, yet dist(d ↪→ (neg ∩ met)) = ω(1). (Recall that
�2 ⊂ �1 ⊂ neg [12].)

3.3. Lower bounds—When a small distortion is allowed. The main result
in this section is the construction of a class of metrics on n points for any large enough
n, for which the metric induced on any n1−δ points embeds well into �1, while any
embedding of the whole metric into �1 has distortion of Ω(log n).

Theorem 3.9. For every δ > 0 and for large enough n (with respect to 1/δ), the
following statements hold:

1. There is an n-point metric d such that for every n1−δ-point subspace Q,
dist(dQ ↪→ �1) = O(1/δ3), yet dist(d ↪→ �1) = Ω(log n).6

2. There is an n-point metric d such that for every n1−δ-point subspace Q,
dist(dQ ↪→ �2) = O(1/δ1.5), yet dist(d ↪→ �2) = Ω(

√
log n).

The metric we construct for the first item of Theorem 3.9 is essentially the short-
est path metrics of a unit weighted, constant degree expander with some additional
requirements. For the second item we just take the square root of this metric. Thus,
the lower bounds claimed in the two items will automatically follow from the (by now

6The lower bound holds even for embedding into neg ∩ met, the class of negative type metrics.
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standard) fact that any embedding of the shortest path metric of a constant degree
expander on n points into �1 incurs Ω(log n) distortion.

The main technical contribution of this section is the corresponding upper bounds.
We show that a family of expanders with certain parameters, although, as explained
above, induces metrics that are hard to embed into �1, the restricted metrics on any
subset of n1−δ embed into �1 with low distortion. In particular, we present a new
general embedding lemma for locally sparse graphs, related but much more powerful
than the results of [18] on the �1 embeddability of graphs with small Euler number.
We then need to construct the family of expanders with the suitable parameters, which
is done using a rather standard probabilistic argument. Formally, the two parts are
asserted by the following two lemmas. First we state them, then show how they imply
Theorem 3.9, and then present the proofs of the lemmas.

Lemma 3.10. There is a universal constant c such that for any ε < 1 and n large
enough (w.r.t. 1/ε), there exists a graph Gn on n∗, with n/2 ≤ n∗ ≤ n vertices, of
maximum degree 100c, such that the following hold:

1. The diameter of Gn is at most c log n.
2. The subgraph G[S] induced by any subset of vertices S ⊆ V (G) of size at most

n1−ε has at most (1+ b
ε log n )(|S|−1) edges for some constant b (e.g., b = 30).

3. G is a good edge expander; namely, for every set S ⊆ V (G) with |S| ≤ n/2,

e(S, S̄) := |{(u, v) ∈ E(G)| u ∈ S, v ∈ S̄}| ≥ |S|.

Lemma 3.11. Let d be the shortest path metric of an unweighted graph H = (V, E)
with diameter D, and with a property that the subgraph induced by any subset S ⊂ V
has at most (|S| − 1)(1 + 1/p) edges. Then, d can be embedded into �1 (in fact, into
a distribution over dominating tree-metrics) with distortion O((p + D)/p).

Proof of Theorem 3.9. We start with the first item. Let ε = δ/2 and let G = (V, E)
be the graph whose existence is asserted in Lemma 3.10 for ε and |V | = n. Let d be
its shortest path metric. The metric d, being a shortest path of a constant degree
expander, requires distortion Ω(log n) to embed into �1 (see, e.g., [24]).

Our goal is to show that dS , the restriction of d to a set S of size at most n1−2ε,
is embeddable into �1 with O(1/ε3) distortion for any such S.

Observe that the diameter of G, diam(G), and hence the largest distance in dS ,
is O(log n). Applying Lemma 3.11 to G[S], with p = ε log n

b , we conclude that its
shortest path metric embeds into �1 with distortion O(1/ε). However, the shortest
path metric of G[S] is not dS , and a finer argument is needed.

Consider a complete graph K on a vertex set S such that the weight of the edge
(i, j) is d(i, j). Clearly, the shortest path metric of K is dS . We use the following
basic result about graph spanners [2]. Let α < 1 be any positive constant and let
H = (X, F ) be a positively weighted graph. The result in [2] asserts the existence of
a weighted subgraph H1 = (X, F1) of H , with |F1| = |X |1+α, such that the shortest
path metric of H1 distorts that of H by at most O(1/α). Moreover, the shortest path
of H1 dominates that of H , and the weights on F1 are the same as in H . Applying this
result for H being K, with α = ε, we conclude that there exists a subgraph K1 with
at most |S|1+ε ≤ n1−ε−2ε2 edges whose shortest path metric distorts dS by at most
1/ε. Next we embed K1 into G in the following manner. Replace each edge (u, v) in
K1 with the shortest path between (u, v) in G. Define graph G1 (a subgraph of G)
as the union of these paths. Clearly, the restriction of the shortest path metric of G1

on S dominates dS , while it is dominated by dK1 . Hence, dG1 distorts dS by O(1/ε).
Since G is unit-weighted, the size of V (G1) is at most |E(K1)| · diam(G) ≤ n1−ε.
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The diameter of G1 is at most O(1/ε) times the diameter of dS . Also, being a
subgraph of G of size less than n1−ε, property 2 of Lemma 3.10 implies that the graph
G1 satisfies the local density condition of Lemma 3.11 with p = ε log n

b . Therefore,
by Lemma 3.11, the shortest path metric of G1, dG1 , is embeddable into �1 with
distortion O(1/ε2). Consider the restriction of dG1 to S, and keeping in mind that it
distorts dS by at most 1/ε, we conclude that dS is embeddable into �1 with O(1/ε3).

For the second claim of the theorem, take d2 =
√

d, where d is as above. Keeping
in mind that the square root of an �1-metric is an �2-metric (since �1 is a subclass
of neg, the class of all metrics whose square root is an �2-metric), the statement fol-
lows.

Proof of Lemma 3.10. The method is routine and similar to that of [3]. Observe
first that the bound on diameter is implied by the third property and the bound
on the degree. Hence it suffices to show a construction that satisfies the last two
properties. Choose a random graph randomly from the Erdös–Rényi distribution
on random graphs, G(n, c/n). Namely, choose one with independent and identically
distributed (i.i.d.) edge probabilities c/n for some constant c (e.g., c = 200000). It is
quite standard to show that such a graph will be a good expander, and, in particular,
will have logarithmic diameter. It will also be locally very sparse, as needed. However,
it might have high degree vertices. To correct this we delete all vertices of high degree.
While this ensures the desired bound on the degree, the expansion may deteriorate
and must be taken care of. We present here the complete argument, delaying the
routine technical calculations to the appendix.

For a graph G = (V, E) and subsets of vertices X, Y ⊆ V , denote eG(X, Y ) =
|{(u, v) ∈ E| u ∈ X, v ∈ Y }|.

Let G ∈ G(n, c/n) be a random graph. Let A,B, C, C′,D be the following events:
• A the event that G is edge expanding on large sets; namely, for every subset

S ⊆ V (G) with n/4 ≤ |S| ≤ n/2, eG(S, S̄) ≥ c|S|/8.
• B the event that for every subset S ⊆ V (G) with |S| ≥ 99n/100, eG(S, S) ≥

0.99 · c
n ·

(|S|
2

)
.

• C the event that G is extremely locally sparse; namely, for every subset S ⊆
V (G) with ε log n

b ≤ |S| ≤ n1−ε, e(S, S) ≤ (|S| − 1) · (1 + b
ε log n ).

• C′ the event that there are only few small nonsparse sets; namely, the number
of sets, S ⊂ V , for which |S| < ε log n

b , and e(S, S) > (|S| − 1) · (1 + b
ε log n ), is

o(n/ log2 n).
• D the event that G has at most n/100 vertices of degree larger than 100c.

Claim 3.12. For c = 200000, b = 30, and G chosen as above, events A, B, C, C′, D
hold simultaneously with probability 0.99.

The proof of Claim 3.12 is in the appendix.
Assume that the events A,B, C, C′,D hold for G and c = 200000. We now show

how to deterministically construct our final graph G∗ from G. This, together with
Claim 3.12, implies that such a G∗ exists.

First we want to ensure that every small subset S ⊂ V induces a sparse graph
as needed. This is quite easy: by event C′, there are only o(n/ log2 n) sets, S ⊂ V ,
for which e(S, S) > (|S| − 1) · (1 + b

ε log n ). Moreover, each of these sets is of size
bounded by ε log n/b. For every such S, we remove all edges in G[S], namely at most(|S|

2

)
= o(log2 n) edges. This results in a graph G′, for which the sparsity condition

(item 2 in Lemma 3.10) holds. Moreover, G′ is obtained from G by removing o(n)
edges.

Let L be the set of vertices of degree at most 100c. Since event D holds, |L| ≥
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99
100 ·n. Since event B holds, the set L satisfies eG(L, L) ≥ 0.99· c

n ·
(|L|

2

)
≥ 0.993 ·cn/2 ≥

0.97cn/2. Since |E(G)| is expected to be at least c(n − 1)/2, we conclude (by any
Chernoff like tail bound) that almost surely it is bounded by 1.01cn/2. In this case,
by deleting L̄ from G′ we have deleted additional e1 ≤ (1.01 − 0.97)cn/2 = 0.02cn
edges. Thus, altogether, G1 := G′[L] has all edges of G except for 0.02cn−o(n) edges.
Recall that G1 has |V (G1)| ≥ 99

100n vertices.
It remains to take care of expansion. Recall that the event A ensures that

originally G had a good edge expansion for large sets. Thus, after deleting at
most 0.02cn − o(n) edges, every subset S ⊆ V (G1) with 0.25n ≤ |S| ≤ 0.5n has
eG1(S, S̄) ≥ |S| · c/8 − 0.02cn− o(n) ≥ c|S|/100 ≥ 2000|S|.

We further delete now, one by one, (small) subsets that are not expanding enough.
Namely, assume that there is a subset A1 ⊆ V (G1) such that eG1(A1, Ā1) < |A1|, and
|A1| ≤ |Ā1|. We let G2 = G1[V (G1) \ A1]. We now define similarly G3, . . ., and,
in general, Gi+1, by deleting an arbitrary Ai ⊆ V (Gi) for which eGi(Ai, Āi) < |Ai|,
and |Ai| ≤ |Āi|. Let A1, A2, . . . be the sequence of the deleted subsets, and let
G1, G2 = G1 − A1, . . . be the sequence of the resulting graphs. Let ei = eGi(Ai, Āi)
be the size of the cut defined by Ai w.r.t. Gi. Then, by definition ei < |Ai|.

Set Xi = ∪i
1Ai and note that eG1(Xi, X̄i) < |Xi|. This is since ej ≥ eG1(Aj , X̄i)

for every j ≤ i. Hence, by assumption on G1, for every i, |Xi| is either smaller than
n/4 or larger than n/2. Assume that for some i, |Xi| > n/2, and let i be the smallest
index with this property. Thus |Xi−1| < n/4. It follows that i ≥ 2, |Ai| > n/4
but less than n/2 (by definition, since |Ai| ≤ |Āi|), and ei < |Ai|. However, ei ≥
eG1(Ai, Āi)−

∑
j<i ej ≥ 2000|Ai| − |Xi−1| ≥ 2000 · |Ai| − n

4 ≥ 1999|Ai|, contradicting
the lower bound on ei.

We conclude that for every i, |Xi| < n/4, and since the sequence must be finite,
the last graph obtained G∗ = G	 is on n∗ ≥ |V (G1)|−n/4 ≥ 74n

100 , and for which every
subset S of size |S| ≤ n∗/2 has edge expansion eG∗(S, S̄) ≥ |S|.

We now address Lemma 3.11. It will follow from the following two claims.
For t ∈ R+ and a metric μ, the t-truncated metric μ(t) is defined by μ(t)(x, y) =

min{μ(x, y), t}.
Claim 3.13. Let μ be a tree metric and let t ≥ 0 be a real number; then μ(t) can

be embedded into �1 with constant distortion.7

Proof. Let T be a (possibly weighted) tree and μ its corresponding shortest path
metrics. Let t ≥ 0. We construct a weighted graph Tt by adding to T a new vertex
u that is connected to every vertex of T with an edge of length t/2. Observe that
the shortest path metric of Tt restricted to V (T ) is precisely μ(t), the t-truncation
of μ, and that Tt is 2-outerplanar. It is shown in [11] that the shortest path metric
of any k-outerplanar graph can be embedded into �1 (in fact, into a distribution
over dominating tree-metrics), with f(k)-distortion. This implies that μ(t) can be
embedded into �1 with constant distortion.

Claim 3.14. Let H, p be as in the statement of Lemma 3.11. Then, there is a
probability distribution on spanning trees of H, such that each edge of H occurs with
probability at least p/(p + 1).

Proof. Let H = (V, F ) as in Claim 3.14.
Let T be the set of all spanning trees of H . Consider the following LP:

(8) maxλ,

7In fact, �1 can be replaced by a distribution over dominating tree-metrics, a more restricted
class of metrics.
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(9) s.t. ∀e ∈ F,
∑

T∈T ,e∈T

xT ≥ λ,

(10)
∑
T∈T

xT ≤ 1,

(11) λ, xT ≥ 0 ∀T ∈ T .

Any optimal solution (xT , T ∈ T ) can be viewed as a probability distribution in
which each edge is covered with probability at least λ. Thus we want to prove that
the optimum is λ ≥ α = p/(p + 1).

Let the dual program be

(12) min z,

(13) s.t. ∀T ∈ T ,
∑
e∈T

ye ≤ z,

(14)
∑
e∈F

ye ≥ 1,

(15) z, ye,≥ 0 ∀e ∈ F.

Thus by duality we need only show that the optimal z in the dual is at least α.
Let ye, e ∈ F , be taken as weights on F . Then, (13) implies that z is the maximum
cost spanning tree with respect to the weights ye. Thus, we need only show that
under the assumption of Claim 3.14, for any nonnegative weights on F that sum to
1, the maximum cost spanning tree is at least α.

Indeed, let ye, e ∈ F be any such weighting, and suppose that the maximum
spanning tree w.r.t. the weights ye is achieved by a tree T = (V, E). Let the girth of H
be g. By the local density condition of Lemma 3.11, it must hold that (g−1)(1+1/p) ≥
g, implying g > p.

Consider now the following bipartite graph. The left-hand side of the bipartition
has a point corresponding to each edge of T . The right-hand side has a point for each
edge of H that is not in T . There is an edge (e, f) if e ∈ T belongs to the fundamental
cycle of f �∈ T . Note that the optimality of T implies that ye ≥ yf . Also, by the girth
lower bound above, it follows that the degree of every vertex in the right-hand side is
at least p.

We claim that this bipartite graph has a p-matching of the vertices in the right-
hand side, namely, a subgraph with degree at most 1 for points on the left and degree
exactly p for points on the right. Suppose not; then by the Hall Marriage Theorem
there is some minimal subset X on the right-hand side whose neighborhood N(X)
has size |N(X)| < |X |p. Now consider the subtree of T induced by N(X) (if the
edges corresponding to N(X) do not form a connected component, then X is not
minimal). This subtree has |N(X)| + 1 vertices and the subgraph of H induced by
these vertices has at least |N(X)|+ |X | > |N(X)|(1+1/p) edges. But this contradicts
the assumptions of Lemma 3.11.
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The existence of the p-matching implies that the edges of T that are matched
(that is, of degree 1 in the p-matching) can be partitioned into p subsets such that
the weight of each subset is more than the weight of all the edges not in T . Thus,

cost(T ) =
∑
e∈E

ye ≥ p ·
∑
e/∈E

ye.

Recalling that
∑

e∈F ye = 1, this implies that the cost of T is at least α = p/(p + 1)
as claimed.

We now return to the proof of Lemma 3.11.
Proof of Lemma 3.11. By Claim 3.14, there is a probability distribution on span-

ning trees {Ti} of H such that each edge of H occurs with probability at least
α = p/(p + 1). Recall that D is the diameter of H . For each Ti in the distribu-
tion, consider the corresponding metric μi = min{D, dTi}, namely μi = d

(D)
Ti

, the
D-truncated tree metric. Set μ =

∑
wiμi , where wi is the weight of Ti in the

distribution. Since for every i, μi dominates d, it follows that μ dominates d. Hence,
to upper bound dist(μ, d), it is enough to bound the stretch of each edge of H .

Indeed, for any edge, its μ-length is at most

1 · p

p + 1
+ D ·

(
1 − p

p + 1

)
=

p + D

1 + p
.

Finally, by Claim 3.13, every μi, and hence μ, can be embedded into �1 with constant
distortion.

4. Separating a baseline metric class from �∞. We say that a class of
metric spaces C is universal if any metric space is embeddable into it with some
constant distortion, c = cC , that depends only on C. It is known (and simple) that
the normed space �∞ is universal. Moreover, �n−1

∞ is universal for finite metrics on n
points (see, e.g., [12]). Namely, every metric on n points is embeddable isometrically
into �n−1

∞ .
As noted in section 3, a baseline class of metrics includes all �1 metrics, and should

be thought of as “large,” or potentially allowing small distortion as a host space. Thus
it is natural to study their limitations, namely, how universal can a baseline class of
metric C be if C does not contain the set of all metrics.

In the preliminary conference version of this work, we have conjectured that the
following strong separation holds.

Conjecture 1. Let C be nonuniversal baseline class of metrics. Then, for any
n ∈ N , there exists an n-point metric dn such that dist(dn ↪→ C) ≥ Ω(logα n) for
some constant α > 0.

This conjecture was subsequently proved in [27] even under weaker assumptions:
it is enough to demand that C be a nonuniversal class of metrics closed undertaking
submetrics.

Here, we examine the separation question between C and all universal metrics
from another perspective. Unlike in the rest of the paper, we shall discuss here
metrics whose underlying space is infinite: the entire Rn or Zn, and, in particular,
{�n

1} and {�n
∞}. The main result of this section is a separation between C and �∞ in

terms of the dimension of the underlying host space.
Theorem 4.1. Let C be a baseline metric class, and assume that there exists a

metric μk on k points such that dist(μk ↪→ C) = β > 1. Then, for any C-metric d on
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Rn,

dist(d, �n
∞) = Ω(nα), where α ≈ 1

2
· β − 1
β + 1

· 1
ln k

.

Observe that the upper bound on the worst distortion cannot exceed
√

n. Indeed,
notice that any �2 metric on n points is in C, since C contains �1 metrics (see the remark
right after Definition 2.1), and any �2 metric on n points is isometrically embeddable
into �1 [28]. On the other hand, the distortion between (Rn, �n

∞) and (Rn, �n
2 ) is

O(
√

n) as shown by the identity mapping.
The proof of Theorem 4.1 uses the following lemma.
Lemma 4.2. For any d ∈ C on Rn, there exists a norm ‖ ∗ ‖ ∈ C on Rn such that

(16) dist(�n
∞, ‖ ∗ ‖) ≤ dist(�n

∞, d).

The proof of this lemma is delayed to the end of this section.
Next, we need the following quantitative version of a theorem by James [20],

communicated to us, together with an outline of its proof, by W.B. Johnson and
G. Schechtman.

Theorem 4.3. Let γ = (1+ δ)2
r

and let n ≥ k2r

, where r, k ∈ N , and 0 ≤ δ < 1.
Assume that an n-dimensional norm ‖ ∗ ‖ is embeddable into �n

∞ with distortion at
most γ. Then there exists a subspace L of Rn of dimension dim(L) = k, with an �∞
norm d∞ on L, such that for the restriction of ‖∗‖ to L, ‖∗‖L, dist(‖∗‖L, d∞) ≤ 1+δ

1−δ .
Proof. The following lemma from [28, pp. 74–75] states the following.
Lemma 4.4 (see [28]). Under the conditions of the above theorem, there exists a

subspace L of dimension k such that for every {vi}k
i=1 ⊂ L the following holds. Denote

by ‖ ∗ ‖L the restriction of ‖ ∗ ‖ to L. Then, for any v =
∑

i αivi, ‖
∑

i αivi‖L ≤
(1 + δ) · maxi ‖αivi‖L.

Observe that it also implies that for any v =
∑

i αivi, ‖
∑

i αivi‖L ≥ (1 − δ) ·
maxi |αi| · ‖vi‖L. Indeed, were it not the case for some v =

∑
i αivi, one would get a

contradiction as follows: Assume, w.l.o.g., that |α1| · ‖v1‖L is the maximal term, and,
moreover, it is 1. Let u = α1v1 −

∑k
i=2 αivi. Then,

1 = ‖α1v1‖L = ‖0.5v + 0.5u‖L < 0.5(1 − δ) + 0.5(1 + δ) = 1 .

To conclude the argument, choose a basis for L, {vi}k
i=1, where ‖vi‖L = 1 for all i’s,

and consider the mapping φ from L equipped to Rn equipped with �∞ norm, where
each vi is mapped to the corresponding unit vector ei. In view of Lemma 4.4, the
contraction of φ is at most (1 + δ), and in view of the consequence of this lemma, the
stretch of φ is at most 1

1−δ . The desired bound on the distortion follows.
Proof of Theorem 4.1. Assume for simplicity that n is of the form n = k2r

. The
metric μk �∈ C, being a metric on k points, isometrically embeds into �k

∞. We conclude
by Theorem 4.3 that for any C-norm ‖ ∗ ‖ on Rn it holds that

dist(‖ ∗ ‖, �n
∞) ≥

(
1 +

β − 1
β + 1

)2r

.

The same estimate holds, by Lemma 4.2, for any metric d ∈ C on Rn. Thus, for such
n, the theorem holds with constant α = logk(1 + β−1

β+1 ). If n is not of the form k2r

,
take the largest such power ≤ n, at the cost of paying an extra factor 1/2 in the above
α. This concludes the proof of Theorem 4.1.
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Proof of Lemma 4.2. In what follows we restrict our attention, w.l.o.g., to d’s
dominating �n

∞. Hence, we may replace distortion with the (supremum) stretch in-
curred by d. It will be convenient to bring the discussion back to the realm of discrete
metric spaces. Instead of proving (16) for Rn, we shall prove it for Zn. Clearly, this
is a fully equivalent statement (by scaling and taking limits).

Observe that a norm on Zn is just a translation-invariant scalable metric.
First, we construct a translation-invariant metric d∗ ∈ C on Zn, such that the

stretch incurred by d∗ is no more than that of d. The construction is as follows. Given
d and a point p ∈ Zn, define a metric d+p on Zn by

d+p(x, y) = d(x + p, y + p) .

Observe that by the symmetry of C, d+p(x, y) ∈ C. Moreover, it dominates Zn

equipped with the �n
∞ metric and has the same stretch as d.

For an integer i let [−i, i] = {−i, . . . , i}. Let [−i, i]n ⊆ Zn denote the correspond-
ing discrete cube. For a point x ∈ Zn let [−i, i]n − x = {y − x | y ∈ [−i, i]n} denote
the shifted cube. Consider a sequence of metrics d = d0, d1, d2, . . . defined by

di =
1

|[−i, i]n|
∑

p∈[−i,i]n

d+p .

Clearly di belongs to C, it dominates the �n
∞ metric, and the stretch incurred by di is

no more than that incurred by d. Observe also that for every x, y ∈ Zn we have

lim
i→∞

|di(x, y) − di(0, y − x)|

= lim
i→∞

∣∣∣∣ 1
(2i + 1)n

∑
p∈[−i,i]n

d(x + p, y + p) − 1
(2i + 1)n

∑
p∈[−i,i]n

d(p, y − x + p)
∣∣∣∣

≤ lim
i→∞

1
(2i + 1)n

∑
p∈ [−i,i]n� ([−i,i]n−x)

d(x + p, y + p)

≤ lim
i→∞

1
(2i + 1)n

· 2n · ‖x‖∞ · (2i + 1)n−1 · dist(�n
∞, d)‖x − y‖∞ = 0.(17)

Next, we employ the following standard procedure. Order all vectors of Zn in some
order v1, v2, v3, . . . . Consider an infinite subsequence of {di} such that the value of
di(0, v1) converges on it; call this limit ν(v1). Do the same with the latter subsequence
to obtain ν(v2) and a subsubsequence, and continue in the same manner ad infinitum.
Finally, for each x, y ∈ Zn, define

d∗(x, y) = ν(y − x) .

The above observation implies that d∗ is indeed a translation-invariant metric. Clearly,
d∗ ∈ C, it is �n

∞-dominating, and the stretch incurred by it is bounded by the stretch
incurred by d.

Second, we use d∗ to construct d∗∗ ∈ C with the same properties, which is not
only translation-invariant but also scalable. The construction is similar to the pre-
vious one but is a bit simpler. Consider a sequence of translation-invariant metrics
d(0), d(1), d(2), . . . defined as follows:

d(r)(x, y) = 2−r d∗(2r · x, 2r · y) .
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Observe that d(r)’s are (pointwise) monotone nonincreasing with r, since for any
a ∈ N+, and for a = 2 in particular, d∗(ax, ay) ≤ ad∗(x, y) due to translation-
invariance of d∗.

Taking the limit of d(r)’s we obtain the desired d∗∗. It is easy to check that d∗∗ has
all the required properties. For example, the scalability holds, since, by the previous
observation, the limit limr→∞ a−1d(r)(ax, ay) exists for every natural a. Therefore
d∗∗ is scalable with respect to all a ∈ N+, and hence with respect to all a ∈ Q+, as
required.

5. Ultrametrics. The set of ultrametrics is the set of metrics ult = {d : d(p, q)
≤ max{d(p, r), d(q, r)} ∀p, q, r}. Ultrametrics form an important class of simple met-
rics studied previously in algorithmic contexts, e.g., in [15, 14, 7]. It is well known
that ultrametrics embeded isometrically into �2 are a special case of tree metrics, and
they are not closed under addition (see, e.g., [12]). Our aim here is to study embed-
dability into ultrametrics from the local-global view. Namely, we consider the set of
ultrametrics as the host space and see what local embeddability can imply for global
embeddability. Note that ult is not baseline, as it is not a cone (recall the definition
of baseline in section 2). Hence, the results from the previous section do not apply to
this class.

For a metric d and two points x, y, an xy-path P is a sequence of distinct points
(x = p0, p1, p2, . . . , pm = y) of arbitrary length. We say that pq ∈ P iff there exists
j ∈ {1, 2, . . . , m} such that p = pj−1 and q = pj. For every two points x, y set

u(x, y) = min
xy−pathsP

{max{d(p, q) : pq ∈ P}} .

The following basic result characterizes the ultrametric closest to a given metric d.
Theorem 5.1 (see [15]). Let d be a metric; then the distance function u is

an ultrametric which is dominated by d (i.e., u(x, y) ≤ d(x, y) for every x, y ∈ X).
Moreover, every ultrametric u′ that is dominated by d is also dominated by u.

As an immediate corollary we get the following criterion.
Corollary 5.2. Let d be a metric and let c ≤ 1 be the maximum value such that

for every x, y ∈ X, every xy-path P contains pq ∈ P such that d(p, q) ≥ c · d(x, y).
Then, dist(d ↪→ ult) = c−1.

Using this criterion we establish the following theorem.
Theorem 5.3. Fix an integer m, and assume that (X, d) is a metric on n ≥ m

points such that for every m-subset Q of X, dist(dQ ↪→ ult) ≤ γ. If n ≤ (m−1)k +1,
then dist(d ↪→ ult) ≤ γk.

Proof. The proof is by induction on k. For k = 1 the claim is obvious. Let
n ≤ (m − 1)k + 1, k ≥ 2. To bound the distortion using Corollary 5.2, it suffices
to show that for every x, y ∈ X , every xy-path P contains pq ∈ P with d(p, q) ≥
d(x, y)/γk. Let P = (x = v1, v2, . . . , vr = y), r ≤ n, be such a path. Consider
the xy-path P ′ = (v1, vm, v2m−1, . . . vim−(i−1), . . . , vr). By our assumption on n, P ′

contains at most (m− 1)k−1 +1 points. Moreover, as a submetric of X it satisfies the
premises of the theorem with k − 1. Hence, by induction, there exists an i such that
vim−(i−1)v(i+1)m−i ∈ P ′ and such that d(vim−(i−1), v(i+1)m−i) ≥ d(x,y)

γk−1 . Now consider
the segment P ′′ of P from vim−(i−1) to v(i+1)m−i, which is a vim−(i−1)v(i+1)m−i-path
containing at most m points. By the base case of the induction, there exists pq ∈ P ′′

such that d(p, q) ≥ d(vim−(i−1), v(i+1)m−i)/γ ≥ d(x, y)/γk.
The next theorem implies that Theorem 5.3 is asymptotically best possible.
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In the following let d be the metric induced by the unit weighted path on n + 1
vertices.

Theorem 5.4. For any constants ε, c ∈ [0, 1], dist(dc ↪→ ult) = Ω(nc), whereas
for every subset of nε points, S, the restriction dc

S of dc to S has dist(dc
S ↪→ ult) =

O(nεc).
Proof. Corollary 5.2 implies that dist(dc ↪→ ult) = Ω(nc), as for the two end-

points, x, y, of the path dc(x, y) = nc, while for the path itself, as a xy-path, for every
two adjacent vertices dc(p, q) = 1.

On the other hand, for any set S of points of size nε and any u, v ∈ S, the
monotone path going from u to v contains at most nε points. Hence there exists
an adjacent pair p, q on the path whose length is at least d(p, q) ≥ d(u, v)/nε. This
implies that dc(p, q) ≥ n−εcdc(u, v), which by Corollary 5.2 implies the upper bound
on the distortion.

Remark 5.1. The same result is essentially true for d′ being the metric of the unit
cycle of length n instead of the metric d of the unit path. We note, however, that the
metrics (d′)c are Ω(nc) far from the more general set of tree metrics (by the argument
from [30, Corollary 5.3]). Hence, the lower bounds hold for tree metrics as well.

6. Concluding remarks. As already explained in the introduction, the results
of this paper strengthened by the subsequent paper of Charikar, Makarychev, and
Markarychev [8] make it unlikely that the k-local restrictions may help in dealing
with the sparsest cut problem. Yet, the structural local-global results proved here
seem to be of an independent value for the theory of finite metric spaces. The most
interesting open problem in this direction is tightening the result of Theorem 3.9
about metrics with (almost) Euclidean local structure.

Approximating general (or special) metrics by metrics from some nontrivial base-
line class C may have interesting structural and algorithmic applications. For example,
do planar metric embed into M5 with a constant distortion? This is closely related
to the famous question about �1-embeddability of planar metrics (see, e.g., [18]).
Gupta [17] has shown in his Ph.D. thesis that planar metrics embed with constant
distortion into neg (see also [23]). Hence the same holds for any M2k.

We also find it intriguing to understand the structure of metrics of maximum
distortion w.r.t., e.g., the class M5. Similar question w.r.t. the classes �1 and neg

lead to the extremely important notions of edge expansion and spectral gap. The
results of Mendel and Naor [27], proving the conjecture that is discussed in section 4,
show that for any nontrivial baseline class of metric, there is a metric whose distortion
when embedding into this class is Ω(logα n) for some positive α ≤ 1. The value of the
right α remains open. Is it strictly smaller than 1 for any baseline class of metrics?
The methods of this paper imply that the shortest path metrics of constant degree
expanders (extremal both for �1 and neg) can yield only α ≥ log2 1.333.

Although Theorem 3.9 was improved in [8], we think that the methods we de-
veloped to establish the upper bounds in this theorem (Claim 3.13 and Lemma 3.11)
are of independent interest. In particular, Lemma 3.11 is a generalization of an older
result, [11], on embedding metrics that are the shortest path metrics of sparse graphs
into �1. It is open to interpretation how much further such generalizations can go. In
particular, we do not have an example that attests to whether the parameters used
in Lemma 3.11 are best possible.

Finally, the findings of this paper and of [8] indicate that the shortest path met-
rics of random k-regular graphs have a surprisingly simple local structure. Further
research leading to a better understanding of this local structure may prove useful in
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various fields.

Appendix. We prove here the claims needed for Lemma 3.10. We do not try to
optimize the constants; hence we make the crudest computations.

Proof (that events A,B, C, C′, and D in the proof of Lemma 3.10 hold with high
probability). In the following we set c = 200000. For any unordered pair e = (u, v),
let Xe be the indicator function of e, namely 1, if e ∈ G and 0 otherwise. We use
the following Chernoff bound (see, e.g., [1, Theorem A.1.13]): let {Xi}m

1 be boolean
independent random variables, each with Prob(Xi = 1) = p; then Prob(

∑m
1 Xi ≤

pm − a) ≤ e−a2/2pm.
Let S ⊂ V with |S| = α · n, 0.25 ≤ α ≤ 0.5. Then, using the bounds on α,

μ := Expect(e(S, S̄)) =
∑

e=(u,v),u∈S,v/∈S Expect[Xe] = c · α · (1 − α)n ≥ αcn/2.
Hence, Prob(e(S, S̄) ≤ αcn/8) ≤ Prob(μ − e(S, S̄) ≥ 3αcn/8) ≤ e−9cn/256. For
c > 200000 this is o(2−n). Since there are at most 2n such subsets, the union bound
implies that with probability 1−o(1) for all subsets S ⊆ V (G), with n/4 ≤ |S| ≤ n/2,
e(S, S) > |S|/8. This proves the claim for event A.

Similarly for event B, let S ⊆ V with |S| ≥ 99n/100. Then μB := Expect[e(S, S)]
=

(|S|
2

)
· c
n ≥ 98cn/200. By the same Chernoff bound above, Prob(e(S, S) < 0.99μB) <

e−10−4μB/2 ≤ e−10−649cn = o(2−n) for our choice of c. Again, as there are at most 2n

such subsets, with probability 1 − o(1) event B holds.
To prove the bound on the local density we follow essentially the same computa-

tion as in [3, Lemma 3]. Let β = b
ε log n and let 1/β ≤ � ≤ n1−ε. The probability that

there exists a subset of size � that spans more than (1 + β)(|S| − 1) edges is given by

p	 = Prob(∃S, |S| = �, e(S, S) ≥ (1 + β)(� − 1) + 1)

≤
(

n

�

)
·
( (

	
2

)
(1 + β)(� − 1) + 1

)
·
(

c

n

)(1+β)(	−1)+1

≤
(

ne

�

)	

·
(

�e

2

)	+β	−β

·
(

c

n

)	+β	−β

≤
[(

�

n

)β

· K
]	

·
(

n

�

)
β

for a constant K = e(2+β) · c(1+β).
Hence for β = Ω(1/ε logn), p	 < 2−	 (one can check that for β = 30/(ε logn),

namely for b = 30, this is sufficient).
This implies, using the union bound, that with high probability, for every subset

S ⊂ V with ε log n
b ≤ |S| ≤ n1−ε, S spans at most (|S| − 1)(1 + β) edges as needed.

To prove that C′ holds with high probability, note that for a subset S ⊂ V , for
which |S| < 1/β, (|S| − 1) < (|S| − 1) · (1 + β) ≤ |S|. Hence, the condition that
e(S, S) > (|S| − 1)(1 + β) becomes e(S, S) ≥ |S|. Thus the expected number of such
subsets μ is given by the expression

μ ≤
1/β∑
	=3

(
n

�

)
·
((

	
2

)
�

)
·
(

c

n

)	

≤
1/β∑

	

(ec)	.

For β = 30/ε logn this is o(n/ log2 n); hence, Markov’s inequality implies that C′

holds with high probability.
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Finally, the fact that D holds with probability at least 0.99 directly follows from
Markov’s inequality. This is since the probability for each vertex v separately, that
degv > 100c is at most

(
n

100c

)
· ( c

n )100c, is extremely small.
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22 ARORA, LOVÁSZ, NEWMAN, RABANI, RABINOVICH, VEMPALA

[26] J. Matousek, Open Problems on Embeddings of Finite Metric Spaces, http://kam.mff.
cuni.cz/∼matousek/metrop.ps.

[27] M. Mendel and A. Naor, Metric cotype, Ann. of Math. (2), 168 (2008), pp. 247–298.
[28] V. Milman and G. Schechtman, Asymptotic Theory of Finite-Dimensional Spaces, Lecture

Notes in Math. 1200, Springer-Verlag, Berlin, 1986.
[29] R. Motwani and P. Raghavan, Randomized Algorithms, Cambridge University Press, Cam-

bridge, UK, 1995.
[30] Y. Rabinovich and R. Raz, Lower bounds on distortion of embedding finite metric spaces in

graphs, Discrete Comput. Geom., 19 (1998), pp. 79–94.
[31] I.J. Schoenberg, Remarks to Maurice Frechet’s article “Sur la définition axiomatique d’une
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