
An Exact Almost Optimal Algorithm for
Target Set Selection in Social Networks

[Extended Abstract]

Oren Ben-Zwi
Department of Computer

Science
University of Haifa

Mount Carmel, Haifa 31905
Israel

nbenzv03@cs.haifa.ac.il

Danny Hermelin
∗

Department of Computer
Science

University of Haifa
Mount Carmel, Haifa 31905

Israel
danny@cri.haifa.ac.il

Daniel Lokshtanov
Institutt for Informatikk
University of Bergen

PB 7803, N-5020 Bergen
Norway

daniello@ii.uib.no

Ilan Newman
Department of Computer

Science
University of Haifa

Mount Carmel, Haifa 31905
Israel

ilan@cs.haifa.ac.il

ABSTRACT
The Target Set Selection problem proposed by
Kempe, Kleinberg, and Tardos, gives a nice clean combi-
natorial formulation for many problems arising in econ-
omy, sociology, and medicine. Its input is a graph with
vertex thresholds, the social network, and the goal is to
find a subset of vertices, the target set, that“activates”a
prespecified number of vertices in the graph. Activation
of a vertex is defined via a so-called activation process
as follows: Initially, all vertices in the target set become
active. Then at each step i of the process, each ver-
tex gets activated if the number of its active neighbors
at iteration i − 1 exceeds its threshold. The activation
process is “monotone” in the sense that once a vertex is
activated, it remains active for the entire process.

Unsurprisingly perhaps, Target Set Selection is
NPC. More surprising is the fact that both of its max-
imization and minimization variants turn out to be ex-
tremely hard to approximate, even for very restrictive
special cases. The only known case for which the prob-
lem is known to have some sort of acceptable worst-case
solution is the case where the given social network is a

∗Supported by the Adams Fellowship of the Israel
Academy of Sciences and Humanities.

EC’09, July 6–10, 2009, Stanford, California, USA.

tree and the problem becomes polynomial-time solvable.
In this paper, we attempt at extending this sparse land-
scape of tractable instances by considering the treewidth
parameter of graphs. This parameter roughly measures
the degree of tree-likeness of a given graph, e.g. the
treewidth of a tree is 1, and has previously been used to
tackle many classical NPhard problems in the literature.

Our contribution is twofold: First, we present
an algorithm for Target Set Selection running in
nO(w) time, for graphs with n vertices and treewidth
bounded by w. The algorithm utilizes various combina-
torial properties of the problem; drifting somewhat from
standard dynamic-programming algorithms for small
treewidth graphs. Also, it can be adopted to much more
general settings, including the case of directed graphs,
weighted edges, and weighted vertices. On the other
hand, we also show that it is highly unlikely to find

an no(
√

w) time algorithm for Target Set Selection,
as this would imply a sub-exponential algorithm for all
problems in SNPclass. Together with our upper bound
result, this shows that the treewidth parameter deter-
mines the complexity of Target Set Selection to
a large extent, and should be taken into consideration
when tackling this problem in any scenario.

Categories and Subject Descriptors
F.2.m [Theory of Computation]: Anallysis of Algo-
rithms and Problem Complexity—Miscellaneous; G.2.2
[Mathematics of Computing]: Discrete Mathmat-
ics—Graph Theory, Graph algorithms

General Terms
Theory, Algorithms

Keywords
Target Set Selection, Bounded Tree-Width Algorithm,
Bounded Tree-Width Lower-Bound, Viral Marketing,
Social Networks

1. INTRODUCTION
Consider the following scenario: You are a marketing
executive of a huge clothing company given the task of
marketing a new line of summer wear. You have at
hand a description of the relationship network formed
among a sample of teenagers from the district. After
some heavy thinking you come up with the following
idea: You will identify, or target, key social figures of
the network and persuade them into adopting the new
summer line, by say, handing out substantial amounts
of free samples. You then hope that by peer-pressure
laws, the friends of those targeted individuals would be
persuaded into buying the new products, which in turn
will also cause their friends to be persuaded, and so
forth, creating a domino-like effect in the network. But
how do you find a good set of individuals to target?

Research in the area of viral marketing [8, 12, 17] stud-
ies questions similar to the one raised above. The key
objects under research are social networks which are of-
ten modeled by graphs with individuals or organizations
as vertices, and relationships or interactions as edges.
Social networks play a leading role in many scientific
fields, including most social sciences [16, 23, 24], life
sciences [11, 32] and medicine [11, 23, 27]. In viral mar-
keting, one attempts to take advantage of social net-
work properties, in order to enhance revenue in various
commercial applications. This is based on the premise
that targeting a few key individuals may lead to strong
Şword-of-mouthŤ effects, which in turn will cause a cas-
cade of influence in the network. Viral marketing has
recently become a widespread technique for promoting
novel ideas, marketing new products, or spreading in-
novation [31, 19]. Today, in the age of the Internet,
the huge amount of available data poses new challenges
for this area which are both daunting and extremely
profitable at the same time. As an example, MySpace,
FaceBook, and Orkut, are just three of many social net-
working websites boasting more than a hundred million
users world-wide; endlessly engaged in the exchange of
news, opinions, gossip, and almost any other thinkable
type of information.

One simple way to model the cascade of influence in
viral marketing is given by the threshold model, see for
example [18, 21] and references within. The main idea
is to associate with each vertex v of the network two
states, active and inactive, which indicate whether v
is persuaded into adopting the idea or product that is
marketed. Moreover, v is also assigned a threshold value
t(v), specifying how many neighboring vertices of v need
to get persuaded before v itself is persuaded. A cascade
of influence, or activation process, proceeds in the net-
work as follows: Initially, all vertices are inactive. In
phase 0 of the process, we select k initial vertices, the
target set, that instantly become active. Then, at every

phase i > 0, a vertex v becomes active if at least t(v) of
its neighbors were active in phase i − 1. Once a vertex
becomes active, it remains active for the entire process.
The process ends in phase iend < n, where n is the num-
ber of vertices in the network, when no more vertices can
get activated. Given the rules of this activation process,
and knowledge of the thresholds in our network, which
individuals should we target so as to persuade as many
individuals in the network as possible?

The first to study this question from an algorithmic
point of view were Kempe, Kleinberg, and Tardos in
their seminal paper [20]. They investigated the follow-
ing maximization problem: Given a social network G
with vertex-thresholds, find a target set of size at most
k that activates as many vertices in G as possible. This
models the situation where there is a prespecified bud-
get for targeting. We note that Kempe et al. focused
mostly on the case where the thresholds of the graph are
random. This work was extended in the work of [21, 26].
Chen [10] studied the following analogous minimization
problem: Given a social network G, find a target set of
smallest possible size that activates at least ℓ vertices
of G. This models the case where we have a minimum
limit for the number of persuaded individuals overall.
The decision versions of these two problems coincide,
and are the main focus of this paper. We refer to this
decision problem throughout as the Target Set Se-
lection problem.

Unsurprisingly perhaps, Target Set Selection is NP-
complete. More surprising is the fact that both of its
optimization variants turn out to be extremely hard
to approximate, even for very restrictive special cases.
Kempe, Kleinberg, and Tardos show that the maxi-
mization problem they introduced cannot be approxi-
mated within any non-trivial factor, unless P = NP,
even when the given social network is bipartite with
bounded degree, and all vertices have equal thresh-
olds [20]. Chen [10] shows a polylogarithmic approxi-
mation lower bound for the minimization problem de-
scribed above, and his bound also holds for bounded
degree bipartite graphs, even when the thresholds are
taken from the set {1, 2}. We also mention that both
problems are W[P]-complete, i.e. fixed-parameter in-
tractable, when parameterized by the size of the solu-
tion target set [1].

The high inapproximability results for the optimization
versions of the Target Set Selection problem men-
tioned above are a striking blow from the algorithm
designer point of view. In light of these results, we
must turn our consideration towards special cases of
the problem, or otherwise resort to heuristic approaches.
When considering special cases, it is desirable to obtain
a robust algorithm that behaves relatively well also on
more general cases. Furthermore, one must overcome
the fact that the problem is already known to be hard
for many restrictive cases; in particular, for notoriously
easy classes of graphs such as bounded degree graphs
and bipartite graphs.

In this paper we tackle these difficulties by consider-
ing the treewidth parameter of graphs. This parameter
plays an important role in the design of many exact
and approximation algorithms for many NP-hard prob-
lems. The notion was introduced by Robertson and Sey-
mour [30] in their celebrated proof of the Graph Minor
Theorem. Roughly, it measures the degree in which the
given graph is similar to a tree in a very deep structural
sense. For instance, trees have treewidth 1. We will
show that the treewidth parameter governs the com-
plexity of the target Set Selection problem in a
very strict sense. The first clue for this was given by
Chen [10] who showed that the problem is polynomial-
time solvable in trees. We generalize this result substan-
tially. Letting n and w respectively denote the number
of vertices and treewidth of our input graph, we prove
the following theorem:

Theorem 1. Target Set Selection can be solved
in nO(w) time.

The proof of this theorem involves an elaborate
dynamic-programming algorithm which utilizes various
combinatorial properties of the Target Set Selection
problem; deviating somewhat from standard dynamic-
programming algorithms for small treewidth graphs. It
is worth pointing out that the time complexity of this
algorithm can be rewritten as T O(w) · n, where T is the
maximum threshold of any vertex in the network. Also,
the algorithm can be adopted to much more general
settings, including the case of directed graphs, weighted
edges, and weighted vertices. We defer details of all of
this to the complete version of the paper.

On the other hand, we will show that we cannot do
much better than Theorem 1 above. We prove that, un-
der a well-established complexity-theoretic assumption,
the above algorithm is optimal up to a quadratic factor
in the exponent dependency on w. This shows that the
treewidth of the given network indeed determines to a
large extent whether one can efficiently compute an op-
timal target set in the network. This, of course, does not
rule out the possibility of other parameters with better
bounds, but nevertheless gives an important insight to
the true complexity of the problem. The second main
result of this paper is given in the following theorem.

Theorem 2. Target Set Selection cannot be
solved in no(

√
w) time unless all problems in SNP can

be solved in sub-exponential time.

The rest of the paper is devoted to proving both Theo-
rem 1 and Theorem 2.

2. PRELIMINARIES AND MODEL
DEFINITIONS

All graphs in this paper are simple and undirected, un-
less stated otherwise. For any graph G, we use V (G)

and E(G) to respectively denote the vertices and edges
of G. We will mostly use G to denote our input graph,
or social network, that we will be working on, and we
use n to denote the number of vertices in G, and w − 1
its treewidth (see definition below). We also assume we
have at hand a threshold function t : V (G) → N for
the vertices of G. For a subset of vertices X ⊆ V (G),
we let G[X] denote the subgraph of G induced by
X. That is, the subgraph G′ with V (G′) = X and
E(G′) = {{u, v} ∈ E(G) : u, v ∈ X}.

2.1 Model Definitions
Let S be any subset of vertices in G. An activation
process in G starting at S is a chain of vertex subsets
Active[0] ⊆ Active[1] ⊆ . . . ⊆ V (G), with Active[0] =
S, and Active[i] including all vertices u such that either
u ∈ Active[i−1], or t(u) ≤ |{v ∈ Active[i−1] : {u, v} ∈
E(G)}|, for all i > 0. We say that v is activated at
iteration i if v ∈ Active[i]\Active[i−1]. We assume that
the activation process terminates at iteration z, where z
is the smallest index for which Active[z] = Active[z+1].
Clearly, z < n. We say that S activates Active[z] in
G. We now give a formal definition of the key social
networking problem we will be working on in this paper:

Target Set Selection:

Instance: Two integers k, ℓ ∈ N, and a graph
G with thresholds t : V (G) → N.

Goal: Find a subset S ⊆ V (G) of size at
most k that activates at least ℓ vertices
in G.

There are many natural generalizations of the above
formulation. First, one can consider directed graphs in-
stead of undirected, where now the activation of a vertex
is determined only by its incoming neighbors. Another
natural generalization is obtained by adding weights to
the vertices of the network, and asking for a target set
of total weight not exceeding k. Finally, one can model
the situation where different vertices have different in-
fluences on each other, by adding influence values to
the edges of the network. In this case, a vertex gets
activated in an activation process, if the sum of influ-
ence from all of its active neighbors exceeds its thresh-
old. Note that the influence value does not have to be
positive. Indeed in some cases a negative influence is
considered.

All these generalizations are supported by our methods,
sometimes with a minor change. That is, our upper
bound stands even when the graph is directed, the ver-
tices are weighted and the edges have influence values
that are taken from Z.

Another generalization is the Non Monotone Model,
where at iteration i only a node, v, with more than
t(v) active neighbors on iteration i − 1 is active. In
this model, the first question should be: does the pro-
cess becomes stable? Some other interesting question

can be bounding the number of active nodes, bounding
the threshold values given a certain bound on the num-
ber of active nodes, and so on. In this non monotone
model, our methods fail to solve an instance, even if
the graph is undirected and unweighted. A few similar
models to this were investigated in several researches,
including [25, 4, 28, 29].

Not all diffusion process schemes fall into the threshold
model. For instance, in [14] a Voter model is investi-
gated. In this iterative model, at any iteration every
vertex chooses an action from its neighbors’ actions to
preform. In [5] there are active and inactive vertices,
only the active vertices have colors to denote different
product adopted. Each edge has an activation probabil-
ity and the diffusion is made by activation attempts by
active vertices to their neighbors selected by the activa-
tion probability. They give an FPTAS for the problem
of maximizing the influence of a single player when the
underlying graph is a tree, and claim that this FPTAS
can be extended to bounded treewidth graphs.

2.2 TreeWidth
We next briefly discuss the treewidth parameter of
graphs which plays a central role in this paper. There
are many ways for defining the treewidth of a graph.
We will use the original version by Robertson and Sey-
mour [30] which uses an extremely handy form of graph
decompositions, namely tree-decompositions:

Definition 1. (Tree Decomposition, Treewidth [30])
A tree decomposition of a graph G is a pair (T ,X),
where X is a family of subsets of V (G), and T is a
tree over X , satisfying the following conditions:

1.
S

X∈X G[X] = G, and

2. ∀v ∈ V (G) : {X ∈ X | v ∈ V (X)} is connected in
T .

The width of T is maxX∈X |V (X)| − 1. The treewidth
of G is the minimum width over all tree decompositions
of G.

Arnborg et al. [3] showed how to compute a tree-
decomposition of width w for an n-vertex graph with
treewidth bounded by w in nw+O(1) time. This algo-
rithm was later improved to linear-time for constant
values of w by Bodlaender [6]. See also [2, 7, 22] for
various approximation algorithms.

Given a tree decomposition (T ,X) of G, we will assume
that T is rooted at some arbitrary R ∈ X . With this in
place, there is an important one-to-one correspondence
between subgraphs of G and nodes X in T . For a node
X ∈ X , let TX denote the subtree of T rooted at X,
and let XX denote the collection of nodes in this tree,
including X itself. The subgraph GX associated with
X in TX is defined by GX =

S
Y ∈XX

G[Y]. The vertices
of X are called the boundary of GX .

3. COMPUTING TARGET SETS FOR
SMALL TREEWIDTH NETWORKS

In this section we present an nO(w) algorithm for Tar-
get Set Selection in graphs with treewidth bounded
by w. In particular, we provide a proof for Theorem 1.
To simplify the presentation, we will first assume that
we are required to compute what we call a perfect target
set for G, which is a set S that activates all vertices of
the graph. That is, we assume we are given an instance
of Target Set Selection with ℓ = n. This simplifies
many details necessary for our algorithm; however, the
essence of the problem remains the same. Later in the
section, we will explain how to extend our algorithm for
general values of ℓ.

3.1 Algorithm blueprint
Our algorithm first constructs a tree-decomposition
(T ,X) for G. Then it traverses the tree T in this
decomposition in bottom-up fashion, constructing solu-
tions for the subgraph GX corresponding to the current
node X ∈ X it is visiting by combining solutions for
subgraphs GY corresponding to the children Y of X in
T . We will actually be working with a more convenient
type of compositions called nice tree decompositions.

Definition 2. (Nice Tree Decomposition) A tree de-
composition (T ,X) of a graph G is nice if T is rooted,
binary, each node in X has exactly w vertices, and is of
one of the following three types:

• Leaf nodes are leaves in T , and consists of w pair-
wise non-adjacent vertices of G.

• Replace nodes X ∈ X have one child Y in T , with
X \ Y = {u} and Y \ X = {v} for some pair of
distinct vertices u 6= v ∈ V (G).

• Join nodes X ∈ X have two children Y and Z in
T with X = Y = Z.

Given a tree decomposition of width w − 1 for G, one
can obtain in linear time a nice tree decomposition for
G with the same width and with O(wn) nodes (see for
instance [13]). We will assume from here on out that we
have a nice tree decomposition (T ,X) at hand, of width
w − 1.

Let us begin the description of our algorithm by dis-
cussing the difficulties in applying the generic solution-
combining treewidth paradigm mentioned above to
Target Set Selection. Consider the subgraph GX

corresponding to some join node X ∈ X of our nice-tree
decomposition, and let Y and Z be the two children of
X in T with X = Y = Z. Suppose S ⊆ V (GX) is a per-
fect target set for GX . When restricting the activation
process of S in GX only to the part of GY , a boundary
vertex v may have less than t(v) GY -neighbors active,
before it itself gets activated. We know only that the to-
tal number of active GY - and GZ-neighbors of v in GX

is t(v) or more. For this reason, we need to consider per-
fect target sets for GY that activate the boundary ver-
tices according to many different threshold values. As
it turns out, we only need to consider different thresh-
old assignments to the boundary vertices; we can keep
the original thresholds of all remaining vertices in the
graph.

Definition 3. (Threshold Vector) Let GX be a sub-
graph of G corresponding to a node X of T , and
let [n] denote the interval of non-negative integers
{0, 1, . . . , n}. A threshold vector, T ∈ [n]w , is a vec-
tor with a coordinate for each boundary vertex in X.
Letting T (v) denote the coordinate in T corresponding
to the boundary vertex v ∈ X, and t denote the original
threshold function of G, the subgraph GX(T) is defined
as the graph GX with thresholds:

• T (v) for any boundary vertex v ∈ X, and

• t(u) for all other vertices u /∈ X.

Another difficulty is that when combining perfect tar-
get sets SY and SZ of GY (TY) and GZ(TZ), we need to
make sure that their combination actually constitutes a
perfect target set in GX(T). There are many problems
in this: First, we need to add up the threshold vectors
at the boundary correctly, since there can be intersec-
tions in the GY - and GZ-neighborhoods of boundary
vertices. Also, more importantly, there can be depen-
dencies in the activation processes, causing a deadlock
in the combined process: For instance, a boundary ver-
tex u might require another boundary vertex v to be
activated in GY (TY) before u itself can be activated,
while the situation could be reversed in GZ(TZ). To
overcome these difficulties, we introduce the notion of
activation orders, and activation processes constrained
by activation orders.

Definition 4. (Activation Order) Let GX be some
subgraph of G corresponding to a node X of T , and
recall that [w] denotes the interval of non-negative in-
tegers {0, 1, . . . , w}. An activation order is a function
A : X → [w], where for any v ∈ X, A(v) represents
the relative iteration in the boundary at which v is ac-
tivated.

We now change the definition of the activation process
on GX(T) given in Section 2 so that it is constrained by
an activation order on the boundary of GX (T). Given a
subset S ⊆ V (GX) and an activation order A : X → [w],
the A-constrained activation process of S in GX(T) is
defined similarly to the normal activation process of
S in GX(T), except that a boundary vertex gets ac-
tive at iteration i only if all boundary vertices u with
A(u) < A(v) are active at iteration i − 1. This includes
all boundary vertices selected in the target set. Note
that S may activate in a constraint activation process

only a subset of the vertices it activates in the normal
activation process. Nevertheless, it is clear that all ver-
tices that are activated by S in a normal activation pro-
cess get activated in an A-constrained process for some
activation order A. A set of vertices which activates all
vertices of GX(T) in an A-constrained activation pro-
cess is said to be a perfect target set conforming with
A.

We can now describe the information that our algorithm
computes for each subgraph GX corresponding to node
X of T . This information is stored in a table, which
we denote by OPTGX

, that is indexed by two types of
objects:

• A threshold vector T ∈ [n]w corresponding to the
thresholds of the boundary vertices of GX .

• An activation order A which constrains the order
of activation on the boundary vertices.

The entry OPTGX
[T, A] will store the smallest possible

perfect target set GX(T) conforming with A.

Lemma 1. The number of different entries in
OPTGX

is bounded by nO(w).

Proof. We can bound the number of different
threshold vectors and activation orders by (n+1)w and
ww respectively. Thus, the number of different entries
is bounded by (n + 1)w · ww = nO(w).

Recall that Gr = G when r is the root of T . Therefore,
if we compute the OPTGr

table for the root r, we can
determine the optimal perfect target set for G. Fur-
thermore, according to the above lemma, and since T
has O(wn) nodes, to obtain our promised time bound
all that is required is to compute the OPTGX

table of
any node X in time polynomial with respect to the to-
tal sizes of the OPTGY

tables of its children Y in T .
In the next section we give details on how to perform
this computation in polynomial time, thus completing
the proof for the case where we are required to activate
all vertices of the graph.

3.2 Implementation
To complete the description of our algorithm, we need to
show how to compute the OPTGX

table corresponding
to the current node X ∈ X we are visiting in T , from
the table(s) correspond to its child(ren) in T .

Leaf Nodes:. The base cases for our algorithm are the
leaf nodes, where computing OPTGX

is easy. Indeed, if
X is a leaf in T , then GX is a graph with w isolated ver-
tices, and so any perfect target set for GX must include
all vertices with threshold greater than 0. Furthermore,

all vertices will get activated regardless of the activa-
tion order we impose on the boundary, and so we can
compute OPTGX

when X is a leaf node by:

OPTGX
[T, A] = X \ {v : T (v) = 0} (1)

Replace Nodes:. Suppose X is a replace node with
child Y in T . That is, GX is obtained by adding a
new boundary vertex u to GY , and removing another
boundary vertex v from the boundary (but not from
GX). By the second condition of Definition 1, u can
only be adjacent to other boundary vertices of GX . Let
d denote the number of these neighbors of u in GX ,
and assume that they are ordered. Also, let G i

X , for
i = 0, . . . , d, denote the subgraph of GX obtained by
adding the edges between u and and all of its neighbors
in X, up-to and including the ith neighbor. To compute
OPTX , we will actually compute OPTG i

X

in increasing

values of i.

When i = 0, u is isolated, and thus it must be included
in any perfect target set when it has threshold greater
than 0. For any threshold vector T , let T uv denote the
threshold vector obtained by setting: T uv(w) = T (w)
for all w 6= u, and T uv(u) = t(v). For an order A and
a vertex u on the boundary, let A−u be the set of all
orderings which agree with A on all orders but u. I.e.,
an order belongs to A−u if all the nodes but u share
exactly the same order as in A. Now let:

eA = argminA′∈A−u |OPTGY
[T uv, A′]|

fAu = argminA′∈A−u |OPTGY
[T uv, A′] ∪ {u}|

According to the above, when X is a replace node, we
get for i = 0:

OPTG 0

X

[T, A] =

(
OPTGY

[T uv, eA] if T (u) = 0

OPTGY
[T uv, fAu] ∪ {u} if T (u) 6= 0

(2)

Now if i > 0, then Gi
X is obtained from Gi−1

X by con-
necting u to some boundary vertex w ∈ X. For any
threshold vector T , let T u− denote the threshold vector
obtained by setting T u−(u) = max {T (u) − 1, 0}, and
all remaining thresholds the same. Define T w− simi-
larly. We have:

OPTG i

X

[T, A] =

8
><
>:

OPT
G

i−1

X

[T, A] if A(w) = A(u)

OPT
G

i−1

X

[T u−, A] if A(w) < A(u)

OPT
G

i−1

X

[T w−, A] if A(u) < A(w)

(3)

Join Nodes:. We now turn to describe the computa-
tion at join nodes. Let X be a join node with children Y
and Z in T . Recall that GY and GZ are two subgraphs

whose intersection is exactly their boundary Y = Z, and
GX is obtained by taking the union of these two sub-
graphs. For a boundary vertex v ∈ X, let X(v) denote
the set of boundary vertices that are connected to v in
GX . For v ∈ X, and an activation order A, we define
A−v to be the set of all boundary vertices u such that
A(u) < A(v). For two threshold vectors TY , TZ and an
order A, we define the threshold vector TY ⊕A TZ as
the vector T with T (v) = TY (v)+TZ(v)− |X(v)∩A−v|
for every v ∈ X. We compute OPTGX

[T, A] using the

following equation: First compute fTY , fTZ by:

(fTY , fTZ) =

argminTY ⊕ATZ=T |OPTGY
[TY , A] ∪ OPTGZ

[TZ , A]|

Then using fTY , fTZ we can find OPTGX
[T, A] through

the following:

OPTGX
[T, A] = OPTGY

[fTY , A] ∪ OPTGZ
[fTZ , A] (4)

Correctness of the above equation is clear. Indeed, any
perfect target set S for GX(T) which conforms with A
can be decomposed into two subsets SY = S ∩ V (GY)
and SZ = S∩V (GZ) which activate in an A-constrained
activation process all vertices in GY (TY) and GZ(TZ),
for some pair of threshold vectors TY , TZ for which
TY ⊕A TZ = T . The converse is also true; any pair
of perfect target sets for GY (TY) and GZ(TZ) conform-
ing with A can be united into a perfect target set for
GX(TY ⊕A TZ), also conforming with A.

3.3 Summary and Generalizations
It is easy to see that using the equations given in Sec-
tion 3.2 above, we can correctly compute the OPTGX

ta-
ble corresponding to a node X in T , in time polynomial
with respect to the total sizes of the tables of its chil-
dren. According to Lemma 1, and since |X | = O(wn),

this gives us a total running-time of nO(w), as promised
by Theorem 1.

Note that while our algorithm solves the Target Set
Selection problem in case the given social network is
represented by undirected and unweighted graph, it is
easy to see that the algorithm can also straightforwardly
be extended to natural generalizations such as directed
graphs or weighted vertices. Adding influence values
to edges of the network is another generalization our
algorithm supports, by modifying the definition of the
⊕ operation.

Observe that these three generalizations give an easy
way to alter the algorithm from computing a perfect
target set to any general target set. Given an input
directed graph G which we are required to activate at
least ℓ vertices in, we construct a directed graph G′ by
adding a new universal vertex v with weight ∞ and
threshold ℓ that has an influence value of t(u) on every
vertex u in G, and every vertex u in G has influence
value of 1 on v. Now clearly a subset of vertices S ⊆
V (G) that activates at least ℓ vertices in G is a perfect

target set in G′, and vice-versa, every perfect target set
in G′ with total weight less than ∞ activates at least ℓ
vertices in G. Note also that the treewidth of G′ differs
by at most one from G’s.

4. COMPUTATIONAL LOWER BOUND
In this section we present our lower-bounds for Target
Set Selection in small treewidth graphs, and in par-
ticular, we provide a proof of Theorem 2. At the core
of this proof is a theorem of Chen et al. [9] which shows
a similar lower-bound for the Clique problem. Recall
that Clique is the problem of finding a pairwise adja-
cent subset of k vertices in a graph with n vertices. Chen
et al. proved the following lower-bound for Clique:

Theorem 3 ([9]). Clique cannot be solved in

no(k) time unless all problems in SNP can be solved
in sub-exponential time.

We will show a reduction from Clique to Target Set
Selection where the treewidth of the graph in the re-
duced instance is relatively close to the size of the clique
to be searched for in the graph of the source instance.
For this, we will actually use an intermediate problem,
called the Multi-Colored Clique problem, where we
are given a graph with vertices that are each colored by
one of k different colors, and the goal is to find a clique
of size k where all vertices have different colors.

Lemma 2. Multi-Colored Clique cannot be
solved in no(k) time unless all problems in SNP can be
solved in sub-exponential time.

Proof. We reduce from Clique. Given an instance
(G, k) for Clique, we construct a graph G′ by taking
k copies v1, . . . , vk of each vertex v of G, and then col-
oring each vertex vi with color i ∈ [k]′ = {1, 2, . . . , k}.
We then add an edge in G′ between two vertices ui and
vj , i 6= j, iff u and v are connected in G. It is straight-
forward to verify that G has a clique of size k iff G′

has a multicolored clique. Therefore if Multi-Colored
Clique can be solved in no(k) time, then Clique can be
solved in (k ·n)o(k) = no(k) time, implying by Theorem 3
that all SNP problems are solvable in sub-exponential
time.

The approach for using Multi-Colored Clique in re-
ductions is described in [15], and has been proven to be
very useful in showing hardness results in the parame-
terized complexity setting. Before giving details of our
construction, we will need to introduce some new ter-
minology. We use G to denote a graph colored with k
colors given in an instance of Multi-Colored Clique,
and G′ to denote the graph in the reduced instance of
Target Set Selection. For a color c ∈ [k]′, we let
Vc denote the subset of vertices in G colored with color
c, and for a pair of distinct colors c1, c2 ∈ [k]′, we let

E{c1,c2} denote the subset of edges in G with endpoints
colored c1 and c2. In general, we use u and v for denot-
ing arbitrary vertices in G, and x to denote an arbitrary
vertex in G′.

Our construction constructs G′ using two types of gad-
gets that guarantee any perfect target set of G′ with a
specific size encodes a multi-colored clique in G. These
gadgets are the selection and validation gadgets. The
selection gadgets encode the selection of k vertices and`

k

2

´
edges that together encode a vertex and edge set of

some multi-colored clique in G. The selection gadgets
also ensure that in fact k distinct vertices are chosen
from k distinct color classes, and that

`
k

2

´
distinct edges

are chosen from
`

k

2

´
distinct edge color classes. The

validation gadgets validate the selection done in the se-
lection gadgets in the sense that they make sure that
the edges chosen are in fact incident to the selected ver-
tices. In the following we sketch the construction of
these gadgets:

• Selection: For each color-class c ∈ [k]′, and each
pair of distinct colors c1, c2 ∈ [k]′, we construct a
c-selection gadget and a {c1, c2}-selection gadget
which respectively encode the selection of a vertex
colored c and an edge colored {c1, c2} in G. The
c-selection gadget consists of a vertex xv for every
vertex v ∈ Vc, and likewise, the {c1, c2}-selection
gadget consists of a vertex x{u,v} for every edge
{u, v} ∈ E{c1,c2}. There are no edges between the
vertices of the selection gadgets, i.e. the union of
all vertices in these gadgets is an independent set
in G′. We next add a guard vertex at each (vertex
and edge) selection gadget that is connected to
all vertices in the gadget. In this way, a selection
gadget is no more than a star centered at a guard
vertex.

• Validation: We assign to every vertex v in G
two unique identification numbers, low(v) and
high(v), with low(v) ∈ [n]′ and high(v) =
2n − low(v). For every pair of distinct colors
c1, c2 ∈ [k]′, we construct validation gadgets be-
tween the {c1, c2}-selection gadget and the c1-and
c2-selection gadget. Let c1 and c2 be any pair of
distinct colors. We describe the validation gad-
get between the c1 -and {c1, c2}-selection gadgets.
It consists of two vertices, the validation-pair of
this gadget. The first vertex of this pair is con-
nected to each vertex xv, v ∈ Vc1 , by low(v) paral-
lel edges, and to each edge-selection vertex x{u,v},
{u, v} ∈ E{c1,c2} and v ∈ Vc1 , by high(v) multiple
edges. The other vertex is connected to each xv,
v ∈ Vc1 , by high(v) multiple edges, and to each
x{u,v}, {u, v} ∈ E{c1,c2} and v ∈ Vc1 , by low(v)
multiple edges. We next subdivide the edges be-
tween the selection and validation gadgets to ob-
tain a simple graph, where all new vertices intro-
duced by the subdivision are referred to as the
connection vertices.

To complete the construction, we specify the thresh-
olds of the vertices in G′. First, all guard vertices have
threshold 1. All selection vertices have thresholds equal-
ing their degree in G′. Second, the connection vertices
all have thresholds 1. Finally, the vertices in the vali-
dation pairs all have thresholds equaling 2n. Figure 1
depicts a schematic description of selection and valida-
tion gadgets.

xu x{ u,v}

high(u)

low(u)

vertex
selection

edge
selection

validation
pair

high(u)

low(u)

Figure 1: A graphical depiction of the validation gadget.
In the example, n = 5 and low(u) = 3.

The main idea behind the validation gadgets is as fol-
lows: We bound the size of the required perfect target
set, so that any solution must select at most one ver-
tex from each selection gadget. When selecting from
vertex and edge selection gadgets connected by a vali-
dation gadget, both vertices in the validation pair get
active only if the vertex incident to that edge has
been selected: This is because for any u 6= v either
high(u) + low(v) < 2n or low(u) + high(v) < 2n. This
allows us to state the following lemma:

Lemma 3. G has a k-multicolored clique iff G′ has a
perfect target set of size k +

`
k

2

´
.

Proof. For the easy direction of the lemma, suppose
that K is a multi-colored clique in G of size k. Then we
argue that the subset S of k +

`
k

2

´
vertices, defined by

S = {xv : v ∈ K} ∪ {x{u,v} : u, v ∈ K},

is a perfect target set for G′. Indeed, at the first it-
eration of the activation process of S in G, all guard
vertices will be activated, since all of these have thresh-
old 1, and each one has a neighbor in S. Furthermore,
all connection vertices adjacent to vertices in S will also
be activated. In the second iteration of the activation
process all validation-pair vertices are activated, since
each one has exactly 2n neighbors which are active, by
construction. Finally, in the third iteration, all other
connection vertices are activated, since all validation-
pairs are active, which causes all remaining selection
vertices to be activated in the fourth iteration.

For the converse direction, assume S is a perfect target
set of size k +

`
k

2

´
in G′. First observe that we can as-

sume w.l.o.g. that S does not include any guard vertex,

since we can replace each guard vertex by an appropri-
ate (edge-or vertex) selection vertex, and still activate
G′. Furthermore, as guard vertices are connected only
to selection vertices, there has to be at least one active
vertex in each selection gadget, before all guards can be
active. Since selection vertices not chosen in the tar-
get set of G′ need their guards to be active before they
can be activated, it follows that exactly one vertex from
each selection gadget must be in any perfect target set
S of size k +

`
k

2

´
in G′. Finally, as discussed above, the

only way to activate a validation pair between a vertex
and edge selection gadget, is to select a pair of vertices
corresponding to an incident vertex and edge pair in G.
Thus all edges of G selected in the edge-selection gad-
gets of G′, are incident to all vertices of G selected in the
vertex selection gadgets of G′, and thus S corresponds
to a k-multicolored clique in G.

Lemma 4. G′ has treewidth O(k2).

Proof. Removing all validation pairs in G′ leaves a
forest which has treewidth 1. Therefore, we can add
all O(k2) vertices belonging to validation pairs to each
node X ∈ X in a width 1 tree-decomposition of this
forest, giving us a tree-decomposition of width O(k2)
for G′.

According to the two lemmata above, we have shown
a polynomial-time reduction that maps every instance
(G, k) of Clique to an instance (G′, k′) of Target Set
Selection, k′ = k +

`
k

2

´
, such that G has a multi-

colored clique of size k ⇐⇒ G′ has a perfect target
set of size k′, and G′ has treewidth O(k2). Combining
this with Lemma 2 completes the proof of Theorem 2.

Indeed, if Target Set Selection has an no(
√

w) al-
gorithm, where w is the treewidth of the input graph,
then we could use the above reduction to map an in-
stance (G, k) of Multi-Colored Clique with |G| = n,
to an instance (G′, k′) of Target Set Selection with
|G| = O(nc), for a constant c ∈ N, and w = O(k2),
use this algorithm to determine whether G′ has a per-
fect target set of size k′, and according to this deter-
mine whether G has a multi-colored clique of size k.
The running time of the entire procedure will be the
running-time of the reduction which is polynomial in
n and independent of k, plus the running-time of the
presumed algorithm for Target Set Selection which

is (nc)o(
√

w) = no(k). All together this gives us an

no(k) algorithm for Multi-Colored Clique, which by
Lemma 2 implies that all problems in SNP can be solved
in sub-exponential time.

5. ACKNOWLEDGMENTS
We would like to thank Eyal Ackerman and Guy Wol-
fovitz for very fruitful discussions. In particular, Guy
observed the simple reduction from computing a per-
fect target set to computing a regular one mentioned in
Section 3.3. We also like to thank David Kempe and an

anonymous referee for pointing out some missing rele-
vant references and for helpful remarks.

6. REFERENCES
[1] K. A. Abrahamson, R. G. Downey, and M. R.

Fellows. Fixed parameter tractability and
completeness iv: on completeness for w[p] and
pspace analogues. Annals Of Pure And Applied
Logic, 73:235Ű276, 1995.

[2] E. Amir. Efficient approximation for triangulation
of minimum treewidth. In Proceedings of the
Seventeenth Conference on Uncertainty in Artificial
Intelligence (UAI-01), pages 7–15, 2001.

[3] S. Arnborg, D. Corneil, and A. Proskurowski.
Complexity of finding embeddings in a k-tree.
SIAM Journal on Algebraic and Discrete Methods,
8(2):277–284, 1987.

[4] E. Berger. Dynamic monopolies of constant size. J.
Comb. Theory, Ser. B, 83(2):191–200, 2001.

[5] S. Bharathi, D. Kempe, and M. Salek. Competitive
influence maximization in social networks. In
WINE, pages 306–311, 2007.

[6] H. Bodlaender. A linear time algorithm for finding
tree-decompositions of small treewidth. SIAM
Journal on Computing, 25:1305–1317, 1996.

[7] V. Bouchitté, D. Kratsch, H. Müller, and
I. Todinca. On treewidth approximations. Discrete
Applied Mathematics, 136(2-3), 2004.

[8] J. Brown and P. Reingen. Social ties and
word-of-mouth referral behavior. Journal of
Consumer Research: An Interdisciplinary
Quarterly, 14(3):350–62, 1987.

[9] J. Chen, B. Chor, M. Fellows, X. Huang, D. Juedes,
I. Kanj, and G. Xia. Tight lower bounds for certain
parameterized NP-hard problems. In Proc. of the
19th annual IEEE Conference on Computational
Complexity (CCC), pages 150–160, 2004.

[10] N. Chen. On the approximability of influence in
social networks. In Proceedings of the 19th annual
ACM-SIAM symposium on Discrete algorithms
(SODA), pages 1029–1037, 2008.

[11] Z. Dezső and A. Barabási. Halting viruses in
scale-free networks. Phys. Rev. E, 65(5):055103,
2002.

[12] P. Domingos and M. Richardson. Mining the
network value of customers. In Proceedings of the
7th ACM SIGKDD international conference on
Knowledge discovery and data mining (KDD),
pages 57–66, 2001.

[13] R. Downey and M. Fellows. Parameterized
Complexity. Springer-Verlag, 1999.

[14] E. Even-Dar and A. Shapira. A note on
maximizing the spread of influence in social
networks. In WINE, volume 4858 of LNCS, pages
281–286. Springer, 2007.

[15] M. Fellows, D. Hermelin, and F. Rosamond. On
the parameterized complexity of multiple interval
problems – Manuscript. 2008.

[16] L. C. Freeman. The Development of Social

Network Analysis: A Study in the Sociology of
Science. Vancouver, BC, Canada: Empirical Press,
2004.

[17] J. Goldenberg, B. Libai, and E. Muller. Talk of
the network: A complex systems look at the
underlying process of word-of-mouth. Marketing
Letters, pages 211–223, 2001.

[18] M. S. Granovetter. The strength of weak ties.
American Journal of Sociology, 78, pages
1360–1380, 1973.

[19] M. Kearns and L. Ortiz. Algorithms for
interdependent security games. In Proceedings of
the 17th Annual Conference on Advances in Neural
Information Processing Systems (NIPS), pages
288–297, 2003.

[20] D. Kempe, J. Kleinberg, and E. Tardos.
Maximizing the spread of influence through a social
network. In Proceedings of the 9th ACM SIGKDD
international conference on Knowledge discovery
and data mining (KDD), pages 137–146, 2003.

[21] D. Kempe, J. Kleinberg, and E. Tardos.
Influential nodes in a diffusion model for social
networks. In Proceedings of the 32nd International
Colloquium on Automata, Languages and
Programming (ICALP), pages 1127–1138, 2005.

[22] T. Kloks and H. Bodlaender. Approximating
treewidth and pathwidth of some classes of perfect
graphs. In Proceedings of the 3rd International
Symposium on Algorithms And Computation
(ISAAC), pages 116–125, 1992.

[23] R. T. Mikolajczyk and M. Kretzschmar. Collecting
social contact data in the context of disease
transmission: Prospective and retrospective study
designs. Social Networks, 30(2):127–135, 2008.

[24] S. Milgram. The small world problem. Psychology
Today, 2:60–67, 1967.

[25] S. Morris. Contagion. The Review of Economic
Studies, 67(1):57–78, 2000.

[26] E. Mossel and S. Roch. On the submodularity of
influence in social networks. In Proceedings of the
39th annual ACM symposium on Theory of
computing (STOC), pages 128–134, 2007.

[27] R. Pastor-Satorras and A. Vespignani. Epidemic
spreading in scale-free networks. Phys. Rev. Lett.,
86(14):3200–3203, 2001.

[28] D. Peleg. Size bounds for dynamic monopolies.
Discrete Applied Mathematics, 86(2-3):263–273,
1998.

[29] D. Peleg. Local majorities, coalitions and
monopolies in graphs: a review. Theor. Comput.
Sci., 282(2):231–257, 2002.

[30] N. Robertson and P. Seymour. Graph minors. II.
Algorithmic aspects of tree-width. SIAM Journal
of Algorithms, 7:309–322, 1986.

[31] G. Silverman. The secrets of word-of-mouth
marketing. AMACOM New York, 2001.

[32] D. S. Wilson. Levels of selection: An alternative
to individualism in biology and the human sciences.
Social Networks, 11(3):257–272, 1989.

