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Abstract. A classical measure of similarity between strings is the length
of the longest common subsequence(LCS) between the two given strings.
The search for efficient algorithms for finding the LCS has been going
on for more than three decades. To date, all known algorithms may take
near-quadratic time to find large LCS. Since approximating LCS is trivial
in strings over small alphabet, the focus of this paper is on approximating
LCS efficiently in strings over not small alphabet. Also, since sparse LCS
can be found in time polynomially smaller than quadratic, we focus on
efficiently approximating LCS of near linear size. In this paper it is shown
that large LCS can be efficiently approximated in strings with not small
alphabet if the ED is not large. Specifically, if the alphabet is not small
and the ED is not large, LCS of linear size can be approximated to a con-
stant factor! For alphabet of size at least nε, our algorithm complexity is
always O(n2−ε log logn) but can be much better (for some parameters it
is O(n log logn)). Thus, a polynomially smaller than quadratic time al-
gorithm which can find common subsequences of linear size is described
in this paper for the first time. It is also shown that the best parame-
ters for a given pair of strings can be quickly found by looking at local
non-repetitiveness poly-logarithmic size sketches (LNR-sketches) of the
strings.

1 Introduction

Measuring similarity plays an important role in data analysis. As strings are a
common data representation, similarity measures defined on strings are widely
used. A classical measure of similarity between strings is the length of the longest
common subsequence (LCS) between the two given strings. The search for ef-
ficient algorithms for finding the LCS has been going on for more than three
decades. The classical dynamic programming algorithm takes quadratic time [18,
19] and this complexity matches the lower bound in comparison model [1]. Many
other algorithms have been suggested over the years [10, 11, 17, 4, 14, 15, 8] (see
also [9]). However, the state of the art is still not satisfying. To date, all known al-
gorithms may take near-quadratic time to find large LCS. None of the known al-
gorithms can find LCS of linear size in time polynomially smaller than quadratic.



Analysis of large data bases storing very long strings cannot settle with such
methods.

A possible approach is to trade accuracy for speed and employ faster algo-
rithms that approximate the LCS. In fact, for measuring similarity a sufficiently
long common subsequence as an evidence of similarity might be as good as the
LCS itself. Thus, a good approximation of the LCS that can be found fast is
of great importance. Strings over small alphabet have large LCS. Thus, LCS in
strings over small alphabet can be trivially approximated to a factor of 1/|Σ|,
where Σ is the alphabet, by just picking the letter that has the highest joint
frequency. However, when the alphabet of the strings gets larger this approxi-
mation becomes useless. Therefore, the goal is to design efficient algorithms ap-
proximating LCS over strings with not small alphabet. Furthermore, it is known
that sparse LCS can be found quickly. Specifically, if the LCS size is polynomi-
ally smaller than the string size, it can be found by algorithms that take time
polynomially smaller than quadratic [10, 14, 15]. Thus, the focus of this paper
is on efficiently approximating large LCS, typically, LCS of size near linear, in
strings over not small alphabet.

Related Work. LCS is closely related to the edit distance (ED). The edit distance
is the number of insertions, deletions, and substitutions needed to transform one
string into the other. This distance is of key importance in several fields such
as text processing, web search and computational biology, and consequently
computational problems involving ED have been extensively studied. The ED is
the dissimilarity measure corresponding to the LCS similarity measure. The ED
can also be computed by a quadratic time dynamic programming procedure. In
fact, using the methods of Landau and Vishkin [16], ED can be computed in
time max{k2, n}, where k is the bound on ED and n the length of the strings.
Thus, a fast algorithm can find if the ED is small or not. Approximating ED
efficiently has proved to be quite challenging [3]. Currently, the best quasi-linear
time algorithm due to Batu, Ergün and Sahinalp [6], achieves approximation
factor n1/3+o(1), where n is the length of the strings.

Our Results. In this paper it is shown that large LCS can be efficiently approx-
imated in strings with not small alphabet if the ED is not large. Specifically, if
the alphabet is not small and the ED is not large 4, LCS of linear size can be
approximated to a constant factor! For alphabet of size at least nε, our algo-
rithm complexity is always O(n2−ε log log n) but can be much better (for some
parameters it is O(n log log n)). To the best of our knowledge, this is the first
time that a polynomially smaller than quadratic time algorithm which can find
common subsequences of linear size is described. The approximation ratio of our
algorithm depends on the size of the LCS, i.e., it is better as the LCS is longer.
The worst case complexity guarantee of our algorithm depends on the alphabet
size. Table 1 demonstrates the performance of our algorithm for LCS of different

4 the exact bound on the ED depends on the parameters of the strings and would be
quantified below.



sizes. We stress that these are worst case performances also in the sense that
they demonstrate the worst case parameters for given LCS size, alphabet size
and period length, but the true parameters for a given pair of strings can be
much better5. Our method works well for strings A and B where the ED is
o(min{LCS(A,B), n|Σ|t ln t }), where Σ is the alphabet size and t depends on the
periodicity of the input strings (can be of size n in aperiodic strings). The effect
of these parameters is also demonstrated in Table 1.

Table 1. Worst Case Performance of Our Algorithms: Examples

LCS Alphabet Period ED Approximation Complexity
Size Length Ratio

θ(n) θ(n) θ(n) o(n/ lnn) θ(1) O(n log log n)
θ(n) θ(nε) θ(n) o(n/ lnn) θ(1) O(n2−ε log logn)
θ(n) θ(nε) θ(nε) o(nε/ lnn) θ(1) O(n2−ε log logn)

θ(n/ logc n) θ(n) θ(n) o(n/ logc n) θ(1/ logc n) O(n log log n)
θ(n/ logc n) θ(nε) θ(n) o(nε/ lnn) θ(1/ logc n) O(n2−ε log logn)
θ(n/ logc n) θ(nε) θ(nε) o(n/ logc n) θ(1/ logc n) O(n2−ε log logn)

θ(n3/4) θ(n) θ(n) o(n3/4) θ(1/n1/4) O(n log log n)

θ(n3/4) θ(nε) θ(n) o(nε/ lnn) θ(1/n1/4) O(n2−ε log logn)

θ(n3/4) θ(nε) θ(nε) o(n3/4) θ(1/n1/4) O(n2−ε log logn)

Our techniques exploit local non-repetitiveness. We show that strings with
not small alphabet have enough local non-repetitiveness that can be used to sig-
nificantly speed-up approximating LCS. Local non-repetitiveness has been used
in a limited context for approximating ED [5] and for embedding the ED [7].
Our use is much stronger because we show that good parameters of local non-
repetitiveness always exist where not small alphabet is concerned. We also show
that local non-repetitiveness can be efficiently sketched so that the best param-
eters for given two strings can be found by looking at a poly-logarithmic sketch.
Our sketching results may be of independent value.

The paper is organized as follows. Sect. 2 presents basic definitions and
properties. Sect. 3 presents approximation algorithms for the special case of
(1,n/c)-non-repetitive strings, where c is a parameter. In Sect. 4 we show how to
transform strings with not small alphabet into the special case of (1,n/c)-non-
repetitive strings. Our transformation has the strong property of having only
an additive negligible distortion, if ED = o(min{LCS(A,B), n|Σ|t ln t }). Finally, in
Sect. 5 we show that the best parameters for a given pair of strings can be
quickly found by looking at local non-repetitiveness sketches (LNR-sketches) of
the strings. It is shown that our LNR-sketch size matches the lower bound, and a
lower bound on the space needed by a LNR-sketching algorithm in the streaming
model is also given.

5 The true parameters are determined by the strong non-repetitiveness (to be defined
below) parameters of the strings.



2 Preliminaries

In this section we give basic definitions and properties.

Problem Definition. Let A and B two n length strings over alphabet Σ. The
longest common subsequence problem is to find the longest subsequence, denoted
by LCS(A,B), appearing in both A and B. We will abuse notation throughout
the paper by letting LCS(A,B) denote both the longest common subsequence
and its length. It will be clear from the context which is referred to. The well-
known Property 1 specifies the relation between the LCS and ED.

Property 1. Let A, B be two strings of length n, then

n− LCS(A,B) ≤ ED(A,B) ≤ 2 · (n− LCS(A,B)).

Definition 1. Let S be a string of length n. S is called periodic if S = P iP ′,
where P is a substring of S such that |P | ≤ n/2, and P ′ is a prefix of P . The
smallest such substring P is called the period of S. If S is not periodic it is
called aperiodic.

Definition 2. (Locally non-repetitive strings). A string S is called (t, w)-
non-repetitive if every w successive t-substrings in S are distinct, i.e. for each
interval {i, . . . , i+w− 1}, the w substrings of length t that start in this interval
are distinct.

Definition 3. (Locally strongly non-repetitive strings). A string S is
called (t, w, d)-non-repetitive if for each interval {i, . . . , i + w − 1} every pair
of t-substrings si, sj in S starting in this interval have H(si, sj) ≥ d, where
H(si, sj) is the hamming distance between si and sj (i.e. the number of indices
in which si differ from sj).

Remark. Throughout the paper we refer to a wrap-around of the given string S,
i.e. indices are taken modulo n, the length of the string. Thus, all t-substrings are
well-defined for every t. If S is periodic then the wrap-around while continuing
the period from the point it is cut.

2.1 Properties of Locally Non-Repetitive Strings

Property 2. Let S be a (t, w)-non-repetitive string, then:

1. S is a (t′, w)-non-repetitive string, for every t′ > t.
2. S is a (t, w′)-non-repetitive string, for every w′ < w.

Property 3. Let S be a string of length n, then:

1. If S is a periodic string with period p then S is a (p, p)-non-repetitive string.
2. If S is aperiodic then S is a (n,w)-non-repetitive string, where n/2 ≤ w ≤ n.



Lemma 1. Let S be a string of length n over alphabet Σ with period length p
(p ≥ |Σ), then S is a (p, |Σ|/2, |Σ|/2)-non-repetitive string. If S is aperiodic
then S is a (n, |Σ|/2, |Σ|/2)-non-repetitive string.

Proof. We prove the lemma for a periodic string with period length p. The proof
for aperiodic string is similar by Property 3. Let si be any p-substring in S, and
consider the p-substring si+j for any 0 < j < |Σ|/2. It is sufficient to show that
H(sj , si+j) ≥ |Σ|/2. Let x1, . . . , x|Σ| be the first appearances of the symbols of
Σ in si. We claim that H(sj , si+j) ≥ |Σ| − j, because each xk, j + 1 ≤ k ≤ |Σ|,
adds at least one mismatch to H(sj , si+j). The lemma follows.

3 Approximating LCS in (1,n/c)-Non-Repetitive Strings

In this section we present efficient algorithms to approximate the LCS if both
strings are (1,n/c)-non-repetitive strings. The algorithms framework is based
on the observation that a (1,n/c)-non-repetitive string for small values of pa-
rameter c is sufficiently close to being a permutation string (i.e., a string with
distinct characters). Finding the LCS in n-length permutation strings is actually
finding the Longest Increasing Subsequence (LIS) of a string over the alphabet
{1, . . . , n}, which can be done fast.

3.1 θ(1/c)-Approximation Algorithm

The algorithm first divides both input strings A and B into c blocks of size
O(n/c). Since A and B are (1,n/c)-non-repetitive, each of their blocks is a per-
mutation string. Therefore, the LCS between any block of A and any block of B
can be found fast using the LIS algorithm. Our algorithm exploits this fact by
finding the LIS between all c2 pairs of block of A and block of B, and chooses
the pair with the best score. A detailed description of the algorithm is given in
Fig. 1. Lemma 3 and Corollary 1 assure the approximation ratio of this algo-
rithm. Lemma 2 gives its complexity guarantee. Theorem 1 follows.

Algorithm Approx1LCS
Input: Two strings A, B of length n, a parameter c
1 divide A, B into c blocks of size O(n/c).
2 for each pair of blocks Ai, Bj do
3 transform into blocks A′i, B

′
j containing only the joint alphabet symbols.

4 `i,j ← LIS(A′i, B
′
j)

5 Lalg ← max `i,j
Output:
6 Lalg

Fig. 1. θ(1/c)-Approximation Algorithm for LCS in (1,n/c)-Non-Repetitive Strings.



Lemma 2. Algorithm Approx1LCS runs in O(cn log log(n/c) + c2) steps.

Proof. It is a well-known fact that LIS can be computed in (n log log n) time for
n-length strings. Algorithm Approx1LCS computes c2 times LIS on strings of
size n/c, for a total time of O(cn log log(n/c)) for steps 2-4. Step 5 takes another
c2 steps.

Lemma 3. Let A and B be two strings of length n, then there exists a pair of
blocks Ai, Bj such that li,j ≥ θ(1/c) · LCS(A,B).

Proof. Denote LCS(A,B) = Opt. For every i, j denote by LCS(Aj , Bj) the
number of matchesOpt has between blocksAi andBj . Clearly, `i,j ≥ LCS(Aj , Bj).
We now claim that there exists a pair i, j such that LCS(Ai, Bj) ≥ Opt

2e·c .
Let αi denote the number of matches Opt = Opt0 has in block Ai. Let k = 0,

i = 1, j = 1, A(0) = A, B(0) = B and α
(0)
i = αi. Consider the following process:

1. Consider the block Ai. If α(k)
i < Optk

2c throw the block Ai and let i be i+ 1.
Throw from each of the blocks in B(k) the matches Optk has with Ai to form
B(k+1). Since only α(k)

i matches were thrown,Optk+1 = LCS(A(k), B(k+1)) ≥
(1− 1

2c )Optk.
2. Denote the matches of Optk+1 within block Bj by β(k+1)

j . If β(k+1)
j < Optk+1

2c
throw the block Bj and let j be j + 1. Now throw from each of the blocks
in A(k) the matches Optk+1 has with Bj to form A(k+1). Since only β

(k)
j

matches were thrown, Optk+2 = LCS(A(k+1), B(k+1)) ≥ (1 − 1
2c )Optk+1.

Denote the matches of Optk+2 within block Ai by α(k+2)
i .

Repeat the process k times where in each time exactly one block is thrown
until the first blocks Ai, Bj such that each has ≥ Optk

2c matches, and therefore
LCS(Ai, Bj) ≥ Optk

2c ≥
Opt
2c · (1 −

1
2c )

k ≥ Opt
2e·c , or there are no more blocks to

throw. Since the total number of blocks is 2c, in the second case, the process
stops with Opt2c ≥ Opt · (1− 1

2c )
2c ≥ Opt ·e−1, which cannot happen. Therefore,

we must have stopped in the first case. The lemma then follows.

Corollary 1. The approximation ratio of algorithm Approx1LCS is θ(1/c).

Theorem 1. Let A,B be two (1,n/c)-non-repetitive strings then LCS(A,B) can
be approximated to a factor of θ(1/c) in O(c · n log log(n/c) + c2) steps.

3.2 θ(k/c)-Approximation Algorithm

The θ(1/c) approximation ratio of algorithm ApproxLCS1 is quite well if c
is constant. However, as c grows it gets worse. In fact, for c =

√
n it gives

nothing but a trivial approximation. We thus give another algorithm with the
same framework as algorithm ApproxLCS1, in which additional work is done
(but asymptotically takes the same time) in order to improve the approximation
ratio. This new algorithm does not choose only one pair of blocks with best



score, but rather gather a legal sequence of pair of blocks with total best score.
A legal sequence does not contain crossing pairs. Clearly, any legal sequence
defines a common subsequence of A and B. Fortunately, such a legal sequence
of pairs can be found by a dynamic programming procedure in O(c2) time. A
detailed description of the algorithm is given in Fig. 2. Lemma 5 assures the
approximation ratio of this algorithm. Lemma 4 gives its complexity guarantee.
Theorem 2 follows.

Algorithm Approx2LCS
Input: Two strings A, B of length n, a parameter c
1 divide A, B into c blocks of size O(n/c).
2 for each pair of blocks Ai, Bj do
3 transform into blocks A′i, B

′
j containing only the joint alphabet symbols.

4 `i,j ← LIS(A′i, B
′
j)

5 construct a weighted bipartite graph G =< V 1 ∪ V 2, E > with weight function
W : E → N , where:
V 1 = {i | Ai is a block in A}
V 2 = {j | Bj is a block in B}
E = {(i, j) | i ∈ V 1 and j ∈ V 2}
W (i, j) = `i,j

6 Lalg ←MaximumWeightLegalSequence(G,W )
Output:
7 Lalg

Fig. 2. θ(k/c)-Approximation Algorithm for LCS ≥ kn/c in (1,n/c)-Non-Repetitive
Strings.

Lemma 4. Algorithm Approx2LCS runs in O(cn log log(n/c) + c2) steps.

Proof. Lines 1-4 of the algorithm are identical to algorithm Approx1LCS and
therefore cost O(cn log log(n/c)) steps as computed in Lemma 2’s proof. The
graph construction in Line 5 can be done in time linear with its size. Since the
graph has 2c vertices and c2 edges, line 5 can be computed in O(c2) steps. The
maximum weighted legal sequence computation in line 6 can be done in O(c2)
steps (linear in the size of the graph) by using a simple dynamic programming
procedure based on the following recursion relation:

OPT (i, j) = min{w(i, j) +OPT (i− 1, j − 1), OPT (i, j − 1), OPT (i− 1, j)},

where OPT (i, j) is the maximum weighted legal sequence defined on the sub-
graph containing only vertices {i′ ∈ V 1 |ı′ ≤ i} and {j′ ∈ V 2 | j′ ≤ j}. The
dynamic programming table is computed row, column, alternately. Since, by the
recursion relation each cell can be computed in O(1) time, the overall computa-
tion takes O(c2). The lemma follows.



Lemma 5. Algorithm Approx2LCS approximates LCS(A,B) ≥ kn/c to a fac-
tor of θ(k/c).

Proof. Let A1, . . . , Ar be the blocks in A that participate in LCS(A,B) and let
α1, . . . , αr be the fraction (of n) that each of them contributes to LCS(A,B),
respectively. Since each block is of size n/c, ∀i, αi ≤ 1/c. Also, Opt =

∑
αi ≥

k/c. For each block Ai let ki be the number of blocks in B that participate in
the matches of LCS(A,B). Since there are c blocks in B and the matches do
not cross,

∑
ki ≤ c. Note that Lalg ≥

∑
αi/ki, because the algorithm chooses

the longest path, therefore, for each block Ai at least the average contribution
αi/ki is taken by the algorithm.

Split the set of blocks in A into two sets, the set X of blocks for which
ki > 2c/k, and the rest of the blocks.

Claim 1.
∑
Ai∈X αi ≤

Opt
2 .

Since |X| ≤
∑
ki/

2c
k ≤

k
2 , and therefore,

∑
Ai∈X αi ≤

k
2 ·

1
c ≤

Opt
2 .

Claim 2. Lalg ≥ k
4c ·Opt.

Since Lalg ≥
∑
αi/ki ≥

∑
Ai /∈X αi/ki ≤

k
2c

∑
Ai /∈X αi, and by Claim 1 this

is at least k
2c ·

Opt
2 .

The lemma then follows.

Theorem 2. Let A,B be two (1,n/c)-non-repetitive strings then LCS(A,B) ≥
kn/c can be approximated to a factor of θ(k/c) in O(c ·n log log(n/c)+c2) steps.

4 Approximating Large LCS in Strings with Not Small
Alphabet

By Lemma 1, not small alphabet assures a large enough parameter w of local
strong non-repetitiveness. We will exploit this to define a transformation to
(1,n/c)-non-repetitive strings, for which the solutions of Sect. 3 are applicable.
This transformation has the strong property of having only an additive negligible
distortion, if the LCS is large and the ED is not large (the term ”large” would be
quantified below). Thus, it enables approximating large LCS in general strings
having not small alphabet with effectively the same approximation ratio as the
algorithms for (1,n/c)-non-repetitive strings, provided that the ED is not large.
For clarity of exposition, a simple idea of a transformation that may have an
unbearable distortion is described first. After analyzing its weaknesses it is shown
how these can be overcome by defining an efficient randomized transformation.

A Naive Transformation. The idea is to exploit the property that every n length
string S over alphabet Σ is a (t, w)-non-repetitive string for some |Σ| ≤ t ≤ n,
|Σ| ≤ w ≤ n. Each new t-substring defines a new symbol (overall, a linear
number of new symbols). This transformation yields a (1,n/c)-non-repetitive



string where c ≤ 2n
|Σ| , and since |Σ| is not small the algorithms of Sect. 3 are

efficient.
We now analyze the distortion of this transformation. Given the original

n-length strings A and B, denote by A′, B′ the strings after the transfor-
mation. Clearly, LCS(A′, B′) ≤ LCS(A,B) because positions with different
symbols remain different. Also, each of the n − LCS(A,B) symbols that do
not participate in LCS(A,B) affects only t substrings, thus, LCS(A′, B′) ≥
n − t(n − LCS(A,B)) = LCS(A,B) − (t − 1)(n − LCS(A,B)). By Property 1
we get LCS(A′, B′) ≥ LCS(A,B)− t−1

2 · ED(A,B). Thus, this transformation
has an additive distortion affected both by t and ED(A,B), which can both be
Ω(n)!

The Randomized Transformation. Fix a random binary vector v of length t− 1,
where each coordinate is 1 with probability 2d ln t

|Σ| for a constant d > 2, and
0 otherwise. Note that v is well defined for not small alphabet, since Σ ≥ nε

and t ≤ n/2, thus, 2d ln t
|Σ| = o(1). Given an n-length string S over alphabet Σ

define f(S) as follows. Each location i is given a symbol σ(i) which identifies the
string Si, Si1 , . . . , Sik , where Si1 , . . . , Sik are the locations in the (t−1)-substring
starting at position i+ 1 in S for which the corresponding coordinates in v are
1.

Lemma 6. Let S be a string over alphabet Σ then, there exists a parameter t,
|Σ| ≤ t ≤ n such that f(S) is (1, |Σ|/2)-non-repetitive string with probability at
least 1− 1/td−2.

Proof. By Lemma 1, there exists a t, |Σ| ≤ t ≤ n, such that S is a (t, |Σ|/2, |Σ|/2)-
non-repetitive string. Let i, j be any indices in S such that |i − j| < |Σ|/2,
and let si be the t-substring starting at position i in S. By Lemma 1 we have
H(si, sj) ≥ |Σ|/2. We first claim that

Prob[H(f(si), f(sj)) = 0] ≤ 1/td.

This is because Prob[H(f(si), f(sj)) = 0] = (1− 2d ln t
|Σ| )|Σ|/2, if non of the |Σ|/2

coordinates in which si and sj differ are chosen. Thus, by the union bound

Prob[∃i, j|H(f(si), f(sj)) = 0] ≤ 1/td−2.

The lemma follows.

Lemma 7. Let A, B be n-length strings over alphabet Σ, then

LCS(f(A), f(B)) ≥ LCS(A,B)− d(t− 1) ln t
|Σ|

· ED(A,B)

Proof. First note that LCS(A,B) ≥ LCS(f(A), f(B), because positions with
different symbols in A and B remain different in f(A) and f(B). We now bound
the contraction factor of f . Since by the definition of the randomized trans-
formation f the first symbol of the i-th t-substring is always taken and the



rest i + 1, . . . , i + t − 1 locations of the i-th t-substring are taken with prob-
ability 2d ln t

|Σ| for a constant d > 2, we have: LCS(f(A), f(B)) ≥ n − (1 +
2(t−1)d ln t
|Σ| )(n − LCS(A,B)) = LCS(A,B) − 2(t−1)d ln t

|Σ| · (n − LCS(A,B)) ≥
LCS(A,B) − d(t−1) ln t

|Σ| · ED(A,B), where the last inequality is due to Prop-
erty 1.

Thus, if ED = o(min{LCS(A,B), n|Σ|t ln t }), this transformation has an additive
negligible distortion. Theorem 3 follows.

Theorem 3. Let A,B be two strings over alphabet Σ. Then, there exists a pa-
rameter t, |Σ| ≤ t ≤ n, such that if ED(A,B) = o(min{LCS(A,B), n|Σ|t ln t }), any
algorithm approximating LCS(f(A), f(B)) to a factor of α in O(β(n)) steps,
can be used to approximate LCS(A,B) to a factor of α+ o(1) in O(β(n)) steps.

5 Sketching Local Non-Repetitiveness

In this section we show that the best w and t parameters for a given pair of
strings can be quickly found by looking at local non-repetitiveness sketches
(LNR-sketches) of the strings. We construct a local non-repetitiveness sketch of
size O(log2 n) which gives the exact parameter w for which the best t parameter
is approximated to a factor of 2. A construction of local strong non-repetitiveness
(LSNR-sketch) is also described. We also show that our LNR-sketch size matches
the lower bound. A lower bound on the space needed by a LNR-sketching algo-
rithm in the streaming model is also given.

5.1 The LNR-Sketching Algorithms

If both t and w are given in advance, a trivial sketch of one bit can be built.
Simply, keep the one bit answer of the check if S is a (t, w)-non-repetitive string.
This check can obviously be done in time O(tn), and therefore the sketching
algorithm is efficient (i.e., has a polynomial time complexity). In the sequel, we
assume that the t and w parameters are unknown when the sketching is done,
which is the interesting case. We explain the algorithms for a given t parameter,
and then use them for the case that t is not given.

Sketching with a Given t. The sketching algorithms are based on finding the
minimum distance between any repeating t-substrings. This distance is returned
as the w parameter. The correctness of this returned value is ensured by Prop-
erty 2. The number of bits needed to store this value is O(log n). Finding the
minimum distance between any repeating t-substrings can be found either by
a O(n log2 t) time deterministic algorithm or by a O(n) time randomized al-
gorithm. The deterministic algorithm uses a renaming process as in the string
matching algorithm of Karp-Miller-Rosenberg [12]. It is usually assumed, for
convenience, that t is a power of 2. This assumption can be removed by using
standard splitting techniques, while adding only aO(log t) factor to theO(n log t)



complexity. The randomized algorithm uses the Rabin-Karp string matching al-
gorithm [13] to produce a distinct polynomial representing each t-substring with
high probability. In both the deterministic and the randomized algorithm after
the ”names” representing the n t-substrings are determined all is needed is a
linear scan to find the minimum distance between repeating ”names”.

Sketching with Unknown t. In order to have the w for every t, we find the exact
parameter w for every t = 2i, 0 ≤ i ≤ log n. For each such t we use the algorithms
described above for a given t. Since we only do that for O(log n) values of t, and
for each the sketch size is O(log n) we get a total O(log2 n) sketch size. For each
value t , the w parameter is the one stored for the closest power of two that is
less than or equal to t. The correctness of this value is ensured by Property 2.

Theorem 4. Let A, B be n length strings, then, there exist (almost) linear
algorithms giving LNR-sketch of size O(log2 n) enabling finding the maximum w
and approximating to a factor of 2 the minimum t for which A and B are both
(t, w)-non-repetitive.

5.2 Sketching Locally Strong Non-Repetitiveness

The transformation from general strings to (1,n/c)-non-repetitive strings de-
scribed in Sect. 4 requires a locally strong non-repetitiveness, which is not de-
tected by the algorithms described in Sect. 5.1. Nevertheless, in this section we
show that the ideas of the sketching algorithms described in Sect. 5.1 can be used
also for this case. To this end, the substrings as defined by the binary vector v,
are considered. Observe that both the deterministic and randomized sketching
algorithms described in Sect. 5.1 work as well for non-contiguous strings. Such
non-standard use of the KMR algorithm also appears in [2]. Note that the binary
vector v depends only on Σ and t and is independent of S. Thus, the definition
of the vector can be done in the sketching time. Also, note that in order to be
able to compare any two strings (with possibly different size of joint alphabet
and different t parameter) we must define a v vector for each possible pair. To
cover all possible values of Σ, for each t a power of two, O(log2 n) vectors v (for
each Σ a power of two and t a power of two) are computed. Once a specific
vector v is defined, the sketch for non-repetitiveness can be done as explained in
Sect. 5.1. Since O(log2 n) sketches of size O(log n) are used Theorem 5 follows.

Theorem 5. Let A, B be n length strings over alphabet Σ, then, there exist
(almost) linear algorithms giving LSNR-sketch of size O(log3 n) enabling finding
the maximum w and approximating to a factor of 2 the minimum t for which A
and B are both (t, w, d)-non-repetitive, where d ≥ Σ/2.

5.3 The Lower Bound on LNR-Sketch size

Note that the w parameter as a function of t is a nondecreasing monotone
function that take values on the range {1, . . . , n}. We show a feasible set of



monotone sequences, i.e., monotone sequences that represent w as a function of
t for some string. The size of this set gives a lower bound on the number of bits
needed to represent a LNR-sketch.

Lemma 8. The size of the feasible set is at least ( n
logn )logn.

Proof. First, observe that the following is a feasible set of sequences. Divide the
range {1, . . . , n} into n/ log n blocks. In each block choose one point to be the
value of w for all t values in the block range. The number of different sequences
in this set is (n/ log n)logn.

The next theorem is an immediate corollary of Lemma 8.

Theorem 6. Any LNR-sketch of n-length string requires Ω(log2 n) bits.

5.4 A Ω(n/ logn) Space Lower Bound of LNR-Sketching
Algorithms in Streaming Model

We now show that LNR-sketch cannot be done in streaming model. Consider
the following one-round two-party communication setting for the problem. Alice
has a string S1 of length n and Bob has a string S2 of length n. Alice and Bob
should decide whether there exists a t-substring in S1 repeating in S2 while Alice
may pass at most k bits to Bob. We call this setting the repeating t-substring
problem. The next lemma shows that k = Ω(n). Theorem 7 follows.

Lemma 9. The repeating t-substring problem requires passing Ω(n) bits.

Proof. We show that the following instance of the repeating t-substring problem:
S1 is π1 ∈ Sn and S2 is π2 ∈ Sn, requires passing Ω(n) bits. Consider the boolean
matrix for all possible pairs < π1, π2 >∈ Sn × Sn, representing wether or not a
t-substring in π1 appears in π2. The k bits that are passed from Alice to Bob
divide this matrix into 2k parts that can be separated using the k passed bits.
However, within each part the passed bits give no separating information. Thus,
the matrix entrance within each part must depend solely on π2. Therefore, in
each part the matrix rows within each column must be all zeroes or all ones.
The number of permutations for which there exists a repeating t-substring, i.e.
the number of columns for which all rows are 1, is: n · n · (n − t)!. Since the
matrix is divided into 2k parts there exists a part with 1/2k-fraction of the
total number of permutations. Thus, 2k ≥ n!

n·n·(n−t)! ≈
(n/e)n

((n−t)/e)(n−t) . Therefore,
k ≥ n log n − (n − t) log(n − t) + t log e = Ω(n) (because if t ≤ n/2 then the
n log n term is dominant, otherwise the O(t) term is Ω(n)).

Theorem 7. Any LNR-sketching deterministic algorithm in streaming model
requires Ω(n/ log n) space.
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