Conditional Regularity and Efficient testing of bipartite graph properties

> Ilan Newman Haifa University

Based on work with Eldar Fischer and Noga Alon Let F be a graph property that is defined by a finite collection of forbidden induced graphs {F₁,...}, each on at most k vertices.

Def: For two (bipartite) graphs G,H on the same set of n vertices, we say that G is ϵ -far from H if $|E(G) \Delta E(H)| > \epsilon n^2$

Def: G is ε -far from F if it is ε -far form any H that has F. Thm [AFKS99] If G (large enough) is ε -far from F then δ -fraction of its random induced subgraphs of size k are members of F.

Caveat: $\delta = \delta(\varepsilon, k) = 1/tower(tower(1/\varepsilon)).$

Best upper bound on δ is (ϵ)^{$\Omega(log(1/\epsilon))$} [Alon02, Alon Shapira 03]

Our Goal: find a 'more efficient' version for bipartite graphs.

Main Result

Thm1 If a bipartite G (large enough) is ε -far from F then δ -fraction of its random induced subgraphs of size k are members of F.

Here $\delta = \delta(\varepsilon, k) = poly(1/\varepsilon)$.

- A,B disjoint set of vertices, density(A,B) = e(A,B)/|A||B|.
- (A,B) has density < δ or at least 1- δ , then (A,B) is $\delta^{1/3}$ - regular (in the Szemerédi sense). We call such a pair δ -homogeneous.
- Regularity Lemma: there exists a partition to O(1) sets in which most pairs are regular But, can not expect strong regularity as above (e.g for a random graph in G(n,1/2)).
- We show that under some condition this is possible for bipartite graphs (and with very efficient partitions).

We move to 0/1, nxn matrices instead of bipartite graphs.

- Partitions: An r-partition of M is a partition of its row set into r' < r parts and column set into r" < r parts.
- Blocks: A subset of rows R', and subset of columns C' of M define a block (pair in graph), which will be denoted by (R',C').

M:

Note: the partition is not necessarily into equal size parts !!

Def: The weight of a block (R',C') is $|R'||C'|/n^2$

Def:

Let M be a 0/1, nxn matrix with an r-partition of M, P. P is said to be (δ, r) -partition if the total weight of δ -homogeneous blocks is at least 1- δ .

Note: such a *P* is a regular partition.

Thm2: For every k, $\delta >0$ and matrix M (large enough) either:

- M has a (δ ,r)-partition with r < (k/ δ)^{O(k)} OR,
- For every k x k, 0/1 matrix B, at least $g(\delta,k) = (k/\delta)^{O(k^{*}2)}$ -fraction of the k x k matrices of M are B.

Proof of the conditional regularity

Definition:

- For two vectors $u,v \in \{0,1\}^n$ (e.g two rows or two columns) denote $\mu(u,v) = hamming(u,v)/n$.
- An r-partition of the rows of M, $\{V_0, V_1, \dots, V_s\}$ is a (δ, r) -clustering if s< r, $|V_0| < \delta n$ and for every i=1,...,s if $u, v \in V_i$ then $\mu(u, v) < \delta$.

Claim: A (δ ,r)-partition defines a ($4\delta^{1/3}$,r)clustering of the rows.

Claim: The inverse (with different parameters) is also true.

Proof cont.
Let T = (10k)^{2k}. Let F be a fixed k × k matrix.
Want to show that if the columns of M cannot be
(δ,T)-clustered then a random k × k matrix of M is F with 'high probability.

• Chose a random set of columns S (with repetitions) of size 5T/ δ . We will chose a random set of 10k rows. Show that this submatrix contains (at least one copy of) F.

Claim 1: 5 contains T columns of pairwise distance at least $0.5 \delta n$.

Simply by sequentially picking the ith column if its distance is at least $0.5 \delta n$ form all previously picked columns.

This could be done for T steps as there is no (δ,T) -clustering of col.

Claim 2: Assume that S' is a set of T columns of pairwise distance at least $0.5 \delta n$.

Then if we chose a set R of 10k rows independently, at random. The projections of S'on R are distinct with high prob.

Proof: For a random row and two columns c_1 , c_2 in *S'*, Prob($c_1[r] = c_2[r]$) < $1 - \delta/2$.

Thus, c_1, c_2 have the same projection on R with probability < $(1 - \delta/2)^{10k}$.

Hence, expected number of 'bad pairs' is at most

$$\binom{T}{2} \left(1 - \frac{\delta}{2}\right)^{10k} < 0.1$$

Lemma: Every (10k) x T matrix with no two identical columns contains every possible k x k submatrix.

Proof: let t=10k, T=t^{2k}

Open Problems and comments

 Can there be an 'efficient' 'conditional regularity' version for general graphs ?
 By Gowers this cannot be a 'syntactical' generalization of the result here.

If all forbidden subgraphs are bipartite the result here holds even for general graphs.

- Assume that G is ε -far from being triangle free (that is: need to delete at least $\varepsilon n^2/2$ edges to cancel all triangles). Does G contain $2^{-O(1/\varepsilon)} n^3$ triangles ?
- What happens in higher dimesions?