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Abstract

We study a model of graph related formulae that we call the Constraint-Graph model. A constraint-
graph is a labeled multi-graph (a graph where loops and parallel edges are allowed), where each edge e
is labeled by a distinct Boolean variable and every vertex is associate with a Boolean function over the
variables that label its adjacent edges. A Boolean assignment to the variables satisfies the constraint
graph if it satisfies every vertex function. We associate with a constraint-graph G the property of all
assignments satisfying G, denoted SAT (G).

We show that the above model is quite general. That is, for every property of strings P there exists
a property of constraint-graphs PG such that P is testable using q queries iff PG is thus testable. In
addition, we present a large family of constraint-graphs for which SAT (G) is testable with constant
number of queries. As an implication of this, we infer the testability of some edge coloring problems
(e.g. the property of two coloring of the edges in which every node is adjacent to at least one vertex of
each color). Another implication is that every property of Boolean strings that can be represented by a
Read-twice CNF formula is testable. We note that this is the best possible in terms of the number of
occurrences of every variable in a formula.

1 Introduction

Property Testing considers the following relaxation of standard decision problems: given a property P
of some combinatorial structures, one wants to decide whether a given instance (structure) S has the
property P or it is ε-far from having the property. By ε-far we mean that at least an ε-fraction of the
representation of S should be modified in order to make S satisfy P. The goal in property testing is to
design randomized algorithms which read a very small portion of the input and distinguish between the
above two cases. Such algorithms are called property tests. Blum, Luby and Rubinfeld [2] were the first to
formulate a question of this type. The general notion of property testing was first formulated by Rubinfeld
and Sudan [9], who studied various algebraic properties such as linearity of functions. For detailed surveys
on the subject see [4, 6, 8]. We use the formal framework of Combinatorial Property Testing as defined by
Goldreich Goldwasser and Ron [6].

In this paper we focus on properties of constraint-graphs. A constraint-graph is a labeled multi-graph
(a graph where loops and parallel edges are allowed), where each edge e is labeled by a distinct Boolean
variable and every vertex is associate with a Boolean function over the variables that label its adjacent
edges 1. A Boolean assignment to the variables satisfies the constraint graph if it satisfies every vertex
function. We associate with a constraint-graph G the property of all assignments satisfying G, denoted
SAT (G).
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Every Boolean function has a representation as a Constraint-Graph. Our aim is to use the Constraint-
Graph model in order to identify wide classes of testable properties. The approach we use towards this
goal is to examine classes of constraint-graphs defined by certain conditions on the underlying graph and
on the functions that label the vertices.

We present a wide family of constraint-graphs, denoted by LD3, such that SAT (G) is testable for every
G ∈ LD3. A constraint graph is in LD3 if for every vertex v with degree at least 3, the hamming distance
between any two assignments not satisfying fv is at least 3. We show that this result is best possible in
these terms; it can be shown that if the bound on the hamming distance is decreased from 3 to 2 then the
set of constraint-graphs that is obtained is almost as general as the set of all constraint-graphs.

This result has a number of immediate consequences asserting the testability of certain natural prop-
erties. For example, the edge-coloring property in which every vertex is adjacent to at least two different
colored edges is testable (for every graph).

Another more general implication is that for every read-twice CNF formula2 θ, the property of all
assignments satisfying θ is testable.

A natural question is whether this can be extended to read-3-times CNF formulae. The answer to
this question is negative. Ben-Sasson et al. showed in [1] that there exists an infinite family of 3-CNF
formulae such that the property SAT (θ) (the property of all satisfying assignments of θ) has linear query
complexity. This result implies, in turn, that there exists a corresponding non-testable infinite family of
read-3-Times 3-CNF formulae (requiring, in fact, linear query complexity). It should be noted that even
if we restrict ourselves to read-3-times 2-CNF formulae the answer remains negative due to a construction
by Fischer et al. [5]. Thus the testability result for read-twice CNF formula is the best possible in this
respect.

The constraint-graph model can be extended in many natural ways. One may allow variables and
functions over domains that are not necessarily Boolean. It also has other interesting interpretations for
the Boolean case; One may interpret the value assigned to an edge as an orientation of the edge. That is 1
implies that the edge is oriented in a certain predetermined direction and 0 in the opposite direction. Thus,
a property of assignments to a constraint-graphs can be viewed as a property of orientations of the edges.
One, such natural property is the property of being Eulerian. Properties of orientations are by themselves
an interesting line of research. For example, the query complexity of natural orientation properties such
as strongly connected, acyclic etc. is still open.

Organization. In Section 2 we formally define the model of constraint-graphs and the set LD3. In
Section 3 we present the results, the proofs to some, and a number of applications of the main result.
Section 4 contains the main tools required in order to prove our main result and a proof of a weaker
version of that result. Finally in Section 5 we prove the main result.

2 Preliminaries

In this work we consider properties that are subsets of {0, 1}n. Following [6], an ε-test for a property P is
a randomized algorithm that given a distance parameter ε and oracle access to individual locations in the
input string, can distinguish with high probability (say 2/3) between strings satisfying P and those that
are ε-far from satisfying it. The query complexity q(ε, n) is defined as the maximum number of queries
that the algorithm makes on any length n input. An (ε, q(ε, n))-test is an ε-test that on input of length n
uses at most q(ε, n) queries.

A Property P is said to be testable if it has a q(ε, n)-test (for any ε > 0) for which q(ε, n) can be
bounded from above by a function that depends only on ε (and independent of n). We say that a test for
a property has one-sided error if it always accepts every input in the property. If the test may err in both
directions then it is said to have two-sided error. A test is adaptive if its queries depend on the answers to

2in a read-twice formula every variable appears at most twice
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previous queries, and non-adaptive otherwise (that is, if the queries that the test makes are only based on
the internal random coins of the test).
Remark: In this paper all upper bounds on the query complexity are proven for the one-sided error
non-adaptive case and all lower bounds are shown for two-sided error adaptive tests.

We now formally present the notion of constraint-graphs.

Definition 2.1. [Constraint-Graph] A constraint-graph is a labeled multi-graph G = (V (G), E(G),F)
in which

• (V (G), E(G)) is an undirected multi-graph (may contain parallel edges and loops), and is called the
underlying graph.

• Each edge e ∈ E(G) is associated with a distinct Boolean variable xe. We sometimes identify between
an edge e ∈ E(G) and the Boolean variable associated with it.

• Each vertex v ∈ V (G) is labeled by a Boolean function fv over the variables associated with the edges
adjacent to v. We set F = {fv}v∈V (G).

2.1 Assignments and Constraint-graphs

From here on by a graph we mean a constraint-graph (unless stated otherwise). For a vertex v, Ev denotes
the set of edges adjacent to v, and degG(v) denotes its degree. We denote by BG(v, r) the induced subgraph
in G that contains all vertices that are at distance at most r from v.

An assignment to E(G) is a mapping σ : E(G) −→ {0, 1}. We denote by σ(e) the value assigned to e.
We say that an assignment σ satisfies v if fv(σ) = 1. We say that σ satisfies G if it satisfies every vertex
in G. We denote by UNSATG(σ) the set of all vertices v ∈ V (G) that are not satisfied by σ. Let ∆G(σ)
be the minimum degree of a vertex in UNSATG(σ).

We associate with the graph G the property SAT(G) that contains all the satisfying assignments of
G. For a formula θ we associate with θ the property SAT (θ) that contains all assignments satisfying θ.
Thus, for a constraint graph G, SAT (G) = SAT (φG), where φG ≡ ∧v∈V (G)fv over the variables E(G).

Given two assignments σ1 and σ2 for E(G), the distance between σ1 and σ2, denoted dist(σ1, σ2), is
the hamming distance between σ1 and σ2. The distance between an assignment σ and a property SAT (G),
denoted dist(σ, SAT (G)), is the minimum distance between σ and an assignment in SAT (G). We say
that an assignment σ is ε-far from SAT (G) if its distance from SAT (G) is at least ε · |E(G)| and ε-close
otherwise.

2.2 The Hierarchy LDi

Given a vertex v and two assignments σ1, σ2 to E(G), the local distance at v, denoted by ldistG,v(σ1, σ2),
is the number of edges e ∈ Ev for which σ1(e) 6= σ2(e), where loops are counted twice.

Definition 2.2. Let LDi be the set of graphs G such that for every two assignments σ1, σ2 and every
vertex v with degG(v) ≥ 3, if σ1, σ2 do not satisfy fv then either σ1(Ev) = σ2(Ev) or ldistv(σ1, σ2) ≥ i.

Remark: We omit G from the subscript of the various symbols when the graph is clear from the context.

3 Results and Applications

We first observe that the Constraint-graph model is a general model in the following sense.

Proposition 3.1. For every Boolean function θ there exists a constraint-graph G such that θ ≡ φG.

Proof. Let G be a star with n leaves in which the center is labeled by θ, the n edges are the labeled by the
distinct n variables of θ, and the leaves are associated with the constant 1-function.
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In [1] the authors show that there exists family of 3-CNF formulae that are highly non-testable.

Theorem 3.2. [a] There exist ε > 0 and a 3-CNF formula φ on n variables (for every n large enough)
for which every two-sided error ε-test makes Ω(n) queries.

Corollary 3.3. There exist ε > 0 and a constraint graph G with n edges (for every large enough n) for
which every two-sided error ε-test for SAT (G) makes Ω(n) queries.

The following claim enables us to prove an even stronger result.

Claim 3.4. For every k-CNF formula θ on n variables, where k ≥ 2, there is a read-3-times k-CNF
formula η such that SAT (θ) has an (ε, q(ε))-test iff SAT (η) has an (ε, q(ε))-test.

Proof. The proof uses the standard way of constructing an equivalent read-3-times formula of a given
formula.

Let θ be a k-CNF formula on variables X = {x1, . . . , xn}. Let r be the maximum number of appearances
of any single variable in θ. We create the new k-CNF formula η as follows: For each variable xi we introduce
r = r(i) variables x1

i , . . . , x
r
i which will be required to have the same value. This can be done by adding 2-

size clauses and so that every xj
i appears in at most two of these clauses. Then, we replace each appearance

of a variable xi in θ by a distinct copy. Hence the resulting formula η containing the original clauses with
the replaced variables and the additional 2-size clauses, is a k-CNF, read-3-times formula.

It is straight forward to see that θ is equivalent to η (w.r.t satisfiability). More over, it can be shown
that a test for η can be turned into a test for θ of essentially the same complexity and vice versa (one
should be careful as the relative distance is not always maintained, but this can be taken care of). We
differ further details to the final version.

Corollary 3.5. There exists ε > 0 and a read 3-times 3-CNF formula φ on n variables for which every
2-sided error ε-test makes Ω(n) queries.

Corollary 3.6. There exists ε > 0 and a 3-bounded-degree graph G with n edges (for every sufficiently
large n) for which every 2-sided error ε-test for SAT (G) requires Ω(n) queries.

Proof. Let θ be a read-3-times 3-CNF formula as asserted by Corollary 3.5. We construct a constraint-graph
G, whose maximal vertex degree is 3, and if (ε/3, q(3/ε))-testable then SAT (θ) is (ε, O(q(1/ε)))-testable.
This suffices as for some fixed ε, SAT (θ) is not (ε, o(n))-testable.

Assume first that each variable appears exactly 3 times in θ. Let C be the clause set of θ and X be its
variable set. We set G = (X ∪ C, E,F) to be the following constraint graph. E contains an edge between
x ∈ X and C ∈ C if and only if x appears in C (as either x or x̄). For each x ∈ X, fx is the Boolean
function expressing that a ≡ b for every a, b ∈ Ex. For each C ∈ C, fC is defined to be the clause we get
from C by replacing each appearance of a variable x in C by the variable e, where e is the edge connecting
x to C (e appears in negated from if x appears negated in C and not negated otherwise).

We define the following mapping γ from assignments α for G to assignments σ for θ. We set γ(α)(e) =
α(xi) if e is adjacent to xi. It is easy to see that if α ∈ SAT (G), then γ(α) ∈ SAT (θ). Also, if α is
ε-far from SAT (G) then γ(α) is ε/3-far from SAT (θ). Finally, given an (ε, q)-test for SAT (G) there is an
(ε, q)-test for SAT (θ) by simulating every x-query by a query to an edge e that is adjacent to x.

If some variables appear less than 3 times in θ then one just needs to add parallel edges in G, so that
the degree of every vertex x ∈ X is exactly 3.

Thus, even if we restrict ourselves to the set of graphs of maximal vertex degree 3 we can not hope to
prove any general testability result. However, if we restrict the functions labeling the vertices then we can
show a positive result.

Theorem 3.7. For every constraint-graph G ∈ LD3 there exists a one sided error, non-adaptive
(ε, 2Õ(1/ε))-test for SAT (G).
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The proof of Theorem 3.7 appears in Section 5. It requires several ’cleaning’ steps of which the final
resulting graph is the ’hard-core’ of the problem. For example, it is easy to see that we may restrict
ourselves to connected graphs. This motivates the following definition, which captures this ’hard-core’.

Definition 3.8. [Hard-Constraint-Graph] A graph G = (V,E,F) is hard if it is in LD3 and it satisfies
the following conditions.

• G is connected and contains at least one vertex of degree at least 3.

• fv ≡ 1 for every vertex of degree 1.

• For every vertex v of degree 2, and every two assignments σ1, σ2 that do not satisfy fv, either
ldistv(σ1, σ2) = 2 or σ1(Ev) = σ2(Ev).

The proof in Section 5 is based on the following theorem that is weaker than Theorem 3.7 in two senses.
First, it implies the existence an algorithm that behaves like a test only if it gets as input an assignment
σ for which ∆G(σ) ≥ 3 (recall, that ∆G(σ) is the minimum degree of an unsatisfied vertex). Second, the
algorithm is correct only for hard-constraint-graphs.

Theorem 3.9. For every hard-constraint-graph G and ε > 0 there exists a 2Õ(1/ε) query complexity
algorithm that on input σ: accepts with probability 1 if σ ∈ SAT (G), rejects with probability 2/3 if σ is
ε-far from SAT (G) and ∆G(σ) ≥ 3.

The proof of this theorem captures the main essence of the testing problem, while enabling us to avoid
a number technicalities. The following lemma which relates dist(σ, SAT (G)) to ∆G(σ) is a crucial part of
the proof of Theorem 3.9 and is proved separately in Section 4.4.

Lemma 3.10. Let G be a hard-graph. Then for every assignment σ, distG(σ, SAT (G)) ≤ 6/∆G(σ).

Lemma 3.10 implies that for a hard-graph G and assignment σ, if ∆G(σ) > 6/ε then σ is ε-close to
SAT (G). Consequently, if the degree of every vertex is greater than 6/ε then testing SAT (G) is trivial.

One might hope that the result of Theorem 3.7 can be extended to LD2. However, Eldar Fischer
observed that this is not the case, since the set LD2 is almost as general as the set of all constraint-graphs.

Theorem 3.11 (Fischer). For every Boolean formula θ and ε > 0 there exists a graph G ∈ LD2 such that
SAT (G) is (ε, q)-testable if and only if SAT (θ) is (ε, O(q))-testable.

Proof. Let θ be a Boolean formula over a set variables X = {x1, . . . , xn}. Let G be the constraint-graph
on two vertices {v, t}, that has n + 1 parallel edges between v and t, where one is identified with the
variable y and each of the rest n edges is labeled with a distinct variable in X. Let fv = y⊕ (

⊕n
i=1 xi) and

ft = θ(x1, . . . , xn) ∨ (y =
⊕n

i=1 xi). Obviously the resulting graph G is in LD2.
Let γ be the a mapping from assignments α to X ∪{y} to assignments σ to X, such that σ(xi) = α(xi)

for every xi ∈ X. Observe that ft is satisfied if and only if t 6= (
⊕n

i=1 xi). This implies that an assignment
α satisfies both ft and fv if and only if γ(α) ∈ Pθ. Hence, dist(α,PG) = dist(γ(α),Pθ)+i, where i ∈ {0, 1}.
Given a test for one of the properties it is straightforward to build a test for the other property.

We present here several immediate applications of Theorem 3.7

Theorem 3.12. For every read-twice CNF formula θ, SAT (θ) is (ε, 2Õ(1/ε))-testable.

Proof. Let θ be a read-twice CNF formula with clause-set C and variable set X. Set G to be the following
constraint graph. For each C ∈ C there is vertex vC labeled with fvC = C. For each variable x that
appears in two different clauses C,D (in any polarity) there is an edge labeled by x between vC and vD.
For a variable x that appears in only one clause C there is a edge labeled by x between vC and a vertex
uC of degree 1 that is labeled with fuC = 1.

By definition θ is identical to φG. Hence their query complexity is the same. In addition, every vertex
in G that is associated with a non-constant function has at most one non-satisfying assignment, hence
G ∈ LD3.
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This result is the best possible in terms of the maximum number of times a variable appears in a
formula, even for 2-CNF. In order to show this we need the following theorem which is a direct result of [5].

Theorem 3.13. [5] There exists ε > 0 and a 2-CNF formula φ on n variables (for every sufficiently
large n) such that SAT (φ) is not testable.

By taking these hard-to-test formulae that are asserted by Theorem 3.13, and applying Claim 3.4 we
get the following corollary.

Corollary 3.14. There exists ε > 0 and a read-3-times 2-CNF formula φ on n variables (for every
sufficiently large n) for which SAT (φ) is not testable.

An edge-coloring of a multi-graph G by a set of colors C is called ’no-where-monochromatic’ if there
exist no vertex such that all its adjacent edges have the same color.

Theorem 3.15. For every multi-graph G the property of all ’no-where-monochromatic’ colorings has an
(ε, 2Õ(1/ε))-test.

Proof. Let G be a multi-graph and assume that C = {0, 1}. We view an edge-coloring of G as a Boolean
assignment of its edges. We associate with a vertex v the Boolean function that is satisfied by all assign-
ments to Ev that contain both a ’1’ and a ’0’. Then, by definition, SAT (G) contains all the no-where-
monochromatic coloring of G. It can also be verified that G ∈ LD3. Hence, Theorem 3.7 implies the
claim.

In order to show the same for coloring any number (not necessarily constant) of colors one needs to
show that Theorem 3.7 holds even if we extend LD3 to non-Boolean variables. We omit further details in
this draft.

4 Proof of Theorem 3.9

This section is organized as follows. In Subsection 4.1 we study the relation between heavy-graphs and their
assignments. In Subsection 4.2 we study the relation between SAT (G) and the satisfiability of graphs that
are obtain from G via edge-contraction. This, in turn, plays a crucial role in the proof of Theorem 3.9 and
Lemma 3.10. In Subsection 4.3 we prove Theorem 3.9. Finally, in Subsection 4.4 we prove Lemma 3.10.

4.1 Subgraphs and Assignments

Let G be a hard-graph. Given two assignments σ1, σ2 to E(G) and a (not necessarily induced) subgraph
T of G we use the notation σ1

T∼ σ2 to denote that σ1(e) = σ2(e) for every e 6∈ E(T ). We say an
assignment σ agrees with a subgraph T of G if there exists an assignment σ∗ such that σ∗ T∼ σ and
UNSATG(σ∗) ∩ V (T ) = ∅. That is, a subgraph T of G agrees with an assignment σ to E(G), if we can
get an assignment that satisfies all the vertices in V (T ) by changing σ only on E(T ).

The notion of a subgraph agreeing with an assignment will turn useful. For example, for every hard-
graph G, the distance of an assignment η from SAT (G), is the minimum number of edges in a subgraph
T that agrees with η and contains every vertex in UNSATG(η). In our proof we are especially interested
in the structures of subgraphs that agree with every assignment and the structure of subgraphs that don’t
agree with some assignments.

It will be shown in Claim 4.3 below that if a connected subgraph T contains a cycle or a vertex v for
which fv ≡ 1, then it agrees with every assignment. Claim 4.3 implies the following corollary, due to the
fact that every hard-graph either contains a cycle or contains a vertex of degree 1.

Corollary 4.1. Every hard-graph is satisfiable.
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In the case of a connected subgraph that agrees with some assignments we can even learn more on their
structure as in Claim 4.4. In order to prove these results we first show that for every connected subgraph T
of a hard-graph G, and every assignment η to E(G), we can select any vertex v ∈ V (T ) and by ’correcting’
the values of η on E(T ) we can get an assignment that satisfies every vertex in V (T ) except possibly v.
The ability to “select” the vertex that is not satisfied is useful in the proofs of the results in this subsection.

Claim 4.2. Let G be a hard-graph, T a connected subgraph of G and v a vertex in V (T ). Then, for every
assignment η to E(G) there exists an assignment η∗ such that η

T∼ η∗ and UNSATG(η∗) ∩ V (T ) ⊆ {v}.

Proof. If |UNSATG(η) ∩ V (T ) \ {v}| = 0 then η is the required assignment. We proceed by induction on
` = |UNSATG(η) ∩ V (T ) \ {v}|. Assume that the claim holds for every η′ and T ′ when |(UNSATG(η′) ∩
V (T ′)) \ {v}| < `.

Let u ∈ V (T ) \ {v} be such that u ∈ UNSATG(η) and distT (u, v) is minimum. Let R be a shortest
path in T that connects u and v (such a path exists since T is connected). Denote the vertices of R by
x1, . . . , xk, where x1 = u and xk = v. Let e1, . . . , ek−1 be the edges of R, where for every 1 ≤ i < k, ei is
adjacent to xi and xi+1. By definition, xi 6∈ UNSATG(η) for every 2 ≤ i ≤ k − 1.

Let η∗ be such that η∗
T∼ η and η∗(e) = ¬η(e) for every e ∈ E(R). Since ldistx1(η

∗, η) = 1 and
since G ∈ LD3, x1 6∈ UNSATG(η′). If we also have xi 6∈ UNSATG(η∗) for every 2 ≤ i < k, then
|(UNSAT (η∗) ∩ V (T )) \ {v}| ≤ `− 1 and hence by the induction hypothesis we are done.

Thus, we assume that there exists i ∈ {2, . . . , k − 1} such that xi ∈ UNSATG(η∗). Let j be the
minimum integer such that xj ∈ UNSATG(η∗). Let η∗∗ be such that η∗∗

T∼ η, and η∗∗(ei) = η∗(ei) for
every 1 ≤ i < j and η∗∗(ei) = η(ei) for every j ≤ i < k. Since ldistxj (η

∗∗, η∗) = 1, the fact that G ∈ LD3

implies that xj 6∈ UNSATG(η∗∗). Thus every vertex on R, except possibly v, is satisfied by η∗∗. Since
|(UNSAT (η∗∗) ∩ V (T )) \ {v}| ≤ `− 1, the induction hypothesis completes the proof.

Claim 4.3. Let G be a hard-graph, T a connected subgraph of G. If T contains a cycle, or contains a
vertex v for which fv ≡ 1, then T agrees with every assignment to E(G).

Proof. Let η be an unsatisfying assignment to E(G). Assume first that there exists v ∈ V (T ) with fv ≡ 1.
According to Claim 4.2 there exists an assignment ξ such that ξ

T∼ η and UNSATG(η) ∩ V (T ) ⊆ {v}.
Since fv ≡ 1, T agrees with η.

Assume that T contains a simple cycle. Since G is a hard-graph, there exists v0 ∈ V (T ) such that
degG(v0) ≥ 3 and v0 is in a cycle in T . By Claim 4.2 there exists an assignment η∗ such that η∗

T∼ η and
UNSATT (η∗) ⊆ {v0}. We may assume that UNSATT (η∗) = {v0} as otherwise we are done.

Let R = (v0, v1, . . . , vk−1, v0), be a simple cycle (possibly a loop) in T . Denote the edges of R by
e0, . . . , ek−1, where for every i ≤ k − 1, ei is adjacent to xi and x(i+1) mod k. Let η∗∗ be the assignment
we get from η∗ by changing the value assigned to e0. Obviously, η∗∗ satisfies v0. If it satisfies v1 we are
finished. Otherwise we look at the assignment we get from η∗∗ by changing the value assigned to e2, check
if v2 is satisfied and so on until we stop at some stage i for which vi is satisfied and we are done. Otherwise,
we end by changing the value of ek−1 arriving back at v0. The assignment η′ at this point satisfies v0 too
as the local distance at v0 from η′ to η∗ is exactly 2.

For an assignment η that does not satisfy a certain vertex v ∈ V (G), we are interested in “locally”
fixing η is a subgraph T so that v and all vertices in T are satisfied. The following claim states that such
a correction can always be made along a simple path starting at v + possibly an edge between the last
vertex in the path and some other vertex in the path.

Claim 4.4. Let G be a hard-graph, σ an assignment to E(G) and T a subgraph that agrees with σ. Let
v ∈ UNSATG(σ) ∩ V (T ), then there exists a path in T that starts in v and agrees with σ. Moreover this
path, possibly excluding the last vertex is simple.

The proof of this claim uses similar idea as before and appears in Appendix A.

7



4.2 Subgraph Contraction

Given a graph G and an edge e ∈ E(G) adjacent to vertices x, y, we set G/{e} to be the graph we get
by contracting e. By contracting e (edge contraction) we mean that we remove e from E(G) and merge the
two vertices x, y into one vertex ve. That is, all the edges that where adjacent to x or y are now adjacent
to the merged vertex. Note that this operation may result in parallel edges and self loops that remain in
the resulting graph. The vertex ve is labeled with the function fve = (fx ∧ fy) |e=1 ∨ (fx ∧ fy) |e=0. That
is, an assignment ν to Eve satisfies fve if and only if ν extended by xe = 1 satisfies fx and fy or ν extended
by xe = 0 satisfies fx and fy.

Given a subgraph T of G, we set G/T to be the graph we get by applying edge contraction to every
edge in E(T ) according to some arbitrary order. It is easy to see that G/T does not depend on the order
in which the edges were contracted. Note that contracting T collapses each connected component of T into
a unique vertex in G/T . For a connected component M of T we denote this vertex by vM .

The following corollary is immediate from the definition of contraction and Claim 4.3.

Corollary 4.5. Let G be a hard-graph and T a subgraph of G. For every connected component M of T ,
if M contains a cycle then fvM ≡ 1 in G/T .

We show next that hard-graphs are closed under contraction.

Claim 4.6. Let G be a hard-graph and T a subgraph of G then G/T is a hard-graph.

The proof is based on the fact that for e ∈ T , G/T = (G/{e})/(T/{e}), hence it is enough to prove the
claim for a single edge. This is done by case study and appears in Appendix B.

The following mappings between assignments of G and assignments of G/T will prove to be useful.

Definition 4.7. Let T be a subgraph of G.

• Given an assignment η for G we define ηG→G/T to be an assignment for G/T that is the restriction
of η on E(G/T ) = E(G) \ E(T ) (formally there is some renaming of the edges in G/T ).

• Given an assignment ξ for G/T we define ξG/T→G to be an assignment for G, such that ξG/T→G(e) =
ξ(eG/T ) for every e ∈ E(G) \ E(T ), where eG/T is the edge in E(G/T ) corresponding to e. The
assignments to edges in E(T ) are such that |UNSATG(ξG/T→G)| is the smallest possible.

The following corollary directly follows from the definition of subgraph contraction and Definition 4.7.

Corollary 4.8. Let T be a subgraph of a hard graph G. Then, for every assignment η to E(G), η ∈
SAT (G) if and only if ηG→G/T ∈ SAT (G/T ) and for every assignment ξ to E(G/T ), ξ ∈ SAT (G/T ) if
and only if ξG/T→G ∈ SAT (G).

Proof Technique Based on Subgraph Contraction
Our technique for using subgraph contraction is based on following proposition.

Proposition 4.9. Let T be a subgraph of a hard graph G and σ an assignment to E(G). Then,

dist(σ, SAT (G)) ≤ dist(σG→G/T , SAT (G/T )) + |E(T )|.

Proof. By definition there exists an assignment ν ∈ SAT (G/T ) such that dist(σG→G/T , ν) =
dist(σG→G/T , SAT (G/T )). Set σ∗ = νG/T→G. According to Corollary 4.8, ν ∈ SAT (G/T ) implies that
σ∗ ∈ SAT (G). Consequently, dist(σ, SAT (G)) ≤ dist(σ, σ∗). By definition

dist(σ, σ∗) =
∑

e∈E(G)\E(T )

|σ(e)− σ∗(e)|+
∑

e∈E(T )

|σ(e)− σ∗(e)|. (1)
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Observe that,

dist(σG→G/T , SAT (G/T )) =
∑

e∈E(G/T )\E(T )

|σG→G/T (e)− ν(e)| =
∑

e∈E(G)\E(T )

|σ(e)− σ∗(e)|.

Hence, by plugging the above instead of the first term of Equation (1) and noting that the second term is
bounded by |E(T )| completes the proof.

According to Proposition 4.9 if we want to prove an upper bound on dist(σ, SAT (G)) it is suf-
ficient to find a subgraph T of G such that we can show the required upper bound on |E(T )| +
dist(σG→G/T , SAT (G/T )). This is the technique we use in order to prove Lemma 3.10.

In order to prove Theorem 3.9 we use a variation of the previous technique. That is, we are given an
assignment σ, that is ε-far from SAT (G) (I.e. dist(σ, SAT (G)) ≥ ε · |E(G)|). Our goal is to show a lower
bound the number of edges in a subgraph T of G, whose choice depends on σ. Proposition 4.9 implies that
we only need to show an appropriate upper bound on dist(σG→G/T , SAT (G/T )).

4.3 Proof of Theorem 3.9

Let G be a hard-graph and σ be an assignment to E(G). We show in this subsection that there exists an
algorithm that given ε and oracle access to σ accepts with probability 1 if σ ∈ SAT (G) and rejects with
probability 2/3 if σ is ε-far from SAT (G) and ∆G(σ) ≥ 3. The algorithm will be shown to have query
complexity 2Õ(1/ε). The existence of such an algorithm implies Theorem 3.9. The goal of the algorithm is
to find a vertex v ∈ UNSATG(σ) of degree at most 12/ε. Only then will it reject. Hence if σ ∈ SAT (G)
then the algorithm accepts with probability 1. In order to easily refer to such vertices we use the following
definition.

Definition 4.10. [ε-relevant/ ε-heavy vertices]
Let G be a graph and ε > 0. We say that v ∈ V is ε-relevant if 3 ≤ degG(v) ≤ 12/ε and ε-heavy if
degG(v) > 12/ε.

Assume that σ is ε-far from SAT (G) and ∆G(σ) ≥ 3. It is not necessarily true that G contains many
ε-relevant vertices that are not satisfied by σ. The way that the algorithm is directed to find such a vertex
is via the association of a subgraph, denoted as ε-BalloonG(v), with every ε-relevant v. This subgraph will
have the following properties.

1. If σ is ε-far from SAT (G), then the number of edges e such that e ∈ E(ε-BalloonG(v)) for some
ε-relevant v ∈ UNSATG(σ) is at least ε · |E(G)|/4.

2. For every edge in e ∈ E(G) the number of ε-relevant vertices v such that ε-BalloonG(v) contains e

is 2Õ(1/ε).

Property 1 implies that if σ is ε-far from SAT (G) and one selects an edge e uniformly at random, then with
probability that depends only on ε there exists an ε-relevant vertex v ∈ UNSATG(σ) whose ε-BalloonG(v)
contains e. We refer to such an event as ’good’. If a good event occurs for an edge e then one only needs
to check whether σ satisfies fv, for every ε-relevant vertex v for which e ∈ E(ε-BalloonG(v)). Property 2
asserts that there are only 2Õ(1/ε) such vertices. Checking whether fv is satisfied for an ε-relevant vertex
v requires to query the value of the edges in Ev and there are at most 12/ε such edges. Consequently, the
total number of queries will depend only on ε.

We present the exact definition of ε-BalloonG(v) after introducing the algorithm and formally proving
its correctness, which depends only on Property 1 and Property 2 above. We now formally introduce the
test.

Algorithm 4.1.
Input: ε, σ.
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1. Repeat the following 3/ε times, independently.

• Select an edge e ∈ E(G) uniformly.
• For every ε-relevant vertex z, such that e ∈ E(ε-BalloonG(z)), query all values assigned

to edges in Ez and if fz is not satisfied then reject.

2. If there was no reject then accept.

Claim 4.11. Algorithm 4.1 has query complexity 2Õ(1/ε). It accepts σ ∈ SAT (G) with probability 1 and
rejects σ that is ε-far from SAT (G) with probability at least 2/3.

Proof. Algorithm 4.1 rejects an input σ only if it finds a vertex that is not satisfied, hence it cannot reject
a satisfying assignment of G.

Assume that σ is ε-far from SAT (G). According to Property 1 above, with probability at least ε/4
an edge selected in step 1 of the algorithm is in the ε-Balloon of some ε-relevant vertex v ∈ UNSATG(σ).
Since step 1 is repeated 10/ε independently the probability that in none of the iterations such an edge is
selected is (1− ε/4)10/ε < 1/3. Consequently, Algorithm 4.1 rejects σ with probability strictly greater than
2/3.

Finally, the query complexity of the algorithm follows immediately from its definition, Property 2 above
and the definition of an ε-relevant vertex.

We next define ε-BalloonG(v) formally. The definition is somewhat technical, it is tailored to facilitate
the proofs of Lemma 4.14 and Claim 4.13, which assert Properties 1 and 2 above.

Definition 4.12. [ε-BalloonG(v)]
Let v ∈ V (G) be ε-relevant. ε-BalloonG(v) is the subgraph with the minimum number of vertices among
the following (we choose the first if both alternatives have the same number of vertices).

• BG(v, r), where r is the minimum such that BG(v, r) contains a cycle or a vertex of degree 1 or there
are at least 12/ε edges not in BG(v, r) that are adjacent to vertices in BG(v, r).

• The subgraph we get by removing all but one ε-heavy vertex from BG(v, r), where r is the minimum
such that BG(v, r) contains at least one ε-heavy vertex.

Claim 4.13. For every e ∈ E(G) there exist 2Õ(1/ε), ε-relevant vertices v such that e ∈ E(ε-BalloonG(v)).

Proof. A vertex v ∈ V (G) is said to be near a vertex u ∈ V (G), if there exists a path between v and u,
that contains at most 1 + (12/ε) ε-relevant vertices and does not contain any ε-heavy vertex. Note, that
according to this notation if v is near u, then both vertices are not ε-heavy.

We will first show that the statement of the claim is true assuming that for every ε-relevant vertex v if
e ∈ E(ε-BalloonG(v)), then v is near one of the vertices adjacent to e. Afterwards we shall show that this
assumption is indeed true.

Obviously, the number of ε-relevant vertices that are near a given vertex u is maximized when u is the
root of a balanced tree of depth 12/ε, such that each of it internal vertices has degree 12/ε. Consequently,
there are at most (12/ε)12/ε vertices near u. Hence, there are at most 2 · (12/ε)12/ε = 2Õ(1/ε) vertices near
a vertex adjacent to e. According to the assumption this is an upper bound on the number of vertices v
such that e ∈ E(ε-BalloonG(v)). It remains to show that the assumption is indeed true.

Let v be an ε-relevant vertex such that e ∈ E(ε-BalloonG(v)) and x, y be the vertices adjacent to e.
By definition V (ε-BalloonG(v)) contains at most one ε-heavy vertex. Therefore at least one of the vertices
x, y is not ε-heavy. With out loss of generality assume that x is not ε-heavy.

Let B be a shortest path between x and v. Obviously, B is contained in ε-BalloonG(v). We first
show that B does not contain an ε-heavy vertex. Indeed, by definition, if ε-BalloonG(v) contains an ε-
heavy vertex z, then distG(z, v) = max{distG(s, v) | s ∈ V (ε-BalloonG(v))}. As B is a shortest path,
distG(v, s) < distG(v, x) for every s ∈ B. Hence, none of the vertices in V (B) are ε-heavy.
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Next we show that B contains at most 1 + (12/ε) ε-relevant vertices. Indeed, assume towards a
contradiction that V (B) contains at least 12/ε+2, ε-relevant vertices. Since u 6∈ V (BG(v, distG(x, v)−1)),
by definition, BG(v, distG(x, v)−1) is strictly contained in ε-BalloonG(v). In addition, BG(v, distG(x, v)−1)
is a tree with no vertices of degree 1 in G as otherwise, ε-BalloonG(v) is a subgraph of BG(v, distG(x, v)−1).
Observe that BG(v, distG(x, v)−1) contains at least 12/ε+2, ε-relevant vertices. Therefore, there are more
than 12/ε edges not in BG(v, distG(x, v)− 1), that are adjacent to vertices in BG(v, distG(x, v)− 1). This
leads to a contradiction, because it implies that BG(v, distG(x, v)− 1) contains ε-BalloonG(v).

In the following, a union of subgraphs contains the union of the vertex sets and the union of the edge
sets.

Lemma 4.14. Let G be a hard-graph, σ an assignment that is ε-far from SAT (G) and

T =
⋃

v∈UNSATG(σ)

ε-Balloon(v).

Then, |E(T )| ≥ ε · |E(G)|/2.

Proof. By definition distG(σ, SAT (G)) ≥ ε · |E(G)| and hence according to Proposition 4.9 in order to
prove the statement of the lemma we only need to show that

distH(σG→G/T , SAT (G/T )) ≤ ε · |E(G)|/2. (2)

According to Lemma 3.10 there exists ν ∈ SAT (G/T ), such that distG/T (ν, σG→G/T ) ≤ 6·|E(G/T )|
∆G/T (σ) . By

definition distG/T (σG→G/T , SAT (G/T )) ≤ distG/T (ν, σG→G/T ) and hence

distG/T (σG→G/T , SAT (G/T )) ≤ 6 · |E(G/T )|
∆G/T (σ)

. (3)

If T = G then 2 is trivially true and hence we assume that T 6= G.
Since |E(G)| ≥ |E(G/T )| we can replace |E(G/T )| in Equation (3) by |E(G)|. To infer Equation (2) it

is enough to show that ∆G/T (σ) ≥ 12/ε.
Let T1, . . . , Tk be the connected components of T . Recall that we chose T such that UNSATG(σ) ⊆

V (T ) and hence every vertex in UNSATG/T (σG→G/T ) is vTi for some i. We next show that for every
vTi ∈ UNSATG/T (σG→G/T ), degG/T (vTi) ≥ 12/ε. This is sufficient since it implies that ∆G/T (σ) ≥ 12/ε.

Let Tj be such that vTj ∈ UNSATG/T (σG→G/T ). According to Corollary 4.5 if vTj ∈
UNSATG/T (σG→G/T ), then Tj is a tree that does not contain a vertex z for which degG(z) = 1. Also,
by the definition of T , Tj contains ε-BalloonG(v) for some v ∈ UNSATG(σ). Since Tj is a tree that does
not contain a vertex of degree 1 we infer that ε-BalloonG(v) is also a tree that does not contain a vertex
of degree 1. Thus, by the definition of ε-BalloonG(v) at least one of the following is true; ε-BalloonG(v)
contains an ε-heavy vertex or there are at least 12/ε edges connecting the vertices of ε-BalloonG(v) to the
vertices of the rest of the graph. Both possibilities imply that there are at least 12/ε edges connecting the
vertices of Tj to vertices in the rest of the graph. Consequently, degG/T (vTj ) ≥ 12/ε.

4.4 Proof of Lemma 3.10

The intuition behind the proof is the following: For a vertex v ∈ UNSATG(σ) we define a subgraph,
Fix-SubG,σ(v), that has a small number of edges and agree with σ. Thus σ could be corrected to satisfy v
using a small number of edges. We would like to do the same, simultaneously, for every unsatisfied vertex.
Indeed Claim 4.17 asserts a bound on the number of edges in the union, T , of these subgraphs. However,
we need to take care of the consistency of the simultaneous corrections. Instead, we contract T and use
induction on G/T and Proposition 4.9. We now proceed formally.
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We prove the lemma by induction on |UNSATG(σ)|. We may assume that ∆G(σ) ≥ 7 as otherwise
the lemma immediately follows.

The definition of Fix-SubG,σ(v) requires that each edge e ∈ E(G) is treated as a continuous line of
length 1. The distance between two points on edges is simply the minimum distance between them in the
graph. This enables us to define the notion of volume at a distance r around a vertex.

Definition 4.15. [V olG(v, r)]
For v ∈ V (G) and positive Real r, we set V olG(v, r) to be the set of all points x on the edges of G for
which distG(v, x) ≤ r. We set |(V olG(v, r))| to be the total length of the lines in V olG(v, r).

We say that an edge e is in V olG(v, r) if and only if every point in e is in V olG(v, r). We say V olG(v, r)
contains a subgraph R if and only if each of its edges is in V olG(v, r). We are now ready to define
Fix-SubG,σ(v).

Definition 4.16. [Fix-RadG,σ(v),Fix-SubG,σ(v)]
Let G be a hard-graph. For every v ∈ V (G) and assignment σ to E(G) we set Fix-RadG,σ(v) to be the
minimum real r for which V olG,σ(v, r) contains a subgraph R that agrees with σ. Let Fix-SubG,σ(v) be a
subgraph with a minimum number of edges that agrees with σ and is contained in V olG,σ(v,Fix-RadG,σ(v)).

Remark: The value of Fix-RadG,σ(v) is not necessarily an integer; for example, it may be a product of
1/2 when Fix-SubG,σ(v) is an odd cycle. Note also that according to Corollary 4.1 every hard-graph is
satisfiable and hence Fix-RadG,σ(v) and Fix-SubG,σ(v) are well defined for every v ∈ UNSATG(σ).

Set T =
⋃

v∈UNSATG(σ) Fix-SubG,σ(v). By Proposition 4.9,

distG/T (σ, SAT (G)) ≤ distG/T (σG→G/T , SAT (G/T )) + |E(T )|

Using Claim 4.17, below, implies that

distG/T (σ, SAT (G)) ≤ distG/T (σG→G/T , SAT (G/T )) +
2 · |E(G)|
∆G(σ)

(4)

Since |UNSATG(σ)| > 0, Proposition 4.18 below asserts that |UNSATG/T (σG→G/T )| < |UNSATG(σ)|.
Thus, the induction hypothesis applied to G/T , asserts that,

distG/T (σG→G/T , SAT (G/T )) ≤ distG/T (ν, σG→G/T ) ≤ 6 · |E(G/T )|
∆G/T (σG→G/T )

. (5)

Proposition 4.18 asserts that ∆G/T (σG→G/T ) ≥ 2 · ∆G(σ) − 2. Plugging this in Equation (5) and
substituting |E(G/T )| with |E(G)| gives,

distG/T (σG→G/T , SAT (G/T )) ≤ 6 · |E(G)|
2 ·∆G(σ)− 2

. (6)

Finally, as ∆G(σ) ≥ 7, Equation (6) and Equation (4) imply the claim.
We next state Claim 4.17 and Proposition 4.18. Their proof is in Appendix C.

Claim 4.17. Let σ be an assignment to E(G) and T = ∪v∈UNSATG(σ)Fix-SubG,σ(v), then

|E(T )| ≤ 2 · |E(G)|
∆G(σ)

Proposition 4.18. Let G be a hard-graph, σ an assignment to E(G) and T the minimum subgraph of G
such that Fix-SubG,σ(v) is a subgraph of T for every v ∈ UNSATG(σ). Then,

∆G/T (σG→G/T ) ≥ 2 ·∆G(σ)− 2.

Moreover, if |UNSATG(σ)| > 0, then |UNSATG/T (σG→G/T )| < |UNSATG(σ)|.
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5 Proof of Main Result

In this section we show that SAT (G) has query complexity 2Õ(1/ε) for every G ∈ LD3 (not necessarily
hard). We start by showing that for G that is a simple path or a simple cycle, SAT (G) has query complexity
poly(1/ε).

5.1 Simple Cases

5.1.1 Path Test

Let G be a simple path. We show that there exists a width 2 read once oblivious leveled branching
program BPG (we formally define what an Oblivious Leveled Branching Program is further on) such that
the language accepted by BPG is SAT (G). In [7] the authors show that for every property accepted by a
bounded width oblivious leveled branching program there exists a test whose query complexity is (1/ε)O(1),
where the O notation hides a dependency on the width of the oblivious leveled branching program. Thus,
we can use their test for BPG.

An Oblivious Leveled Branching Program, is a directed graph B, in which the nodes a partitioned
into levels L0, . . . , Lm. There are two special nodes; a start node belonging to L0 and an accept
node belonging to Lm. Edges are going only from a level to nodes in a consecutive level. Each
node has at most two out-going edges one of which is labeled by ’0’ and the other is labeled
by ’1’. In addition all edges in between two consecutive levels are associated with a distinct
member of X = {x1, . . . , xn}. An assignment σ to X defines a path starting at the start-
node: At each level, if the out-going edges are associated with xi, then the edge with the label
identical to σ(xi) is chosen. An Oblivious Leveled Branching Program defines a property P in
the following way: σ ∈ P if and only if the path defined by σ reaches accept.

The width of an oblivious leveled branching program is the maximum number of vertices in a level. An
Oblivious Leveled Branching Program is Read-Once if every variable in X is associated with at most one
level in L0, . . . , Lm.

The following is the main result of [7].

Theorem 5.1. Let P ⊆ {0, 1}n be the language accepted by a read-once branching program of width w.
Then testing P requires at most

(
2w

ε

)O(w) queries.

If G is a simple path then obviously φG = ∧v∈V (G)fv can be represented as an oblivious leveled branching
program, since each fv depends only on 2 variables and each variable is shared by 2 adjacent vertices. We
omit further details here.

5.1.2 Cycle test

Let G be a simple cycle. We call a test for such a graph a cycle test. Let {v0, . . . , vn} be the set of
vertices V (G), let {e0, . . . , en} be the set of edges E(G), where for every i ∈ [n], ei is adjacent to vi and
v(i+1) mod n.

The following algorithm is a test for SAT (G). On input ε > 0 and σ ∈ {0, 1}n query the value σ(en).
Then it set G′ to be the graph we get by removing the edge en from G and setting the function that labels
v0,vn to be fv0(σ(en), e0) and fvn(en−1, σ(en)) respectively. Finally, execute the path test for G′ with error
parameter ε and oracle access to σ{0,...,n−1}.

Obviously the query complexity is (1/ε)O(1) and an input in SAT (G) is accepted with probability 1. It
is easy to see that if the assignment σ is ε-far from G then σ{0,...,n−1} is ε-far from G′ as defined in the test.
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5.1.3 Consistency Test

In the general case we have to deal with unsatisfied vertices of degree 2. The path test does not suffice as
for σ we not only need to reject if σ is ’far’ from satisfying the path but also if σ is ’far’ from satisfying
the path when the first and last values in the path are fixed.

Hence we use an algorithm we call a consistency test, which is a variation of the path test.
Let G be a hard-graph that is a simple path. Let {v1, . . . , vn} be the set of vertices V (G), let

{e1, . . . , en−1} be the set of edges E(G), where for every i ∈ [n− 1], ei is an edge between vi and vi+1.
Given a distance parameter ε > 0, the requirements from a consistency are the following:

• It accepts with probability 1 if σ satisfies G.

• It rejects with probability 1 if there is no α ∈ SAT (G) such that α(e1) = σ(e1) and α(en−1) = σ(en−1).

• If there exists α ∈ SAT (G) such that α(e1) = σ(e1) and α(en−1) = σ(en−1), it rejects with probability
2/3 if the minimum distance from σ to such α is at least ε · |E(G)|.

The following algorithm is a consistency test for SAT (G). On input ε > 0 and assignment σ to |E(G)|
query the value σ(e0), σ(en). Then set G′ to be the graph we get from G setting fv0 = (e0 ≡ σ(e0)) and
fvn = (en ≡ σ(en)). Execute the path test for G′ with error parameter ε. Obviously the query complexity
is (1/ε)O(1) and the algorithm behaves as required.

5.1.4 Test for Hard-Graphs

Recall that so far we have shown a test for hard-graphs that is correct for satisfying assignments or ε-far
assignments σ for which ∆G(σ) ≥ 3. We now want to generalize it to any ε-far assignment. Let G be a
hard-graph or a simple path or a simple cycle and let σ be an assignment E(G).

In order to introduce the required test we need the following definition.

Definition 5.2. For every edge e ∈ E(G) define Re to be the maximum path in G that contains e and all
its internal vertices have degree 2 in G.

In the description of Algorithm 5.1 we say that we execute a consistency test for Re, where e is some
edge in G. What we mean is that we run the consistency test on Re as if it was a simple path, such that
for the first vertex in the path x, fx ≡ 1 and for the last vertex in the path y we have fy ≡ 1. All other
vertices retain their original labeling.

Algorithm 5.1.
Input: ε, σ.

1. (a) If G is a simple path, execute the path test with distance parameter ε/2. If the path
test rejects, then reject, otherwise accept.

(b) If G is a simple cycle, execute the cycle test with distance parameter ε/2. If the path
test rejects, then reject, otherwise accept.

2. Other graphs:

(a) Execute Algorithm 4.1 with distance parameter ε/2. Reject if the executions of Algo-
rithm 4.1 returned a rejection.

(b) For each edge e queried by Algorithm 4.1 in the previous step execute the consis-
tency test for Re. Reject if one of the executions of the consistency test with distance
parameter ε/4 returned a rejection.

(c) Select 64/ε edges from E(G) uniformly and independently. For each edge e selected
execute the consistency test for Re with distance parameter ε/4. Reject if in one of
the executions of the consistency test returns a rejection.

14



Claim 5.3. Algorithm 5.1 is an (ε, 2Õ(1/ε))-test for SAT (G), where G is a hard-graph or a simple path
or a simple cycle.

Obviously the query complexity of Algorithm 5.1 is as required. It is also obvious that if G is a simple
path or a simple cycle then the algorithm behaves as required.

Algorithm 5.1 always accepts an input in SAT (G). If σ is far from not being such that ∆G(σ) ≥ 3,
then it is easy to show that with probability at least 2/3 one of the executions of the consistency test in
Step 2c will reject. Now if the input satisfies ∆G(σ) ≥ 3, then we know that the execution of Algorithm 4.1
in Step 2a will result in a rejection with probability at least 2/3. However, there is a third possibility, it
could be the case that an assignment σ does not satisfy a very small number of ε-relevant vertices and is
also not far from satisfying all functions of vertices of degree 2.
Proof of Claim 5.3: Let G be a hard-graph and σ be ε-far from SAT (G). We prove that Algorithm 5.1
rejects σ with probability at least 2/3.

Assume that σ is ε/2-far from being such that ∆g(σ) ≥ 3. Then there are at least ε · |E(G)|/2
edges in the union of paths Re such that for every assignment η to E(G) such that ∆G(η) ≥ 3 we have
dist(ηE(Re), σE(Re)) ≥ ε · |E(R(e))|/4. Hence, the probability that in step 2c an edge e is selected for such
an Re is at least 1− (1− 12/ε)64/ε > 9/10. Let e be such an edge that was selected in Step 2c. Since the
consistency test is executed 3 times independently on Re with distance parameter ε/4 the probability that
one of these execution rejects is a least 1 − (1 − 2/3)3 > 9/10. Thus the probability that Algorithm 5.1
rejects σ is at least 2/3.

Assume that σ is ε/2-close to being such that ∆g(σ) ≥ 3. Let η be an assignment with minimum
distance to σ, where ∆g(η) ≥ 3. By the triangle inequality η is ε/2-far from SAT (G). Set S to be the set
of all edges adjacent to ε-relevant vertices such that σ(e) 6= η(e).

Let us look at the execution of Algorithm 4.1 in Step 2a. We may treat this execution as if it is given
oracle access to η and not σ, since if Algorithm 4.1 queries an edge e in S we will show that the execution
of the consistency test on Re in Step 2b will reject with probability 1. Consequently, as Algorithm 4.1 is
executed in Step 2a with distance parameter ε/2 it rejects with probability 2/3.

Let e be an edge from S that was selected in Step 2c. Observe that it must be the case that
|E(Re)| > 1. Let e′ be the other edge in Re that is connected to a vertex of degree different than 2. It can
not be that there exists ξ ∈ SAT (G) such that ξ(e) = σ(e) and ξ(e′) = σ(e′) because then there exists
an assignment η′ as follows. Set η′ to be such that η′(e) = σ(e) and η′(e′) = σ(e′) and η′(e′′) = η(e′′) for
every e′′ 6∈ {e, e′}. Then ∆G(η′) ≥ 3 and the distance of η′ from σ is strictly less than the distance of η
from σ. Therefore, there is no assignment κ that satisfies Re such that κ(e) = σ(e) and κ(e′) = σ(e′).
Consequently, when the Algorithm 5.1 executes a consistency test on Re it rejects with probability 1.

5.2 The General Case

So far we have shown that SAT (G) has query complexity 2Õ(1/ε) if G is hard or a simple path or a simple
cycle. This does not cover a number of other cases. For example if G contains a vertex v such that
fv ≡ 0 and therefore SAT (G) = ∅ and is trivially testable. Another case is that G is not connected. This
case is also testable (assuming that we have a test for every connected graph) as follows: On input ε and
assignment σ to E(G) select a connected component T with probability |E(M)|/|E(G)| and ε-test T . It is
easy to see that after suitable amplification this becomes an ε-test for G.

It remains to deal with the following last case: G is connected, is not a simple path or a simple cycle,
and contains a vertex v of degree 1 such fv is not equivalent to a constant, or a vertex v of degree 2 such
that fv has two unsatisfying assignments with ’ldist’ 1 between them.

5.2.1 Last Case

An unwanted vertex, is a vertex v that has degree 1 and fv is not equivalent to a constant or has degree
2 and fv has two unsatisfying assignments with ’ldist’ 1 between them.

We show that the statement of Theorem 3.7 holds for G ∈ LD3 by using two reductions. We start
by showing that there exists a graph G∗ ∈ LD3 such that G∗ has the same set of edge variables as G,
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SAT (G∗) = SAT (G) and there is no unwanted vertex of degree 2 in G∗. The graph G∗ is not necessarily
connected and may contain vertices v of degree 1 for which fv is not equivalent to a constant.

We finish by showing that there exists a graph G∗∗ ∈ LD3 such that G∗∗ has the same set of edge
variables as G∗ , SAT (G∗∗) = SAT (G∗), and G∗∗ consists of connected components such that each one of
them is either a simple cycle or a simple path or does not contain any unwanted vertex.

We set G∗ to be the graph we get from G by applying the following operation to every unwanted vertex
v of degree 2 in the graph.

We refer to the edges adjacent to v by e1 and e2. We remove v from the set of vertices and insert
vertices t1v, t

2
v of degree 1 instead, where t1v is adjacent to e1 and t2v is adjacent to e2. Set ft1v

, ft2v
as follows:

• If v has only one satisfying assignment ν. Without loss of generality assume that fv = e1 ∧ e2, then
set ft1v

= t1v and ft2v
= t2v.

• If v has two unsatisfying assignment ν1, ν2, then ft1v
, ft2v

are defined as follows. Assume with loss of
generality that ν1(e1) = ν2(e1). Set ft1v

= (t1v ≡ ¬ν(e1)) and ft2v
≡ 1.

Obviously the variables of G are the same as the variables of G∗, and there are no unwanted vertices
of degree 2 in G∗. By definition an assignment satisfying fv, where v is an unwanted vertex of degree 2 in
G also satisfies ft1v

,ft2v
in G∗. Since all other vertices where untouched we get that SAT (G∗) ≡ SAT (G∗)

and G∗ ∈ LD3.

We set G∗∗ to be the graph we get from G∗ by applying the following operation as long there is an
unwanted vertex v of degree 1 in a connected component that is not a simple path.

Let S be the minimum path from v to a vertex u of degree at least 3 in the graph. Let e be the edge
in S that is connected to u. Since there are no unwanted vertices of degree 2 in the graph, there exists
a ∈ {0, 1} such that for every assignment σ that satisfies the graph σ(e) = a.

We disconnect e from u and set e to be adjacent to a new vertex t, where ft ≡ 1. We change the name
of the vertex u to u′ and set fu′ = fu |e=a.

Note that the size of the connected components that are not a simple path decreases in each iteration,
and hence the process eventually ends. Obviously the variables of φG∗∗ are the same as the variables of
φG∗ , SAT (G∗∗) = SAT (G∗). It is also easy to see that G∗∗ ∈ LD3.

16



References

[1] E. Ben-Sasson, P. Harsha, and S. Raskhodnikova, Some 3-CNF properties are hard to test, STOC
2003, pp. 345–354.

[2] M. Blum, M. Luby, and R. Rubinfeld, Self testing/correcting with applications to numerical problems,
Journal of Computer and System Science 47:549–595, 1993.

[3] I. Dinur, The PCP Theorem by Gap Amplification, STOC 2006, pp. 241–250, 2006.

[4] E. Fischer, The art of uninformed decisions: A primer to property testing, The Computational
Complexity Column of The bulletin of the European Association for Theoretical Computer Science,
75:97–126, 2001.

[5] E. Fischer, E. Lehman, I. Newman, S. Raskhodnikova, R. Rubinfeld, and A. Samorodnitsky,
Monotonicity testing over general poset domains, STOC 2002, pp. 474–483.

[6] O. Goldreich, S. Goldwasser, and D. Ron, Property testing and its connection to learning and ap-
proximation, Journal of the ACM, 45(4):653–750, 1998.

[7] I. Newman, Testing Membership in Languages that Have Small Width Branching Programs, SIAM
Journal on Computing 31(5):1557–1570, 2002.

[8] D. Ron, Property testing (a tutorial), Handbook of Randomized Computing (S.Rajasekaran, P. M.
Pardalos, J. H. Reif and J. D. P. Rolin eds), Kluwer Press (2001).

[9] R. Rubinfeld and M. Sudan, Robust characterization of polynomials with applications to program
testing, SIAM Journal of Computing, 25(2):252–271, 1996.

Appendix

A Proof of Claim 4.4

We prove the claim for the case that T is connected. This is, sufficient since otherwise we can take the
connected component of T that contains v.

Assume that T contains a cycle. Then by Claim 4.3, the minimal connected subgraph that contains
both the cycle and v is as required.

We conclude the proof by considering the case when T is a tree. Let S be a minimum subgraph of T

that agrees with σ, and contains v and let σ∗ S∼ σ be an assignment that satisfies fx for every x ∈ S. Let
E′ be the set of edges on which σ∗ differs from σ. We may assume that E′ = E(S) as otherwise it would
contradict the minimality of S. We may also assume that there exists u ∈ V (S), where degS(u) ≥ 3, and
that S is connected (otherwise we are done, as S is a simple path or cycle). Let e1, e2 be arbitrary edges
adjacent to u, not on the path from v (if u = v then e1, e2 are arbitrary edges adjacent to v). Let σ1 be
identical to σ∗ on every edge but e1 on which it assigns the same value as σ, and let σ2 be identical to σ∗

every where but e1 and e2.
Note that for every x 6= v in the connected component that contains v in S \ {e1}, both σ1 and σ∗

assign the same values to all edges adjacent to x. Similarly, for every x 6= v in the connected component of
S \ {e1, e2} that contains v, σ2 and σ∗ assign the same values to all edges adjacent to x. Thus σ1,σ2 satisfy
every vertex in the appropriate component containing v, except possibly u. However ldistu(σ1, σ2) = 1
and hence at least one of σ1,σ2 must also satisfy u. On the other hand, both σ1 and σ2 differ from σ in at
most |S| − 1 edges in contradiction to the minimality of S.
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B Proof of Claim 4.6

By the definition of contraction G/T is connected. Each vertex in V (G/T ) ∩ V (G) is labeled by the same
function in G/T as in G and hence to conclude the claim we only need to show that for every connected
subgraph M of T the function fvM in G/T is as required by the definition of a hard-graph.

We show that fvT is as required, by induction on |E(T )|. For |E(T )| = 0 G/T = G and there is nothing
to show. Hence, it is enough to prove the claim for a single edge e since for any subgraph T and e ∈ T ,
and then by induction we will be done.

If e is a loop then by Claim 4.3 and the definition of subgraph contraction, fve ≡ 1 in G/T and we are
done. The same is also true if degG/{e}(ve) = 0 (by Corollary 4.1).

According to the definition of hard-graphs it remains to show that:

1. If degG/{e}(ve) = 1, then fve ≡ 1.

2. If degG/{e}(ve) = 2, then ldistG/{e},ve
(η1, η2) = 2 for every two assignments η1, η2 that do not satisfy

fve .

3. If degG/{e}(ve) ≥ 3, then ldistG/{e},ve
(η1, η2) ≥ 3 for every two assignments η1, η2 that do not satisfy

fv.

By simple case study it can be shown that this indeed the case. We do not provide further details in
this draft.

C Proof of Claim 4.17 and Proposition 4.18

In order to prove Claim 4.17 and Proposition 4.18 we need the following claim.

Claim C.1. Let G be a hard-graph and σ an assignment to E(G). Then, for every v ∈ UNSATG(σ) we
have

|E(Fix-SubG,σ(v))| ≤ 4
∆G(σ)

·
∣∣∣∣V olG

(
v,

Fix-RadG,σ(v)
2

)∣∣∣∣ .

Proof. Let G, σ be as in the claim and v ∈ UNSATG(σ). We first show that∣∣∣∣V olG

(
v,

Fix-RadG,σ(v)
2

)∣∣∣∣ ≥ ∆G(σ) ·
Fix-RadG,σ(v)

2
(7)

Indeed, it is enough to show that for every δ ≥ 0, V olG(v,Fix-RadG,σ(v) − δ) is a tree rooted in v,
and does not contain a vertex x for which degG(x) = 1. This is sufficient since G is a finite graph and
therefore V olG(v,Fix-RadG,σ(v)) ≥ degG(v) · Fix-RadG,σ(v). Consequently, V olG(v,Fix-RadG,σ(v)/2) ≥
∆G(v) · Fix-RadG,σ(v)/2.

Let δ ≥ 0 be the maximum real such that V olG(v,Fix-RadG,σ(v) − δ) contains a subgraph that con-
tains a cycle or a vertex of degree 1. We show next that δ = 0. Let K be a subgraph contained
in V olG(v,Fix-RadG,σ(v) − δ) that either contains a cycle or contains a vertex degree 1 or both. If
K contains a cycle or contains a vertex u for which degG(u) = 1, then by Corollary 4.5 there exists
an assignment σ∗ to E(G) that agrees with K. Thus, by the definition of Fix-RadG,σ(v) we get that
Fix-RadG,σ(v) = Fix-RadG,σ(v)− δ. Consequently, δ = 0 which implies Equation (7).

We conclude the claim by showing that

2 · Fix-RadG,σ(v) ≥ |E(Fix-SubG,σ(v))| (8)

We do so by showing that in each of the following cases there exists a subgraph S in
V olG(v,Fix-RadG,σ(v)) that agrees with σ and satisfies 2 · |E(S)| ≤ 2Fix-RadG,σ(v).

1. V olG(v,Fix-RadG,σ(v)) is a tree.
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2. V olG(v,Fix-RadG,σ(v)) contains a vertex of degree 1.

3. V olG(v,Fix-RadG,σ(v)) contains a cycle.

This is sufficient, since the definition of Fix-SubG,σ(v) implies that |E(Fix-SubG,σ(v))| ≤ |E(S)| and
hence Equation (8) holds.
(1) By Claim 4.4 and the fact that Fix-SubG,σ(v) is a subgraph that agrees with σ we infer that
V olG(v,Fix-RadG,σ(v)) contains a subgraph S that agrees with σ and is a simple path. Since
V olG(v,Fix-RADG,σ(v)) is a tree of diameter at most 2 · Fix-RadG,σ(v) we get that |E(S)| ≤ 2 ·
Fix-RadG,σ(v).
(2) Let u be a vertex of degree 1 in V olG(v,Fix-RadG,σ(v)). Let S be a shortest path between v and
u. By definition |E(S)| ≤ Fix-RadG,σ(v) and S is contained in V olG(v,Fix-RadG,σ(v)). According to
Corollary 4.5, the fact that S contains a vertex u for which degw(u) = 1, implies that S agrees with σ.
(3) Recall V olG(v,Fix-RadG,σ(v) − δ) is a tree for every δ > 0. Hence, there exists a point in
V olG(v,Fix-RadG,σ(v)) and S1,S2, that are different shortest ’paths’ in V olG(v,Fix-RadG,σ(v)) from the
point to v (note that it might be the case that this point is not a vertex). Set S to be the minimum
subgraph that contains both S1 and S2. S contains a cycle and hence according to Corollary 4.5 it agrees
with σ. The maximum distance between v and a point in V olG(v,Fix-RadG,σ(v)) and hence the length of
S1,S2 is at most Fix-RadG,σ(v). Thus, S is a required.

C.1 Proof of Claim 4.17

Let G,σ,T be as in the claim. By definition

|E(T )| ≤
∑

v∈UNSATG(σ)

|E(Fix-SubG,σ(v))|. (9)

According to Claim C.1, for every v ∈ UNSATG(σ)

|E(Fix-SubG,σ(v))| ≤ 4
∆G(σ)

·
∣∣∣∣V olG

(
v,

Fix-RadG,σ(v)
2

)∣∣∣∣ . (10)

By plugging Equation 10 into Equation 9 we get that

|E(T )| ≤ 4
∆G(σ)

·
∑

v∈UNSATG(σ)

∣∣∣∣V olG

(
v,

Fix-RadG,σ(v)
2

)∣∣∣∣ . (11)

Thus, in order to prove the statement of the claim it is enough to show that the following Equation
holds ∑

v∈UNSATG(σ)

∣∣∣∣V olG

(
v,

Fix-SubG,σ(v)
2

)∣∣∣∣ ≤ |E(G)|. (12)

We do this by showing that for every two different vertices u, v ∈ UNSATG(σ),

distG(u, v) ≥ max{Fix-RadG,σ(u),Fix-RadG,σ(v)}. (13)

This is sufficient since it implies that |V olG(v,Fix-RadG,σ(v)/2) ∩ V olG(u, Fix-RadG,σ(u)/2))| = 0 and
since G is finite we infer that Equation 12 holds.

Assume for the sake of contradiction that u, v ∈ UNSATG(σ) are two different vertices such
that distG(u, v) < max{Fix-RadG,σ(u),Fix-RadG,σ(v)}. With out loss of generality assume that
Fix-RadG,σ(v) = max{Fix-RadG,σ(u),Fix-RadG,σ(v)} and hence for some δ > 0 distG(u, v) =
Fix-RadG,σ(v)− δ.

Let R be a shortest path between u and v, x be the vertex in R adjacent to v and e′ ∈ E(R) be the edge
between v and x. Let R′ be the graph we get from R by removing the edge e′ and the vertex v. According to
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Claim 4.2 there exists an assignment σ∗ such that σ∗ R′
∼ σ and UNSATG(σ∗)∩V (R′) ⊆ {x}. Observe that by

definition of R′, |E(R′)| ≤ Fix-RadG,σ(v)−δ and hence R′ is contained in V olG(v,Fix-RadG,σ(v))−δ). Con-
sequently, UNSATG(σ∗) ∩ V (R′) = {x}, since otherwise thus contradicts the definition of Fix-RadG,σ(v).

Set σ′ to be an assignment to E(G) such that σ′(e′) = ¬σ∗(e′) and σ′(e) = σ∗(e) for every e ∈
E(G) \ {e′}. Since x, u ∈ UNSATG(σ∗) and G ∈ LD3 and ldistG,x(σ′, σ∗) = 1 and ldistG,u(σ′, σ∗) = 1
then x, u 6∈ UNSATG(σ′) and hence UNSATG(σ′) ∩ V (R) = ∅. That is, R agrees with σ in contradiction
to the choice of Fix-RadG,σ(v).

C.2 Proof of Proposition 4.18

Let G,σ,T be as in the claim. As UNSATG(σ) ⊆ V (T ), each vertex in UNSATG/T (σG→G/T ) is of the sort
vM , where M is a connected component of T . We show now that |V (M) ∩ UNSATG(σ)| ≥ 2 for every
such M . Afterwards we show how this implies the proposition.

Assume for the sake of contradiction that there exists such M for which |V (M) ∩ UNSATG(σ)| < 2.
By definition, there exists v ∈ UNSATG(σ) such that M contains Fix-SubG,σ(v). Therefore, |V (M) ∩
UNSATG(σ)| = 1. Let u ∈ UNSATG(σ) ∩ V (M). According to choice of T as a minimum subgraph
we get that M = Fix-SubG,σ(u). Consequently, according to the definition of Fix-Sub and subgraph
contraction we get that vM 6∈ UNSATG/T (σG→G/T ) in contradiction to the choice of M .

According to Corollary 4.5 if a connected component M is such that vM ∈ UNSATG/T (σG→G/T ),
then M is a tree. This together with the fact that for every connected component M of T, |V (M) ∩
UNSATG(σ)| ≥ 2, implies that every vertex in UNSATG/T (σG→G/T ) has degree at least 2 · ∆G(σ) − 2.
This proves the first part of the proposition.

We have shown that for every vertex in UNSATG/T (σG→G/T ) there exists at least two distinct vertices
in UNSATG(σ). This implies the second part of the proposition.
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