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Abstract

We investigate derandomizations of digital good randomized auctions. We propose a general

derandomization method which can be used to show that for every random auction there exists

a deterministic auction having asymptotically the same revenue. In addition, we construct an

explicit optimal deterministic auction for bi-valued auctions.

1 introduction

Marketing a digital good may suffer from a low revenue due to incomplete knowledge of the mar-

keter. Consider, for example, a major sport event with some 108 potential TV viewers. Assume

farther that all potential viewers are willing to pay 10$ or more each, and that no more than 106

are willing to pay 100$ each. If the concessionaire will charge 1$ or 100$ as a pay per view price

for the event, the overall collected revenue will be 108$ at the most. This is worse than the 109$

that can be collected, having known the valuations beforehand.

This lack of knowledge motivates the study of an unlimited supply, unit demand, single item

auction. Goldberg et al. [17] studied these auctions and suggested, in order to obtain a prior free,

worst case analysis framework, to use the optimal fixed price auction as a benchmark to compare

with. They adopted the online algorithms terminology [25] and named the revenue of the fixed

price auction the offline revenue and the revenue of a multi-price truthful auction, i.e., an auction

for which every bidder has an incentive to bid its own value, online revenue. The competitive ratio

of an auction for a bid vector b is defined to be the ratio between the best offline revenue for b to

the revenue of that auction on b. The competitive ratio of an auction is just the worst competitive

ratio of that auction on all possible bid vectors. For random auctions, a similar notion is defined

by taking the expected revenue. If an auction has a constant competitive ratio it is said to be

competitive. If an auction has a constant competitive ratio, possibly with some small additive

loss, it is said to be general competitive (see Section 2 for definitions). Later, Koutsoupias and

Pierrakos [20] used online auctions in the usual context of online algorithms, but here we will stick

to Goldberg et al.’s [17] notation.

Although this optimal fixed price benchmark may seem unintuitive at first, it was a-posteriori

explained by a work of Hartline and Roughgarden as an important general template. If we charac-
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terize the set of all mechanisms that are Bayesian optimal for some i.i.d. distribution over possible

valuations, and then define a worst case performance benchmark that corresponds to competing

simultaneously with all on a fixed, worst case, valuation profile. It turns out that for this setting

this defines the optimal first price auction [18].

It can be shown [15] that the online revenue is no more than the offline revenue, even though

the former uses more than one optional price. In fact, there even exists a lower bound of 2.42 on

the competitive ratio of any auction [16].

Note, however, that the optimal offline revenue is unknown in truthful auctions.

It is well known (see for example [22]) that in order to achieve truthfulness one can use only

the set of bid independent auctions, i.e., auctions in which the computation of the price offered to

a bidder is done while ignoring its own bid value. Hence, an intuitive auction that often comes

to one’s mind is the Deterministic Optimal Price (DOP) auction [2, 15, 24]. In this auction the

mechanism computes and offers each bidder the price of an optimal offline auction for all other

bids. This auction preforms well on most bid vectors. In fact, it was even proved by Segal [24]

that if the input is chosen uniformly at random, then this auction is asymptotically optimal. For

a worst case analysis, however, it preforms very poor. Consider, for example, an auction in which

there are n bidders and only two possible bid values: 1 and h, where h� 1. We denote this setting

as bi-valued auctions. Let nh be the number of bidders who bid h. Applying DOP on a bid vector

for which nh = n/h will result in a revenue of nh instead of the n revenue of an offline auction.

This is because every “h-bidder” is offered 1 (since n − 1 > h · (nh − 1)) and every “1-bidder” is

offered h (since n− 1 < h ·nh). Here an “h-bidder” refers to a bidder that bids h and a “1-bidder”

refers to a bidder that bids 1. Therefore, the competitive ratio of DOP is unbounded. Similar

examples regarding the performances of DOP in the bi-valued auction setting appeared already in

Goldberg et al. [15], and in Aggarwal et al. [2].

Goldberg et al. [17] showed that there exist random competitive auctions. Other works with

different random competitive auctions, competitive lower bounds, and better analysis of existing

auctions were presented, see for example [13, 14, 16]. For a survey see the work of Hartline and

Karlin that appeared in [23, Chapter 13] (Profit Maximization In Mechanism Design). In all these

works, no deterministic auction was presented. In fact, Goldberg et al. [15, 17] even proved that

randomization is essential if the auction is symmetric (aka anonymous), i.e., if the outcome of the

auction does not depend on the order of the input bids.

Aggarwal et al. [1,2] later showed how to construct from any randomized auction a deterministic,

asymmetric auction with approximately the same revenue. In order to establish the result the

authors used guessing auctions, in which the bidder gets the good only if the price equals exactly

the bid (rather than lower or equal, as in a the standard setting). The guessing auctions are then

“solved” using a hat guessing game which they introduce. Therefore for every random auction

a deterministic “dual” auction can be constructed, though not in polynomial time, where the

deterministic one guarantees a revenue which is close to the expected revenue of the random auction.

Following is a more formal claim of their result: given a randomized auction A which accepts

bid-vectors in [1, h]n, there exists a deterministic, asymmetric auction AD satisfying PAD
(b) ≥

PA(b)/4 − O(h) for every b ∈ [1, h]n; here PAD
(b) is the revenue of AD given a bid-vector b and

PA(b) is the expected revenue of A given a bid-vector b. The same result also holds in the more
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restrictive case where A accepts only discrete bid-vectors in [h]n. In addition, Aggarwal et al.

showed that if the bid-vectors are restricted to be vectors of powers of 2 then the multiplicative

factor of 4 above can be improved to 2.

1.1 Our Results

We show how to eliminate the multiplicative factor of 4. We use Lovász’s Local Lemma [11] to show

that for every random auction there exists a deterministic auction that guarantees the expected

revenue of the random one, on any bid vector. More formally, for a randomized auction A and

bid vector b let PA(b) be the expected revenue of A on b. We show that given a random auction

A, there exists a deterministic auction which, given a bid-vector b ∈ [h]n, guarantees a revenue of

PA(b)−O(h
√
n lnhn). As is the case with the construction of Aggarwal et al. [1], our construction

is also not polynomial time computable.

For bi-valued auctions, with bid values {1, h} and n bidders, we show a polynomial time de-

terministic auction, for which we guarantee a revenue of max {n, h · nh} − O(
√
n · h), where nh is

just the number of bidders that bid h. We then show that this bound is unconditionally optimal

by showing that every auction (including a random superpolynomial one), cannot guarantee more

than max{n, h · nh} − Ω(
√
n · h). That is, there exists an auction with no multiplicative loss and

with only O(
√
n · h) additive loss, and every auction has at-least these losses. Let us note here,

that if we restrict ourselves to anonymous auctions (symmetric) then we have a multiplicative loss

of Ω(h) and an additive loss of Ω(n/h) over the max {n, h · nh} revenue of the best offline [2, 15].

In order to find a polynomial time deterministic auction for bi-valued auctions, we solve a

certain hat guessing puzzle. Hat guessing games is an emerging research field in combinatorics.

It was broadly brought to the attention of researchers by a work of Peter Winkler [27], and since

then was studied in many works such as [3, 8–10, 12]. The beautiful work of Aggarwal et al. [2]

established a connection between hat guessing games and unlimited supply, unit demand, single

item auctions. In fact, the authors introduced three different hat games and used them to establish

their derandomizations. We show how a different hat game can help in forming an answer to the

bi-valued auctions setting. This hat game was previously studied by Doerr and by Feige [9, 12].

Our deterministic hat strategy improves Doerr’s result and answers an open question of Feige.

Consider the following game. There are n players, each wearing a hat colored red or blue. Each

player does not see the color of its own hat but does see the colors of all other hats. Simultaneously,

each player has to guess the color of its own hat, without communicating with the other players.

The players are allowed to meet beforehand, hats-off, in order to coordinate a strategy. We give a

polynomial time deterministic strategy which guarantees that the number of correct guesses is at

least max{nr, nb} − O(n1/2), where nr is the number of players with a red hat and nb = n− nr is

the number of players with a blue hat.

1.2 Additive Loss

Already in the work that suggested using competitive analysis, namely Goldberg et al. [17], a

major obstacle arises. It was indicated that no auction can be competitive against bids with one

high value (see Goldberg et al. [15] for details). The first solution that was suggested to this
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problem was taking a different benchmark as the offline auction. This different benchmark was

again the maximum single price auction, only now the number of winning bidders is bounded to be

at-least two. The term competitive was then used to indicate an auction that has a constant ratio

on every bid vector against any single price auction that sells at-least two items. A few random

competitive auctions were indeed suggested using this definition over the years, but, as noted

before, no deterministic (asymmetric) auction was ever found. In fact, this was proved not to be a

coincidence when Aggarwal et al. [1] showed that no deterministic auction can be competitive even

on this weaker benchmark.

Given this lower bound a new solution should be considered, and indeed Aggarwal et al. [1]

suggested such. The new definition suggested generalizing the competitive notion to include also

additive losses on top of the multiplicative ones considered before.

We argue that our results, and in particular the auction and the tight lower bound for the

bi-valued setting, indicate that this second approach of considering also the additive loss is more

accurate, as it shows how analyzing with a finer granularity turns an uncompetitive auction to an

optimal one. We elaborate on this agenda in the discussion section 5.

1.3 Organization

After a short preliminaries section we introduce our general derandomization on section 3. Section 4

presents the deterministic polynomial time algorithm for bi-valued auctions together with a tight

lower bound that applies even for random auctions. It starts, however, in the presentation of the

new deterministic hat guessing bound that serves as a building block for the auction. We conclude

with closing remarks and open problems in section 5.

2 Preliminaries

For a natural number k, let [k] denote the set {1, 2, ..., k}. A bid-vector b ∈ [h]n is a vector

of n bids, each taking a value in [h]. For b ∈ [h]n and i ∈ [n] we denote by b−i the vector

which is the result of replacing the ith bid in b with a question mark; that is, b−i is the vector

(b1, b2, . . . , bi−1, ?, bi+1, . . . bn). For every i ∈ [n], we let [h]n−i = {b−i| b ∈ [h]n}.

Definition 1 (Unlimited supply, unit demand, single item auction). An unlimited supply, unit

demand, single item auction is a mechanism in which there is one item of unlimited supply to sell

by an auctioneer to n bidders. The bidders place bids for the item according to their valuation of

the item. The auctioneer then sets prices for every bidder. If the price for a bidder is lower than

or equal to its bid, then the bidder is considered as a winner and gets to buy the item for its price.

A bidder with price higher than its bid does not pay nor gets the item. The auctioneer’s revenue is

the sum of the winners prices.

A truthful auction is an auction in which every bidder bids its true valuation for the item.

Truthfulness can be established through bid-independent auctions (see for example [22]). A bid-

independent auction is an auction for which the auctioneer computes the price for bidder i using

only the vector b−i (that is, without the ith bid). Two models have been proposed for describing
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random truthful auctions. The first, being the truthful in expectation, refers to auctions for which

a bidder maximizes its expected utility by bidding truthfully. The second model, the universally

truthful is merely a probability distribution over deterministic auctions. Our results uses this second

definition, however, it is known that the two models collide in this setting [21].

Definition 2 (fixed price, offline auction). The fixed price, offline auction is the auction that on

each bid vector b ∈ [h]n fixes a single price, α = α(b) for all bidders, so to maximize the revenue

given that price. Namely, α is chosen such that
∑

bi≥α α is maximized.

Definition 3 (General competitive auction). Let OPT (b) be the best fixed-price (offline) revenue

for an n-bid vector b with maximum bid h. An auction A is a general competitive auction if its

revenue (expected revenue) from every bid vector b, PA(b) is ≥ α · OPT (b) − o(nh) where α is a

constant not depending on n or h.

2.1 A structural lemma

Let A be a randomized truthful auction that accepts bid-vectors from [h]n. We think of A as a

distribution over deterministic auctions. Hence, we may view A’s execution in the following manner.

The auction maintains a set of nm functions {gi,j : i ∈ [n], j ∈ [m]}, where gi,j is a function from

[h]n−i to [h]. This corresponds to a collection of m deterministic auctions, where the jth is defined

by the set of functions {gi,j | i ∈ [n]}. On a bid-vector b ∈ [h]n, the auction tosses some coins, and

chooses, accordingly, an integer j ∈ [m]. The auction then offers bidder i the price gi,j(b−i). Let

accepti,j(b) be 1 if gi,j(b−i) ≤ bi and 0 otherwise. Let pj be the probability that j ∈ [m] was chosen.

The expected revenue of the auction on input b is then:

PA(b) =
∑
j

pj
∑
i

accepti,j(b) · gi,j(b−i).

Note that for every j ∈ [m], the set of functions {gi,j | i ∈ [n]} is just a deterministic strategy,

denoted Aj , and A is, as explained before, a distribution on deterministic strategies.

Note also that given A, namely the set of m deterministic auctions, and a distribution, D =

(p1, . . . , pn) on [m], A induces another randomized auction A′ as follows: for a given b, it chooses

for each i ∈ [n], independently, a ji ∈ [m] according to D (namely ∀i, Pr(ji = j) = pj), and acts

according to the set of functions thus chosen, namely {gi,ji , i = 1, . . . , n}.
By definition, the expected revenue of A′ on input b is given by:

PA′(b) =
∑
i

∑
j

pj · accepti,j(b) · gi,j(b−i).

We call A′ the bidder-self-randomness-dual of A (as the function for different bidders are “not

coordinated”). Comparing the revenue of A and that of A′ immediately implies

Lemma 2.1. Let A be a randomized auction and A′ be its bidder-self-randomness-dual auction.

Then A and A′ have the same expected revenue on every bid-vector.

This corresponds with the minimax Theorem [26] and with Yao’s Lemma [28]. We note that

A′ is concentrated on possibly many more deterministic algorithms than A. Not only may g1 be
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chosen from the jth copy while g2 from the `’s copy, (namely g1 = g1,j while g2 = g2,` with j 6= `), it

could also be that for different bid vectors b, b′, g1 for b is g1,j while g1 for b′ is g1,`. This works since

no consistency requirement between different b’s, and/or different i’s, is required in the expression

for the expectation above.

2.2 Probabilistic Tools

The following two well known lemmata are used in the proofs. We explicitly state both for com-

pleteness. The first is just the famous Lovász Local Lemma [11]. We will need the following version

of it [4].

Lemma 2.2 (The local lemma; symmetric case). Let Badi, 1 ≤ i ≤ N , be events in an arbitrary

probability space. Suppose that each event Badi is mutually independent of a set of all the other

events Badj but at most d, and that Pr[Badi] ≤ p for all 1 ≤ i ≤ N . If ep(d + 1) ≤ 1, where e is

the base of the natural logarithm, then Pr[
∧N
i=1 ¬Badi] > 0.

The second lemma is just a tail bound inequality proved by Hoeffding [19].

Lemma 2.3 (Hoeffding). Let X be the average of n independent random variables Xi, where

Xi ∈ [ai, bi] for all i. Then: Pr[X < E[X]− t] ≤ 2 exp
(

−2n2t2∑n
i=1 (bi−ai)2

)

3 A General Derandomization

This section is devoted for the proof of the following Theorem.

Theorem 3.1. Let A be a randomized auction which accepts bid-vectors in [h]n. Assume that A

has expected revenue PA(b) for every bid-vector b ∈ [h]n. Then there exists a deterministic auction

AD that guarantees a revenue of PAD
(b) ≥ PA(b)−O(h

√
n lnhn) for every bid-vector b ∈ [h]n.

The proof of Theorem 3.1 can be outlined as follows. Given a randomized auction A we first

move to the bidder-self-randomness-dual auction A′ that has the same revenue as A. Let AD be a

deterministic auction that is chosen according to the distribution that A′ induces on deterministic

auctions. We show that the event Badb, defined by PAD
(b) < PA′(b) − t, depends on a relatively

few number of other events Badb′ . Moreover, for every b, we have that the probability of Badb
is sufficiently small. We then apply the Lovász Local Lemma to show that there exists a single

deterministic auction AD, namely a choice of a collection of functions {gi,ji , i ∈ [n]}, for which none

of the events Badb occur. This will conclude the proof of the theorem.

We stress the fact that the result of Aggarwal et al. [1] is more general in the sense that it

deals with bid-vectors in [1, h]n, while Theorem 3.1 only deals with discrete bid-vectors. However,

discrete bid-vectors make sense in real life auctions where bids are monetary bids, being made with

discrete valued currency. We stipulate that the construction used in the proof of Theorem 3.1 is

not known to be polynomial time computable and that this is also the case in the construction of

Aggarwal et al. [1].

We now formally present the proof.
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Proof of Theorem 3.1. Let A be a randomized auction which accepts bid-vectors in [h]n, using a

distribution over m deterministic auctions. Let {gi,j : i ∈ [n], j ∈ [m]} be the set of functions that

A maintains. Let (p1, . . . , pn) be the distribution over [m] that is used by A, and let A′ be the

bidder-self-randomness-dual of A. Namely, in which for each b, gi is chosen independently for each

i, among all gi,j , j ∈ [m], with the corresponding probabilities {pj , j ∈ [m]}.
For every vector b let PA(b) be the revenue expected by A on b. By Lemma 2.1, the revenue of

A′ on a bid vector b is

PA(b) =
∑
i

∑
j

pj · accepti,j(b) · gi,j(b−i)

In the following, all events are with respect to the distribution defined by the runs of the

random auction A′. Namely, the probability space contains, for each bid vector b, an n-tuple of

independently chosen values (gi,j)i∈[n] as defined above by A′.

Let t := h
√
n ln 2hn. For a random run of A′, namely, for a deterministic auction A′D that is

chosen at random according to the distribution induced by A′ on deterministic auctions, let Badb
be the event that PA′D(b) < PA(b)− t.

We need the following two claims.

Claim 3.2. For all b ∈ [h]n, Pr[Badb] < 1/(2h2n2).

Proof. Fix b ∈ [h]n and let Xi be the revenue extracted from bidder i in a run of A′, namely, for gi
chosen for b. Then, Xi = accepti,j(b) · gi(b−i). Note that Xi ∈ [1, h] for all i and that the Xi’s are

independent random variables. Let X be the sum of the Xi’s. Namely, X is the revenue on b for

that specific run. We have already argued that E[X] = PA(b), thus,

Pr[Badb] = Pr[X < E[X]− t],

which by Lemma 2.3 is at most 2 exp
(−2t2
h2n

)
. The claim now follows since t = h

√
n ln 2hn. �

Claim 3.3. For all b ∈ [h]n, Badb depends on at most hn other events Badb′.

Proof. Let b ∈ [h]n be fixed. The tuple (gi(b−i)), i = 1, . . . , n, defines the revenue on b for a strategy

that chooses this tuple. Thus for a vector b′ 6= b, the events Badb, Badb′ may be dependent only if

for some i ∈ [n], b−i = b′−i. This is so, since otherwise, once the tuple for b is chosen, that leaves

complete freedom in choosing the tuple for b′. For a fixed b, and fixed i there are h possible vectors

b′, for which b−i = b′−i. Hence the claim follows. �

Combining the two claims above with the Lovász Local Lemma, we get that with positive

probability Badb does not occur for all b ∈ [h]n. Hence, there is a set of tuples (gi(b−i))i∈[n], b ∈ [h]n,

for which Badb does not occur for every b ∈ [h]n. This set of tuples is the deterministic strategy

AD for which for every bid-vector b ∈ [h]n, PAD
(b) ≥ PA(b) − t. This completes the proof of the

theorem. �
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4 Bi-valued Auctions and a Hat Game

We establish a connection between bi-valued auctions and a specific hat guessing game known as

the majority hat game. This game was studied by Doerr [9] and later by Feige [12]. We derive new

results regarding this game, which enable us to solve the bi-valued auction problem optimally.

4.1 A Hat Game

A group of n players is gathered, nr of which wear a red hat and nb = n − nr wear a blue hat.

Every player in the group can see the colors of the hats of the other players, but cannot see and

does not know the color of its own hat, a color which has been picked by an adversary. No form

of communication is allowed between the players. At the mark of an unseen force, each player

simultaneously guesses the color of its hat. The objective of the players as a group is to make the

total number of correct guesses as large as possible. In order to achieve this goal, the players are

allowed to meet beforehand, hats-off, and agree upon some strategy.

Theorem 4.1. There exists a polynomial time deterministic strategy which guarantees at least

max{nr, nb} −O(n1/2) correct guesses.

Let us give a few remarks. First, this result is optimal, in the sense that any deterministic

strategy can guarantee only max{nr, nb} − Ω(n1/2) correct guesses in the worst case; this was

proved by Feige [12] and Doerr [9]. Second, this result improves a result of Doerr [9] who gave

a polynomial time deterministic strategy which guarantees at least max{nr, nb} −O(n2/3) correct

guesses, and a result of Feige [12] who gave a non-polynomial time deterministic strategy which

guarantees at least max{nr, nb}−O(n1/2) correct guesses. Feige further asked whether there exists

a polynomial time deterministic strategy which guarantees this last bound, and our result answers

this question affirmatively. Lastly it should be noted that Winkler [27], who brought the problem to

light, gave a simple polynomial time deterministic strategy which guarantees bn/2c correct guesses.

The proof of Theorem 4.1 has two parts. First, we design a polynomial time randomized

strategy for the players, a strategy which guarantees that under any hat assignment, the expected

number of correct guesses is max{nr, nb} −O(n1/2). We then derandomize this strategy by giving

a polynomial time deterministic strategy that always achieves, up to another O(n1/2) additive loss,

the expected number of correct guesses of the randomized strategy.

4.1.1 Randomized strategy

Let the players agree in advance on some ordering so that the ith player is well defined and known

to all. Under a given hat assignment, let χr(i) be the number of red hats that the ith player sees.

Analogously, let χb(i) be the number of blue hats that the ith player sees. Say that a player is red

(respectively blue) if she wears a red (respectively blue) hat.

Our strategy is a collection of randomized strategies, one for each player. We describe the

strategy of the ith player, Paula. First Paula computes two positive integers a(i) and b(i), and

sets p(i) = a(i)/b(i). If |χr(i) − χb(i)| ≤ 1, then Paula takes a(i) = 1 and b(i) = 2, so that

p(i) = 1/2. Otherwise, |χr(i) − χb(i)| ≥ 2 and so we have either χr(i) = n/2 + c for some
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c > 0 or χb(i) = n/2 + c for some c > 0 (but not both). In the former case Paula takes a(i) =

min{bn1/2c, dce} and b(i) = bn1/2c, so that p(i) = min{1, dce/bn1/2c} and in the latter case she

takes a(i) = bn1/2c − min{bn1/2c, dce} and b(i) = bn1/2c, so that p(i) = 1 − min{1, dce/bn1/2c}.
Note that a(i), b(i) and p(i) can be computed in polynomial time. Having p(i) at hand, Paula

draws a uniformly random real p in the unit interval, guesses red if p ≤ p(i) and blue otherwise.

Lemma 4.2. If each player follows the above strategy then the expected number of correct guesses

is at least max{nr, nb} −O(n1/2).

Proof. We shall assume throughout the proof that nr ≥ nb; the argument for the other case is

symmetric. We consider the following cases.

• nr = nb. In that case, every player guesses correctly with probability 1/2. Thus the expected

number of correct guesses is max{nr, nb}.

• nr ∈ {nb + 1, nb + 2}. In that case, every red player guesses red with probability 1/2 and

every blue player guesses blue with probability 1−O(n−1/2). Thus, the expected number of

correct guesses is nr/2 + nb(1−O(n−1/2)), which is clearly at least max{nr, nb} −O(n1/2).

• nr ≥ nb + 3. In the last case we examine the gap between nr and n/2. If this gap is small

(�
√
n) then enough blue players will guess blue. Otherwise enough red players will guess red.

Formally, let x > 1 satisfy nr = n/2+x, so that nb = n/2−x. First assume that dxe ≤ bn1/2c.
In that case, every red player guesses red with probability dx− 1e/bn1/2c = (dxe− 1)/bn1/2c,
and every blue player guesses blue with probability 1− dxe/bn1/2c. Therefore, the expected

number of correct guesses is

(n/2 + x)(dxe − 1)/bn1/2c+ (n/2− x)(1− dxe/bn1/2c) =

(n/2 + x)dxe/bn1/2c − (n/2 + x)/bn1/2c+ (n/2− x)(1− dxe/bn1/2c) ≥
(n/2− x)dxe/bn1/2c − (n/2 + x)/bn1/2c+ (n/2− x)(1− dxe/bn1/2c) ≥

(n/2− x)− (n/2 + x)/bn1/2c ≥ n/2− 4n1/2,

which is at least max{nr, nb} − O(n1/2), since max{nr, nb} ≤ n/2 + O(n1/2). Next assume

that dxe > bn1/2c. In that case, every red player guesses its hat correctly with probability 1

and so the expected number of correct guesses is at least nr ≥ max{nr, nb} −O(n1/2). �

4.1.2 Derandomization

The randomized strategy we gave above has two phases. In the first phase the ith player computes

in deterministic polynomial time some number p(i) in the unit interval. Moreover, the strategy is

symmetric namely, for some pr and pb that depend only on the number of red hats and the number

of blue hats, we have p(i) = pr if the ith player is red and p(i) = pb if the ith player is blue.

Given the first phase, the second phase guarantees that the expected number of correct guesses

is prnr + (1 − pb)nb, which was shown by Lemma 4.2 to be at least max{nr, nb} − O(n1/2). We

show in the following that, if for all 1 ≤ i ≤ n the ith player has determined p(i), we can replace

the second phase of the randomized strategy by a non-symmetric, polynomial time, deterministic
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strategy which guarantees that at least prnr−O(n1/2) red players make a correct guess and at least

(1−pb)nb−O(n1/2) blue players make a correct guess. By Lemma 4.2 this will imply Theorem 4.1.

Suppose that for all 1 ≤ i ≤ n, the ith player has determined a(i), b(i) and p(i). The following

is the strategy that the ith player follows in order to determine its guess.

1. Let X(i) =
∑

j j, where the sum ranges over all j 6= i such that the jth player is red.

2. Let Y (i) =
∑

j 1, where the sum ranges over all j < i such that the jth player is red.

3. Let Z(i) = i+X(i) + (b(i)− 1)Y (i) (mod b(i)).

4. Guess red if Z(i) < a(i), blue otherwise.

Note that the above deterministic strategy can be implemented so that its running time is polyno-

mial in n. This fact together with the next lemma proves Theorem 4.1.

Lemma 4.3. Suppose that for all 1 ≤ i ≤ n, the ith player has computed a(i), b(i) and p(i). If

each player follows the above strategy, then the number of red players that make a correct guess

is at least prnr − O(n1/2) and the number of blue players that make a correct guess is at least

(1− pb)nb −O(n1/2).

Proof. In what follows we make use of the following facts, which follow from the definition of a(i)

and b(i) in the previous section. If the ith player and the jth player both have a hat of the same

color, then a(i) = a(j) and b(i) = b(j). Furthermore, for all 1 ≤ i ≤ n, 1 ≤ b(i) ≤ 2n1/2.

Let us first consider the red players. Let 1 ≤ i < j ≤ n be two indices of players so that the ith

player’s hat and the jth player’s hat are both red and furthermore, for all i < k < j we have that

the kth player’s hat is blue. Let a(i) = a(j) = a and b(i) = b(j) = b so that pr = a/b. We have

i + X(i) = j + X(j) and Y (j) − Y (i) = 1. Thus Z(j) − Z(i) = b − 1 (mod b). This implies that

out of each b consecutive red players, a guess red. Thus, since b ≤ 2n1/2, at least prnr − O(n1/2)

red players guess red.

Next consider the blue players. Let 1 ≤ i < j ≤ n be two indices of players so that the ith

player’s hat and the jth player’s hat are both blue and furthermore, for all i < k < j we have

that the kth player’s hat is red. Let a(i) = a(j) = a and b(i) = b(j) = b so that pb = a/b. We

have X(i) = X(j) and Y (j) − Y (i) = j − i − 1. Thus Z(j) − Z(i) = j − i + (b − 1)(j − i − 1)

(mod b) = b(j − i)− b+ 1 (mod b) ≡ 1 (mod b). This implies that out of each b consecutive blue

players, b − a guess blue. Thus, since b ≤ 2n1/2, at least (1 − pb)nb − O(n1/2) blue players guess

blue. �

4.2 A Bi-valued Auction

Consider bi-valued auctions, in which there are n bidders, each can select a value from {1, h}. The

auction’s revenue equals the number of bidders it offers 1 plus h times the number of bidders it

offers h if indeed their value is h. Let nh(b) denote the number of bidders who bids h in a bid

vector b. Recall that the best offline revenue on vector b is max {n, h · nh(b)}. In this section we

will prove the following.
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Theorem 4.4. For bi-valued auctions with n bidders and values from {1, h}

1. There exists a polynomial time deterministic auction that for all bid vector b has revenue

max {n, h · nh(b)} −O(
√
n · h)

2. There is no auction that for all bid vector b has revenue

max {n, h · nh(b)} − o(
√
n · h)

Note that the lower bound result is unconditional and applies also for randomized superpoly-

nomial auctions. We proceed with a proof for the upper bound in the next section and a proof for

the lower bound in section 4.2.2.

4.2.1 An Auction

We present next a solution to the bi-valued auction problem, namely we show an optimal polynomial

time deterministic auction. We start again by describing a random auction. A derandomization

will be built later using the same methods we presented in the former section for the hat guessing

problem.

A Random Bi-valued Auction
For a fixed input b, let nh be the number of h-bids in b and nh(i) be the number of h-bids in b−i. Let

p′(i) = h·nh(i)−n
h·
√
nh(i)

. If p′(i) ≤ 0 set p(i) = 0 and if p′(i) ≥ 1 set p(i) = 1. Otherwise, (0 < p′(i) < 1),

set p(i) = p′(i). The auction offers value h for bidder i with probability p(i) and 1 otherwise.

Lemma 4.5. The expected revenue of the auction described above is max {n, h · nh} −O(
√
n · h)

Proof. If ∃i, p(i) 6= p′(i) then either h · nh(i) ≤ n so the auction will offer 1 to any 1-bidder and

the revenue will be at-least n = max {n, h · nh}, or h · nh(i)− n ≥ h ·
√
nh(i) so every h-bidder will

be offered h with probability 1−O(1/
√
nh) and the expected revenue thus is hnh · (1− 1/

√
nh) =

max {n, h · nh} − O(
√
n · h). In either case our auction’s revenue is max {n, h · nh} − O(

√
n · h).

Assume now that ∀i, p(i) = p′(i), note that in this case |n − h · nh| = O(h
√
nh). The expected

revenue for any bid vector with nh bids of value h is then:

h · nh
h · (nh − 1)− n
h ·
√
nh − 1

+ nh · (1−
h · (nh − 1)− n
h ·
√
nh − 1

) + (n− nh) · (1− h · nh − n
h · √nh

)

≥ h · nh
h · (nh − 1)− n
h ·
√
nh − 1

+ nh · (1−
h · (nh − 1)− n
h ·
√
nh − 1

) + (n− nh) · (1− h · nh − n
h ·
√
nh − 1

)

≥ h ·nh
h · (nh − 1)− n
h ·
√
nh − 1

+n ·(1− h · nh − n
h ·
√
nh − 1

)+nh ·(1−
h · (nh − 1)− n
h ·
√
nh − 1

)−nh ·(1−
h · (nh − 1)− n
h ·
√
nh − 1

)
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= h · nh
h · (nh − 1)− n
h ·
√
nh − 1

+ n · (1− h · nh − n
h ·
√
nh − 1

)

= h · nh ·
h · nh − n
h ·
√
nh − 1

+ n · (1− h · nh − n
h ·
√
nh − 1

)− h · nh√
nh − 1

Observe that the sum of the first two terms in the last expression above is max {n, h · nh} −
O(
√
n · h). This is because |n− h ·nh| = O(

√
n · h). The third term however, can be absorbed also

into the O(
√
n · h), which completes the proof of the lemma. �

Hence our auction’s expected revenue is within an additive loss of O(
√
n · h) from the revenue of

the best offline as promised. As noted before, a derandomization for this auction can be built using

the same ideas appeared in the hat guessing game. This derandomization produces an auction

which has for the worst case only another additive loss of O(
√
n · h) over the expected revenue of

the random auction. Hence, in total, an additive loss of O(
√
n · h) over the best offline revenue is

achieved. We sketch this derandomization here for completeness.

Derandomization
Let a(i) = h · nh(i)− n and b(i) = h ·

√
nh(i). The auction computes the value offered to bidder i

according to the following.

1. Let X(i) =
∑

j j, where the sum ranges over all j 6= i such that the jth bidder bids h.

2. Let Y (i) =
∑

j 1, where the sum ranges over all j < i such that the jth bidder bids h.

3. Let Z(i) = i+X(i) + (b(i)− 1)Y (i) (mod b(i)).

4. Offer h to bidder i if Z(i) < a(i). Otherwise offer 1 to the i’s bidder.

Note that for the random auction whenever p(i) = p′(i) (or as stated here a(i)/b(i) ∈ [0, 1]) we

can define the probability that a 1-bidder will be offered 1, p1,1 = (1− h·nh−n
h·√nh

), the probability that

an h-bidder will be offered 1, ph,1 = (1 − h·(nh−1)−n
h·
√
nh−1

) and the probability that an h-bidder will be

offered h, ph,h = h·(nh−1)−n
h·
√
nh−1

. The proof of the following lemma resembles the proof of lemma 4.3,

noting that we should also consider the case of “wrong” offers for h-bidders.

Lemma 4.6. An auction that follows the above formulation gains revenue of nh · (h · ph,h + ph,1)−
O(
√
n · h) from all h-bidders. From the 1-bidders, the auction collects (n− nh)p1,1 −O(

√
n · h).

Proof. Let a(1) be the (identical) value a(i) computed by all 1-bidders. In the same manner let

b(1), a(h), b(h) be the (identical) values computed by all bidders. The lemma follows Lemma 4.5

and the following claim:

Claim 4.7.

• For every b(1) consecutive 1-bidders the auction will offer h to a(1) of them and 1 to b(1)−a(1)

• For every b(h) consecutive h-bidders the auction will offer h to a(h) of them and 1 to b(h)−
a(h)
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Proof. Consider the h-bidders first. Let 1 ≤ i < j ≤ n be the indices of two consecutive h-bidders.

We have i+X(i) = j +X(j) and Y (j)− Y (i) = 1. Thus Z(j)−Z(i) = b(h)− 1 (mod b(h)). This

implies that out of each b(h) consecutive h-bidders, a(h) will be offered h and b(h) − a(h) will be

offered 1.

Next consider the 1-bidders. Let 1 ≤ i < j ≤ n be the indices of two consecutive 1-bidders. We

have X(i) = X(j) and Y (j)− Y (i) = j − i− 1. Thus Z(j)− Z(i) = j − i+ (b(1)− 1)(j − i− 1) =

b(1)(j − i) − b(1) + 1 ≡ 1 (mod b(1)). This implies that out of each b(1) consecutive 1-bidders,

b(1)− a(1) are offered 1. �

�

It is clear that this auction can be implemented in polynomial time as claimed, hence the upper

bound of Theorem 4.4 follows.

Informal Remark: A natural critic that should arise at first glance of our “complicated” sug-

gested auction is its being “unintuitive”. How can one explain/excuse suboptimal actions whenever

nh 6= n/h? Why not deploy DOP in these settings? Note, however, that the proposed auction

does exactly the same. On most inputs it acts as the DOP and only on inputs where nh ≈ n/h

it deploys the “sophisticated” auction. In particular, the auction “sacrifices the accuracy” of re-

sults whenever for the bid vector b we have that n ≤ hnh(b) ≤ n + h
√
nh(b). This “sophisticated

sacrifice”, however, results in turning an unbounded competitive auction into an optimal one.

4.2.2 A Lower Bound

We prove optimality of the suggested auction in the previous section. For this we prove a lower

bound on the additive loss of any bi-valued auction. The lower bound is unconditional and holds

also for the expected revenue of random auctions. Furthermore, the bound does not depend on the

computation time needed for the auction, therefore, randomness has no significant effect on the

revenue gained in this setting.

Lemma 4.8. Let A be an auction for the bi-valued {1, h} setting and let PA(b) be A’s revenue on

bid vector b. Then PA(b) equals max {n, h · nh} − Ω(
√
h · n), where b is of size n and nh is the

number of bids of value h in b.

Proof. To prove a lower bound on the difference between the offline revenue max {n, h · nh}, and

any auction we define a distribution D on the possible two-values bid vectors {1, h}n. We then show

that for any deterministic auction, the expected revenue for a random bid vector b (expectation

now is with respect to D), is at most P . On the other hand, we show that the expected revenue

of the offline single price (over the distribution D) is at least P + ∆, for some ∆. This implies (by

standard averaging argument, see for example [28]), that for any auction, (including randomized

ones), there must be some vector b for which the auction’s revenue is ∆ less than the fixed-price

offline optimal auction.

The distribution D in our case is quite simple: for every bidder i ∈ [n] independently, set bi = h

with probability 1/h and bi = 1 with probability 1 − 1/h. Now, for every deterministic truthful

auction, knowing D, the price for every element should better be in [h], otherwise there is another
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auction that assign prices in [h] and achieves at least the same revenue for every bid vector (the one

that assigns 1 for every value less than 1 and h for every value higher than h). Further, for such

auction, the revenue is the sum of revenues obtained from the n bidders. Thus the expectation

is the sum of expectations of the revenue obtained from the single bidders. Since for bidder i

the expectation is exactly 1 (since for any fixed bi the auction must set a constant price α ∈ [h]

independent of bi. Hence for α > 1, the expected revenue from bidder i is 1
h · h = 1, and for α = 1

the expected value is clearly 1). We conclude that for every deterministic truthful auction as above,

the expected revenue (with respect to D), is exactly n.

We now want to prove that the expected revenue of the fixed-price offline auction, that knows

b, is n+ Ω(
√
hn). We know, however, the exact revenue of such auction for every bid vector b. It

is just M(b) = max {n, h · nh(b)}, where nh(b) is the number of h-bids in b.

Thus the expected revenue is

ED[M(b)] :=
∑
i<n/h

n ·
(n
i
)
· (1/h)i · (1− 1/h)n−i +

∑
i>n/h

h · i ·
(n
i
)
· (1/h)i · (1− 1/h)n−i (1)

+ n ·
(

n

n/h

)
(1/h)n/h(1− 1/h)n−n/h

To estimate this sum, it is instructive to examine the following deterministic auction which we

note before as DOP . On each vector b, DOP assigns value h for every bidder i for which the

number of h-bids in b−i, is at least n/h (we assume n/h is an integer), and 1 otherwise.

On one side, as argued before, the expected revenue of DOP with respect to D is

E[PDOP ] = n (2)

On the other hand, the same expression, is by definition,

E[PDOP ] =
∑
i<n/h

n ·
(n
i
)
· (1/h)i · (1− 1/h)n−i +

∑
i>n/h

h · i ·
(n
i
)
· (1/h)i · (1− 1/h)n−i (3)

+(n/h) ·
(

n

n/h

)
(1/h)n/h(1− 1/h)n−n/h

Comparing the expression in Equation (1) and Equation (3), and using Equation (2), we get:

ED[M(b)] = n+ (n− n/h) ·
(

n

n/h

)
(1/h)n/h(1− 1/h)n−n/h

Hence we conclude that the difference in expectation between offline revenue ED[M(b)] and the

expected revenue on any deterministic auction, which is n, is,

ED[M(b)]− n = n(1− 1/h) ·
(

n

n/h

)
(1/h)n/h(1− 1/h)n−n/h

By Stirling’s approximation we know that(
n

n/h

)
= Θ

( √
h/n√

(1− 1/h)(1/h)n/h(1− 1/h)n−n/h

)
Therefore, the additive lost is at least Ω(

√
h · n) as claimed. �
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5 Discussion

We have presented an existential general derandomization for unlimited supply, unit demand, sin-

gle item auctions. This derandomization produces an auction with the same asymptotic revenue

guarantee as the expected revenue of the randomized. Furthermore, this derandomization is di-

rect (in the sense that no intermediate like “guessing auction” is involved). This answers an open

question posed by Aggarwal et al. [1] about the existence of direct derandomizations. Another

interesting open question posed in the same work on the existence of a general polynomial time

derandomization, remains open and challenging.

Bi-valued auctions appeared as examples in several works, such as [2, 15]. We present here

a connection between these auctions and a certain hat guessing game [9, 12]. Solving this puzzle

optimally results in an optimal deterministic auction for bi-valued auctions. Surprisingly, the estab-

lishment of the tight lower bound for these auctions involves analyzing the DOP, the deterministic

optimal auctions for i.i.d. inputs.

Our general derandomization suffers from an additive loss of Õ(h
√
n) over the expected revenue

of a random auction. Aggarwal et al. [2] proved that every deterministic auction will suffer from

an additive loss over the best offline auction, hence did not rule out exact derandomizations. We

showed, by the lower bound on bi-valued auctions, that every auction (including a random one)

suffers from an additive loss of Ω(
√
nh) over the best offline auction. Clearly, our understanding of

the additive loss is not complete yet and needs some further investigation.

Farther research should ask whether there exists more cases of exact derandomization? Is there

a general exact derandomization? And of-course, try to deploy these derandomization techniques to

other mechanism design settings. Another interesting future direction, noticing that the connection

between truthful auctions and hat guessing games was not a coincidence, is to reinforce these

connection, maybe with different kind of auctions.
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