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CHAPTER 9

The Measurement of Symmetry
and Chirality: Conceptual

Aspects

D. Avnir, O. Katzenelson, S. Keinan,
M. Pinsky, Y. Pinto, Y. Salomon and
H. Zabrodsky Hel-Or

1. The Primary Concept: Symmetry as a Continuous Structural Property

1.1 Thesis and Motivation

The concept of symmetry has attracted virtually all domains of intellectual activity
and has strongly influenced the sciences and the arts.!? It has functioned as a
condensed language for the description and classification of shapes and structures;
as an identifier of inherent correlations between structure and physical properties of
matter; and as a guideline in artistic and practical aesthetic design. This study of
symmetry is based on the following thesis:

Thesis: The ‘Symmetry of Nature’, from molecular scales and up, is a rarely
attainable idealized statement about reality.

The prime motivation of our studies was rooted in the stark realization of this
thesis, namely that much more often than not, objects, on all scales (except for the
atomic scale), are not symmetric. To appreciate this, one need only refine the
resolution of observation — spatial or temporal — to the point where it becomes
evident. The advent of highly sensitive analytical and probing tools in modern
chemistry shows again and again that even structures which have been classically
treated as symmetric, actually are not. Suffice it to consider, for instance, the
observation of ‘symmetric’ molecules on time scales that are faster than typical
vibrations or rotation rates; or to consider the local distortive forces on ‘symmetric’
molecules in the condensed phase, in order to realize this situation. An example of
the former is the rotation of the two ethane tetrahedra around the C~C bond. Current
wisdom allows an exceedingly poor description of that process from the symmetry
point of view: ethane is D34 when staggered, D3, when eclipsed and D3 anywhere in
between. But consider the rotamer which is only 1° away from any of the extremes:
is it already a D3 species? A related phenomenon is the well-known removal of the
degeneracy of energy levels of chemical species whenever these are contained in an
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environment of symmetry other than their own. The degree of removal of degeneracy
is directly linked to the ‘decrease’ in the symmetry of the environment, compared to
that for the isolated chemical species. Traditionally, this problem has been treated in
terms of jumps in the symmetry point group.

It appears then that symmetry serves, in many such instances, as an approximate,
idealized descriptive language of the reality of chemistry and molecular physics.
While it is true that an imprecisc language helps in grasping complex situations and
in identifying first-order trends, the danger of missing the full picture because of a
vague description is always awaiting the user of the current symmetry language.

The second motivation for this study is intimately linked to the first one: quite
often one can identify in molecules of low symmetry the clear remnants of a higher
symmetry. For instance, consider the case of two ethylenes approaching each other
for a [2+2] reaction. The answer to the question whether that reaction is allowed
thermally or photochemically, or whether a suprafacial or antarafacial process will
take place, or whether the reaction will take place at all, is very much dependent on
the symmetry of alignment of the two reacting molecules or moieties. The ideal
symmetry is Doy, for parallel approach, and it is predicted successfully that this
symmetry is needed for a suprafacial photochemical formation of cyclobutane. In
many cases, however, the two ethylenes are not in an ideal Doy, alignment because of
an intramolecular frozen conformation of the two double bonds, or because of
non-symmetric steric hindrance caused by substituents on the double bonds. Yet
current wisdom is to treat these cases as if they were in the required ideal symmetry,
ignoring the fact that, in these common situations, only a vague memory of the ideal
symmetry exists. Or consider the even more elementary case of benzene versus
deuteriobenzene: the first has a Dg;, symmetry, but the latter jumps to Cyy; IS0t it
more natural, from the point of view of the chemical and physical properties, to treat
deuteriobenzene as being practically a D¢, object to some degree?

These two motivations have led us to propose*® that quite often it is natural to
evaluate ‘how much’ of a given symmetry there is in a structure. Consequently, we
have explored the possibility of treating symmetry as a structural property of
continuous behavior, as complementary to the classical discrete point of view. A
continuous symmetry scale should be able to express quantitatively how much of a
given symmetry there is in any (distorted) structure, at any temporal resolution, at
any spatial resolution, and with reference to any ideal symmetry. Toward this goal,
we have designed a general symmetry measurement tool; it is described in the next
section. In the sections that follow we discuss some concepts that emerged from our
treatment of symmetry and chirality as continuous structural traits.

1.2 The Continuous Symmetry Measure (CSM) Approach

The design of a measurement tool inyolves some degree of arbitrariness, in the sense
that one has to decide on issues such as how should the zero-reference level be set,
what should be the maximal value, what should be the-actual measurement yardstick,
or what normalization procedures should one employ. Such decisions will, of course,
be the subject of criticism. Having this in mind, we decided to base our symmetry

N
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measure on a definition which would be as minimalistic as we could practically get.
Our answer? to the question ‘How much of a given symmetry is there in a given
structure?’ is then: Find the minimal distances that the vertices of a shape have to
undergo in order for the shape to attain the desired symmetry.

In a formal way, given n vertices of the original configuration, located at Py, and
given a symmetry point group G, the amount, S(G), of this symmetry in this
configuration is

$(6) = %iﬂpi—@inz | )

i=1

where }A’i are the corresponding points in the nearest G-symmetric configuration.
Equation 1 is general and allows one to evaluate the symmetry measure of any shape
relative to any symmetry group or element. S(G) is a ‘measure’ (a metric). However,
in order to avoid size effects, the size of the original structure is normalized to the
distance from the center of mass of the structure (placed at the origin) to the farthest
vertex, i.e. this distance is 1, and each of the other P;’s is divided by the same
maximal P;. The nearest set of P;’s is obtained in terms of the normalized
coordinates as well; other normalizations are possible. These features are illustrated
in Figure 1. Squared values are taken so that the function is isotropic, continuous, and
differentiable. The bounds are 0 < S'(G) < 1. If a shape has the desired symmetry,
S'(G)=0. A shape’s symmetry measure increases as the shape departs from

P
a. b. ks C.

normalize

symmetry transform
—_— —

Figure 1 The basic features of the Continuous Symmetry Measure (CSM): In order
to evaluate how much Cs-ness there is in the triangle (a), its size is
normalized (b), and the C5 symmetric structure (c) which is nearest to (b) is
found using the symmetry transform described in the Appendix. The S(C3)
value is calculated (d) from the minimal distance between (b) and (c), using
equation 1. In this case, S(C3) = 12.80.
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G-symmetry and it reaches a maximal value (not necessarily 1). The maximal value
of 1 is obtained when asking, for instance, how much hexagonality is there in a
perfect pentagon? The nearest shape to answer it is a point located at the center, the
distance of which from the pentagon vertices is 1. However, in most instances
questions of interest are, for example: how much hexagonality is there in a distorted
hexagon; how much Cj is there, and so on; and in such regular cases the maximal
possible S value is smaller than 1 (see below). Furthermore, it has been our
experience that the majority of continuous symmetry related questions focus on
distortions which are not extreme, thus yielding small S’ values. We found, therefore,
that for convenience it is better to expand the 0 to 1 range by 100:

S(G) = 100- S'(G) (2

All S(G) values, regardless of G, arc on the same scale and therefore comparable: one
can compare the degree of, say, tetrahedricity of various distorted tetrahedra, the
symmetry content of various symmetry subgroups in one tetrahedron (say, its
C3-ness, C3y-ness, etc.), and even different symmetries in different objects. Another
important feature of the CSM approach, to which we return again shortly, is that no
reference shape is assumed at the beginning of the analysis, though it is obtained as
an end outcome.

A particularly interesting family of point groups are the achiral ones, namely all
groups which contain improper elements such as reflection, inversion and
even-numbered improper rotations. In these cases S(G) is a measure of chirality, and
one gets then a Continuous Chirality Measure (CCM).” In its simplest manifestation,
the measure of chirality will be S(Cg), namely the distance of the object from having
asymmetry mirror. Because of the central role of chirality in chemistry, many of our
examples below are of chirality measurements. We emphasize at this point an
important feature which distinguishes our approach from previous propositions to
measure chirality: ours yields a quantitative evaluation of chirality, i.e. the distance
from improperness, which is a special case of a general treatment of symmetry. Our
methodology allows us, therefore, to get a full symmetry profile of a structure: its
chirality content and its symmetry content toward any desired symmetry group.

The description of shape through similarity or distance functions is a known
approach® and so it is in order to emphasize also the following unique aspects of
equation 1: the standard approach has been to define a specific (ideal) reference
structure and to find the distance of the studied structure from this reference. In
contrast, we have set ourselves a more general and more demanding task: to find the
coordinates of the ideal reference structure (the perfectly symmetric one), namely its
shape and size, which are a priori unknown. Furthermore, not any reference shape
with the desired G symmetry is allowed: one has to search for a specific shape which
is the nearest from the point of view of equation 1, that is, one that will give the
minimal S(G). In some cases, the shape of the nearest symmetric object is trivially
known (for instance, the nearest Cg for a distorted hexagon is a perfect hexagon), but
more often than not it is unknown (for instance, the specific shape of the nearest C4
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of this distorted hexagon).

The main practical problem was then how to find the nearest symmetric shape
to a given one, namely how to locate the specific set of P;’s which will minimize
S(G), the continuous symmetry measure (CSM). In a recent series of papers,4'7 a
detailed solution to that problem was provided, based on what we termed the

‘folding-unfolding’ rationale. Despite its key importance to the whole issue, we shall
not dwell in this non-technical summary on the mathematical details, the algorithms
and the proofs. We illustrate the main features of the folding-unfolding in the
Appendix for two elementary cases: rotation symmetry and reflection. The
construction of a library of programs that enables computation of various S(G)s is an
on-going process in our laboratories; the many examples below and in the cited
references illustrate the current possibilities.”

Important contributions toward quantitative measurement, in particular to that of

chirality, have been made by a distinguished array of researchers, and a bibliography
of selected papers is provided for the interested reader in ref. 10.

1.3 Selected Properties of the CSM
Let us now, with the aid of figures and their captions, illustrate some of the properties
and potential applications of the CsSM.47

Figure 2 demonstrates that one can take a distorted shape, a hexagon in this case,
and answer the following questions. How much C,-ness does it contain? How much
Cs-ness?; and so on. Note that the S(G) values in the caption are comparable to each
other, namely, the original shape is closest to achirality and farthest from Cg-ness.
Similarly, one can take a series of n-polygons (Figure 3), and see which is closest to
its own C,: it is seen, for instance, that the triangle and the pentagon are similarly
distant from their respective C,;’s. Finally, one can take this series of polygons, and
ask which of them is closest to or farthest from a given symmetry. In this case we
determine the S(o) values (Figure 4), namely the two-dimensional chirality, and find
that the triangle is the most chiral within this set of specific polygons. In fact, one can
also ask what is the most chiral triangle in general? Our methodology points to the
triangle shown in Figure 5 as the most chiral one. The most chiral tetrahedron is
shown in Figure 6.

The method is not limited to cyclic structures; it can be applied to branched
structures (Figure 7), spirals (Figure 8), polyhedrons like the fullerenes (Figure 9),
knots and other special topologies (Figure 10), and even to complex structures like
random aggregates (Figure 11). The method also allows one to distinguish between
global symmetry or chirality of the whole object, and local symmetry or chirality of
zones in the structure. An example of this distinction, made for two-dimensional
threo and erythro diastereomers, is given in Figure 12. ‘

The changes in symmetry content with mutual three-dimensional orientation of
two molecules are shown in Figure 13. This example answers the need, outlined
above, of adding gray levels to the strict symmetry demands of ‘symmetry dictated’
reactions. We are in a position to pose a new type of question for such reactions,
which for our example is: what is the relation between the degree of Dyy,-ness of a
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S(C,) = 1.87
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S(Cy) =2.53

S(o) =0.66

Figure 2 Given a distorted hexagon, one can find its symmetry value with respect to
various symmetry elements, as well as how the nearest shape with the
desired symmetry looks. (a)-(d) are the nearest C,, C3, C4 and 2D-o
structures. The S values indicate that the hexagon is farthest from perfect
hexagonality, and closest to 2D achirality. Note that S(c) measures
chirality.

. /

& N\ SIC=1230
[\
/\

! —_— f/\\ SIC-) = L56
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Figure 3 The distance of various n-polygons from their own C,, and the S(C,)
values.
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Figure 4 The 2D chirality values of the polygons in Figure 3, and the nearest achiral

structures.
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a. * b. C.

Figure 5 The most chiral triangle (b). It was found by searching over the coordinates
shown in (a). The nearest achiral triangle is an isosceles (c). The edge ratio
(and the sine of angles ratio) of the most chiral triangle is 1.00 : 0.75 : 0.36,
with S(o) =3.03.

reacting [2+2] system, and (say) the rate, i.e. allowedness, of the reaction?

Another important feature of the CSM approach is that it can follow the gradual
symmetry changes along dynamic processes. such as vibrations, rotations, and
conformational changes. Since modern experimental techniques have reached the
time scales of these events, symmetry changes within them become relevant. We
illustrate this in a number of model systems. The first (Figure 14) follows the S(C,)
content of a water-like molecule along a vj vibration; the second follows the
tetrahedricity changes (T4-ness) during the vibration of a tetrahedron (Figure 15); the
third (Figure 16) follows the tetrahedricity content along the pathway of a Walden
inversion; and the fourth follows the change in Dsy, D34, and © (chirality, which, in
this case also measures Cs,) content in rotating ethane, as a function of the rotation
angle (Figure 17). Note that the D3y, and D3q, which are traditionally linked with
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1(0,0,1)

3
(x,,%,,2)

A 4 (x,,0,2))

(X Xg00y,012,2,)

Figure 6 The most chiral tetrahedron was found by searching over all the coordinates
shown in (a), and turned out to be a tetrahedron (a simplex) with a C,
symmetry (b). The C, axis is the dashed line bisecting the edges 14 and 23.
The nearest achiral structure, in this case (c), is the tetrahedron collapsed to
a plane (of this page). The edges ratio of (b) are 1:1:1:1.6:1.6:2.3 for edges
12, 23, 34, 13, 23, 14 respectively, and its S(o) is 4.1.

Py

Figure 7 The S(C,) value and the nearest C, symmetric shape of the distorted
‘substituted butane’.

ethane, are actually rare events in this molecule, and that in fact, ethane is chiral most
of the time, with maximal chirality values at 30° + n - 60° (Figure 17, top, c). We
have termed these rotamers of maximal chirality ‘chiramers’.’

Probabilistic arguments may be added as well. These reflect the actual status of
all experimental techniques for structure determination: the atom locations are given
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a. b..

Figure 8 The 2D-chirality value of the spiral (a) is 8.8, and its nearest achiral shape
is the mirror line (b).

Figure 9 Some of the fullerenes, such as the C,g fullerene, are chiral. This fullerene
has D, chiral symmetry, and its chirality value is 24.9.

5

51 =%

d.

C. °

Figure 10 The algorithms of the continuous symmetry measures are capable of
handling unusual chiral topologies as well. Shown here are (a) a chiral
Mobius structure and its nearest achiral structure (b); a catenane (c) (the
two rings are tilted at 25.6° to each other); and a knot (d). The respective
S(o) values are 1.95, 0.41 and 0.53.
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Figure 11 A 2D chiral diffusion limited fractal aggregate (a), and its nearest achiral
envelope (b). The chirality value of the envelope of (a) is 3.4.

| 2 2 , 2
! I
E 1 1 ' 1
58, RS R;§
threo erythro

Figure 12 The chirality content of a threo pair must be different than that of the
erythro pair (it is 2.5 and 3.2, respectively). While these are the global
chirality values, one can also evaluate local chirality of each of the chiral
centers, 1 and 2, taking for each the centroids of the other, 1’ and 2’ (shown
for threo); the values are 3.4 and 0.29.

only within a certain accuracy (c.f. the thermal ellipsoids in X-ray analyses). For
these purposes we studied the following questions:

e What is the closest, most probable symmetric shape represented by data with
given uncertainty?

e What is the probability distribution of symmetry measure values for the given
uncertain data?

*  What is the confidence valuc in the S(G) value, given an uncertainty in the
location of the atoms?

*  What is the probability distribution of S(G) under conditions of dynamic
randomly changing locations? An example of the latter is given in Figure 18; we
return to this issue below when discussing the order in a heated small cluster, and
the problematics of the concept of symmetry for large random objects.
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y axis

X axis

S Value

Figure 13 The degree of D,,-ness of two mutually aligned ethylenes (bottom) as a
function of two alignment angles (top).

Finally, although this chapter focuses on geometrical considerations of
symmetry, the approach can be extended to physical parameters, for instance by
analyzing the symmetry of equicontours of properties. This is demonstrated in
Figure 19, details of which are given in ref. 7.

2. Concepts I - IV: Symmetry as a Process Coordinate; Non-Handed
Chirality; Isochirality °

An inherent property of enantiomerization pathways is that these need not pass
through an achiral intermediate.!! Considering that imposing a reflection plane on a
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Figure 14 The degree of Cy-ness in a vibrating ABA molecule at various snapshots
during one vibration cycle: (a) the vibration is of v3 mode; (b) as in (a), but
B is anchored to a ‘surface’.

2.5 T T
Svmmetry

Measure
S(Ty)

I

0 0.2 0.4 0.6 0.8 1
Cycles

Figure 15 The variations in the T4 symmetry content of a vibrating tetrahedron during
one cycle. (In this model the vibration extends the arms to 1.25 of the

remaining length, and the two pairs of arms vibrate with a phase delay of
180°)
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Figure 16 The variations in S(Ty) (full line) and S(o) (dashed line) of a tetrahedron
(bottom) along a Walden inversion (top).

reacting molecule that a priori does not possess it is a rather restrictive demand; one
realizes that achiral enantiomerization pathways (i.e. ones that pass through an
achiral intermediate structure) should be an exception.

The CSM approach allows us to study this property on a quantitative level.
Figure 20 is an illustration of the phenomenon: two enantiomerization pathways are
shown for the same structure, one of which passes through S(o) = 0, and the other
never reaches zero level. Chiral pathways carry an interesting feature: Let us define
the structure on the left in Figure 20 as Left and the one on the right as Right.
Somewhere along the path from Left to Right there is a transition point between the
properties of Leftness and Rightness, namely a chiral structure for which handedness
cannot be assigned under the specific definitions used for this case. We have termed
this situation non-handed chirality.!?
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Figure 17 Symmetry variations in rotating ethane (top, a). Shown are the variations in
D34, D3 and Cs, (middle), and chirality (¢ or Cs,, bottom). Note the
locations of the eclipsed (top, b), staggered (top, d), and the most chiral
rotamer, the chiramer (top, c). Also shown are the sinusoidal variatiaons in

the potential.
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Figure 18 A tetrahedron vibrates with random phase shift between the four arms (as in
a central heavy atom linked to 4 light ligands). Shown is the probability
distribution of having a given tetrahedricity, S(Ty). for four cases of
maximum arm extension, 25, 30, 40 and 50% of the original length.

Definitions

Handedness. The arbitrarily assigned structural property of leftness/rightness. (The
relevant definition of handedness for structures along a reaction pathway is usually
that of the reactants and/or products.)

Non-handed chirality. Chirality for which it is not possible to assign handedness
under a given definition of this property. Non-handedness is the property of this
impossibility. (Achirality is trivially non-handed.)

Non-handed structure. A structure, the chirality of which is non-handed.

Point of non-handedness. A point along a reaction pathway representing a
non-handed structure.

Non-handedness is intimately linked to the question of the chirality of Ruch’s potato
(Ruch in ref. 10). In this context we make the following claim. Select a definition of
handedness; since for a potato (or, say, a cluster) there is an infinite number of chiral
enantiomerization pathways, there is an infinite number of non-handed potatoes,
under the selected definition, located on these pathways. Since this is true for any
selected definition, one is bound to conclude that it is impossible to find a general
definition for handedness that encompasses all potatoes. The same reasoning holds,
in fact, for any racemizable molecule (provided that it has at least five atoms). 1€
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Figure 19 Two equi-amplitude contours of the wave function of the lone pair orbital
of a distorted water molecule, Shown are the 2D-S(s) values for the outer
contours. The value for the next inner one is 0.248.

We illustrate now some practical implications of this discussion on the chirality
of the cyclic trimer of water.!2 The existence of a water trimer, which was predicted
by Scheraga et al.13 in the early seventies, has been observed recently by Pugliano
and Saykally!4 using far infrared (vibration/rotation) tunneling spectroscopy. The
observation has triggered intense theoretical and experimental activity on the
structure and energetics of this and other small clusters of water molecules.!5 A
remarkable structural property of the trimer obtained by virtually all the
computational methods employed is that the minimum energy structure of the trimer
is chiral (Figure 21). By labeling each of the six hydrogens and the three lone pairs
of the trimer, and by employing the C,, symmetry of H,0, 96 isoenergetic trimer
minima exist in the multidimensional potential surface, comprising 48 enantiomeric
pairs, such that neighboring minima are chiral pairs.'3 Motion from one minimum to
another thus leads either to conversion of the handedness (enantiomerization) or to
its retention (automerization). Qur methodology allows one to explore quantitatively
the continuous changes of the chirality value along selected interconversion
pathways, namely to use the Symmetry measure as a process coordinate.

As seen in Figure 21, the trimer has two hydrogens on one side of the oxygen
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Figure 20 Enantiomerization pathways (a) can be either achiral (2) or chiral (1). In the
latter, the continuous chirality measure (CCM) never drops to zero (b).
(The process coordinate is the sum of angle changes.)

plane (‘above’) and one on the other (‘below’), and alternating in-plane O-H and
H--O bonds. Enantiomeric interconversion is therefore possible by mechanisms
which either move one hydrogen from above to below or which change the direction
of alternation of the oxygen-hydrogen bonds. These two mechanisms known as the
flip mechanism and the clockwise/counterclockwise (cw-ccw) rotation mechanism
are shown in Figure 22. (For other mechanisms see our full report in ref. 12.) As seen
in Figure 23, the flip pathway is all-chiral, and, interestingly, with a chirality value
which remains nearly constant throughout the enantiomerization. As calculations
showed that this hydrogen flipping mechanism is energetically the most facile, 1315
it is intriguing to consider the role of the constant S(c) value in the context of the
very low free-energy barrier for that process: a constant chirality value may
minimize the entropy change for a process.

The transition state for the flip mechanism is obtained when the flipped
hydrogen is approximately within the average oxygens’ planc (Figure 22a). As the
enantiomerization pathway is chiral, the transition state must be chiral as well.!S Let
us now link it to non-handedness, taking the chirality definition of handedness i,
Somewhat reformulated, the definition is as follows (Figure 21): with the projection
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Figure 21 The handedness of the chiral water trimer, (a), is defined by watching the
projection of the trimer from the side of the oxygens’ plane which contains
the two ‘free’ hydrogen atoms (b). This side of the cluster is called ‘above’
the oxygens’ plane. If the three in-plane O-H bonds are arranged
counterclockwise, as in (b), it is left-handed, and if they are arranged
clockwise, it is right-handed.

of the trimer from the side of the oxygens’ plane which contains more ‘free’
hydrogens (above), if the three in-plane O-Hs are arranged counterclockwise, this is
left (it is a left spiral if one follows accordingly the three non-bonded hydrogens).
Following this chirality convention, we find the non-handed structure in close
proximity to the transition state:  at the transition state, represented by the middle
structure in Figure 22a, one of the two formerly ‘above’ hydrogens is nearly
in-plane,!® where the definition of the trimer handedness collapses. Since for this
structure there are no ‘above’ and ‘below’ plane-sides, which are used to define right
and left, it is non-handed under our definition, yet it is chiral: the pair of its
enantiomers is shown in Figure 24. It is now possible to take this new enantiomeric
non-handed pair and provide a new left/right assignment, using a different definition
of handedness. However, such a definition would fail again in an all-chiral
enantiomcrization of these structures; and so on.

There are, in fact, three possibilities for the flip mechanism (each of the three
hydrogens), and Figure 25 shows them all. It is seen that the pathways for the
flipping of the two ‘above’ hydrogens are mirror images of each other. The pathway
itself is not mirror-symmetric around the transition state, because of its C; symmetry
(the two ‘above’ hydrogens are unequal in their immediate neighborhood, Figure
21). Whereas the enantiomeric pair of pathways (a,b in Figure 25) is obtained by
flipping two different “above’ hydrogens, there is another possibility of obtaining a
mirror-image pathway, this time from reverse flipping of the same hydrogen:
following the arguments of Wolfe and Salem.!!Y¢ For each chiral pathway, there
must exist also its exact mirror-image pathway, because for each chiral conformation
along the path, an equi-energetic enantiomer exists. A third flip pathway (c in Figure

25) is the flip of the lonc hydrogen from ‘below’. This one connects two distinctly

different isomers which are not enantiomers of each other, as is clearly seen at the
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Figure 22 Enantiomerization pathways of the trimer of water: (a) Flipping is
accomplished by rotating one water molecule about its in-plane O-H bond.
This leads to enantiomerization if the free hydrogen of the monomer is one
of the ‘above’ plane hydrogens. (b) Clockwise or counterclockwise
(cw-ccw) motion is a synchronous rotation of all six hydrogens. The three
in-plane hydrogens exchange hydrogen bonding with covalent ones. Note
the C, symmetry of the transition state (middle structure). gs: ground state.

end points of the curve: the right-hand side of the curve is of the ‘C3 bowl’ trimer
shown in the insert in Figure 25. This pathway demonsirates the ability of our
approach to track quantitatively chirality changes, not only in enantiomerizations but
in practically any isomerization.

It is interesting to consider the intersection points of the various pathways: they
are, in general, isochiral isomers. Isochirality is a concept which is possible only in
conjunction with the notion that chirality is a measurable structural property — the
central theme of our studies. Whereas for the non-intersecting points (1), (2) and (3)
in Figure 25 it is clear that the two isochiral structures are neither identical nor
enantiomeric, this is true also for the intersection points shown in the Figure, except
for the center intersection point of two enantiomeric pathways, (5), which represents
the isochirality of two enantiomers. Isochirality does not imply in any way
iso-handedness, although intersection points such as (5) can be points of
non-handedness.

To complete the picture, we now comment on the achiral clockwise or
counterclockwise (cw-ccw) rotation mechanism (Figures 22b, 23). Achiral pathways
should be, by and large, rare in inversion processes. For instance, in the present
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example the passage of the cw-ccw route through achirality is intimately linked to
the synchronicity in motion of the six nuclei involved. Most random deviations from
synchronicity will lift up the minimum from achirality (S = 0). Synchronicity is a
rather strict condition, demanding, for instance, high symmetry, which is not the case
for the C; trimer: the O---H bonds, which are unequal from the point of view of their
neighboring atoms, are therefore not expected to move synchronously. As for
non-handedness in the cw-ccw pathway, here the transition state is achiral and
therefore trivially non-handed. We are currently exploring the proposition that
transition states of enantiomerization pathways are in general in the vicinity of
non-handed structures.

Chirality Value

0 20 &0 90 120 150 180
Reaction Coordinate

Figure 23 Chirality changes along two reaction coordinates (divided arbitrarily from 0
to 180). Note that the achiral cw-ccw path reaches a minimum of zero
chirality at the middle of the pathway. The chiral flip pathway has an
almost constant chirality value along the path, with a shallow minimum.,

Figure 24 The enantiomeric pair of non-handed structures of the chiral water trimer
(see text). They are in the vicinity of the transition state of the flip reaction.

3. Concepts V - VII, Large Random Objects: Incidental vs Inherent Chirality;
Virtual vs Natural Enantiomers; Symmetry as a Resolution-Dependent

Property
The current intensive interest in disordered and semi-ordered structures (polymers

and oligomers, aggregates, clusters, liquid crystals and other supramolecular
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Figure 25 Three flip routes of the water trimer. (a) and (b) are flips of the two ‘above’
hydrogens. These paths are mirror images of each other chirality-wise and
energy-wise. (c) is the flip of the ‘below’ hydrogen. This flip results in the
isomer of the water trimer, shown in the insert. (1), (2) and (3) are isochiral
isomers. (4) is an intersection point that represents isochiral isomers of two
different paths. (5) is the middle point of two enantiomeric paths ((a) and
(b)). It represents two non-handed enantiomers (trivially isochiral). Point
(6) is non-differentiable due to a change of the nearest ¢ plane. Points (7)

and (8) are non-differentiable because of a normalization vector flip from
the center to the farthest atom.

structures), many of which are chiral,'” led us to re-explore some conceptual aspects
of chirality associated with such structures. We begin by showing that while the
classical definition of chirality is'well suited to deal with small molecules, it fails in
the accurate description of large random structures.

We concentrate here on aggregate structures of the type shown in Figure 26a,
known in short as DLAs (Diffusion Limited Aggregates). These arise from a very
wide variety of both growth phenomena (polymerizations, coagulations,
electrodepositions, surface island formations, etc.) and disintegration phenomena
(dissolution, forced penetration, etc.).!® Although based on entirely random
(Brownian) diffusion pathways of building units, the DLA in Figure 26a is chiral
under the classical definition: it does not coincide with its two-dimensional (2D)
mirror image (mirror line, in 2D), shown in Figure 26b. The non-triviality of
associating chirality with a random object (cf. Ruch’s potato,'® Section 2, and
Mislow’s discussion of the chirality of large ensembles!%) leads us to create DLAs
in which chirality is inherent, by biasing the diffusional pathway of the aggregating
particles from purely Brownian to chiral. For instance, if clockwise diffusion is
(partially) favored over diffusion in the counterclockwise direction, a chiral object
reflecting this bias will form. A typical result?” is shown in Figure 27a.

The DLAs shown in Figures 26 and 27 raise the following problems, not
encountered in small molecules:
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Figure 26 (a) A fractal diffusion limited aggregate (DLA) and (b) its mirror image.
The DLA (a) is incidentally chiral, and its enantiomer (b) is a virtual one.

Figure 27 (a) One way of obtaining chiral DLAs is to take the DLA in Figure 26 and
rotate it clockwise around its centre, against friction; we assign therefore
the symbol R to it. (b) The virtual S enantiomer of (a). (c) and (d) are two
natural S enantiomers of (a).
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Problem 1. What is the enantiomer of the chiral DLA shown in Figure 27a? Figure
27b shows an artificial reflection of 27a. The problem is that, being a random
process, not only can 27a never be repeated, but the enantiomer 27b can never form.
What then is the meaning of chirality of an object that in practice can never have an
exact enantiomer?

Problem 2. For the sake of further discussion, let us call the reflected shape of the
random object the virtual enantiomer (Figures 26b and 27b); and the natural
enantiomer the object obtained by the same random process, only biased in the
opposite (enantiomeric) direction, as seen in Figure 27c. There is an infinite number
of natural left-handed enantiomers, (Figures 27¢,d) for each right-handed structure
(Figure 27a). What then is the meaning of an enantiomeric pair, when each part of
this pair has an infinite number of distinctly different structures; and, taking a single
member of the infinite group of clockwise (R) enantiomers, how justified is it to
pick any one of the infinite counterclockwise (S) structures, and call both an
enantiomeric pair, a pair which is definitely not a reflection of the other?

Problem 3. Coming back to the DLA in Figure 26a and to the fact that it is chiral
because it is random, how can one differentiate between incidental chirality (Figure
26a) and inherent chirality (Figures 27a,c,d)? What is it that makes incidental
chirality distinctly different at least by intuition from inherent chirality? Is there any
reason to make that distinction? Should one refer to objects that are incidentally
chiral (almost any macroscopic object around us) in terms of chirality at all?
Problem 4. We termed structures 27¢ and 27d natural enantiomers of 27a. Since
their structures are different in detail, how can one assess guantitatively whether the
chirality content of structures 27b-27d is similar? Similarly, Figure 28 shows a
series of DLAs with a clearly changing spirality character. How can this be
measured?

Problem 5. The building blocks of the chiral DLAs are not chiral (square pixels, in
our case); yet the whole structure is. (For experimental observations, see ref. 21.)
Where is the transition from achirality to chirality? What is the minimal size of
features that contribute to the chirality of the whole? (The equivalent question for
small molecules is to ask, for instance, where the chiral center is.)

Problem 6. Whenever large objects with many details are analyzed, the question of
resolution of the measurement is obvious. Thus, whereas the chirality of the
cquilibrium structure of, say, 2-iodobutane is uniquely defined because all
information on all the positions of the nuclei is given quite accurately, the situation
with, say, proteins is different: their structures can be determined at various degrees
of resolution. Our sixth problem, therefore, is what is the resolution-dependency of
chirality? This problem (cf. Mezey’s treatment of resolution based chirality and
similarity measures)'922 is intimately linked to the problem of the fractal nature of
the chiral DLAs, described next.

Problem 7. A central structural property of many artificial and natural random
objects, which has been at the center of intensive studies in the past fifteen years, is
that many of their properties scale isotropically with size as a power law, i.e. they
are apparently fractal objects.!S For instance, in DLAs the mass, m, scales with the
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Figure 28 DLAs of varying degree of chirality. (The variations are achieved through
the construction parameters of the structure (see text)). Here N =104,
p = 1.0 and Ar = 0.2 were kept constant, while Aa was varied as follows: a:
10, b: 22, ¢: 30, d: 50, e: 70, f: 90.

radius, r, where D is the mass fractal dimension:

m~r > 3)

It has been shown that an approximate geometric interpretation of equation 3 is
scale or resolution invariance, that is, a large DLA (with r1) and a small DLA (with
ry) are indistinguishable if the large DLA is reduced in size from r; to r,. Having
this in mind, let us now cite Prelog’s definition of chirality:23 ‘An object is chiral if
it cannot be brought into concurrence with its mirror image by translation and
rotation.” The last two are symmetry operations: but so is the change of scale for
self-similar objects, where the symmetry operation is dilation/contraction.
Shouldn’t Prelog’s definition be extended to ‘translation, rotation and scaling’? Are
objects 27a and 1la, which differ only in size (10* and 22,880 particles,

respectively) but otherwise are constructed with the same parameters, an
enantiomeric pair?

To explore these questions, the continuous chirality approach was implemented on
the DLAs.2% DLAs were built, as mentioned above, with one particle after the other

randomly diffusing to a growing cluster, and sticking to it upon collision. This
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procedure results in incidental chirality (Figure 26), and inherent chirality is induced
in such structures if the diffusion of the random walker is chirally biased, which, in
our application, is a preferential probability to move in a clockwise or
counterclockwise motion along a spiral direction in each step of the random walk.
The spiral we selected is a logarithmic one. For computational convenience we built
this spiral by a recursive procedure, in which motion along a spiral line from xy, yp,
{0 Xn41» Yne] is achieved by changing the radius with an incremental radial
translation, Ar, and by an angular translation, Aa. The shape of the spiral is
determined by the values of Aa, Ar. Basically, as Ar or Aa increases (up to ~90° for
the latter), the spiral spreads out faster. Similarly, the shape of the chiral DLA is
dictated both by the shape parameters of the underlying spiral direction (Ar, Aa) and
also by the probability, p, to move in that direction. Figure 28 shows how chirality
becomes more pronounced in a series of DLAs built from N = 10* particles, by
changing Aa while keeping all other parameters fixed (p = 1.0; Ar=0.2). Our
methodology allows one to express this visual increase in chirality on a quantitative
level, as shown in Figure 29a where S(6) is plotted as a function of Aa. See the figure
caption for details. Figures 29b.c show how the chirality content of the DLAs is
controlled by two other structural parameters. Figure 20b shows the relation between
S(o) and Ar: as Ar increases, the curling of the spiral opens, and the chirality of the
DLA decreases. Figure 29¢ shows the effect of changing the magnitude of the
probability, p, to move along the spiral path: as expected, S(o) increases with p,
showing high sensitivity to p changes at low p values.

The random nature of the construction of the DLAs and the resulting noisy
behavior of Figures 28 and 29 provide answers to some of the questions raised above.
It is clear that although the computation of an S(c) value of a specific DLA is unique,
understanding and evaluation of the S(c) are possible within the determination of a
statistical distribution of S(o) values for a given set of parameters. The question is
then: are the S(c) values of inherent chiral DLAs significantly higher than those
obtained for incidental chiral objects? And can this type of analysis be a
distinguishing tool between these two essentially different types of chirality? Figure
30 shows the frequency of S(o) values for incidentally chiral DLAs and for two sets
of inherently chiral ones; bell-shaped, relatively narrow, normal distributions (the
parameters of which are given in the caption of Figure 30) are obtained. In these, the
inherently chiral DLAs are significantly outside the region of incidental chirality.
Obviously, given other construction parameters, the normal distribution bells may
overlap in part, and the distinction between incidental and inherent chirality may
become statistically blurred.

Next we analyze properties of the DLAs associated with resolution and scale. In
this context, how does the chirality content of a DLA change with the history of its
growth, namely with the number of particles that build it? The result (Figure 31),
surprising at first glance, is that S(c) remains fairly constant from the initiation of the
DLA (N is around 1.5 x 103 particles)up toN = 10%. This is actually a manifestation
of the self-similar fractality of these aggregates: brought to the same scale, small and
large DLASs are indistinguishable from the point of view of their chirality. This scale
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Figure 30 The distribution of S(c) values for a population of incidental DLAs, (0),

and for two sets (X, #) of inherently chiral DLAs. o: Number of DLAs
(np) =158; x: np=900, Aa= 30°, Ar=0.2, p=1.0; ¢: np=947,
Aa = 139°, Ar= 0.2, p = 1.0. The bell-shape parameters, from left to right,
are: S(o) = 1.23 £0.27; 2.96 +0.37; 3.43 £0.43.

invariance is also evident in Figure 32, where a set of DLAs of varying size is
analyzed according to equation 3. The scale invariance, both to global structure and
to the chirality, is a unique feature of chiral DLAs.

We are now in a position to propose some answers to the problems raised above:

1. For large, random chiral objects, an enantiomeric pair has significance and
meaning within a statistically large collection of objects.
2. Each and every member of this collection is chiral in itself, and there are two

Figure 29 The dependence of the degree of chirality of DLAs, on various structural

—

parameters. Top: Quantitative evaluation of the degree of chirality of the
fractal DLAs in Figure 28, and the relation between the 2D chirality
measure, S(o), and the structural parameter Aa. It is seen that the chirality
value increases with Aa up to a maximum value at Aa = 90° where the spiral
curvature is maximal, beyond which it drops to a minimum at 180°, and
then the cycle repeats itself at the 180-360° interval. The minima do not
reach zero, but a small chirality value typical of incidental chirality. Except
for the extrema, there are four isochiral DLAs (DLAs with the same S(o)
value) in one full cycle of 360°: a and b are separated by (1 — 2Aa), and are
structures of the same handedness (homochiral); so is the pair ¢, d. The
pairs {ab} and {c,d}, separated by =, are natural enantiomers of each
other: a is an enantiomer (and not the enantiomer, as is the language for
small molecules) of ¢ and/or d. Middle: The dependence of S(c) on the
structural parameter Ar (N=10% Aa=30°, p=0.7). Botiom: The
dependence of S(c) on the probability, p, to walk along the spiral line
(N = 10* Aa=90°, Ar=0.2).
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Figure 31 The S(o) values of an inherently chiral DLA (top) and an incidental chiral
DLA (bottom), as the DLAs grow. (Top: Aa=139°, Ar=0.2, p=1.0;
bottom: same but with p = 0.) ‘Age’ refers to the number of particles.
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Figure 32 Mass scaling fractal analysis of the set of iniherent DLAs in Figure 31. The
apparent fractal dimension is 1.7. (Parameters: N = 104 Aa= 90°, Ar=0.2,
p = 1.0. Mass: number of pixels; radiusin pixels.)

types of answers as to what is its enantiomer. First, there is the enantiomer which is
obtained by perfect reflection. As this enantiomer can be obtained only as a mirror
image and never in a real repetition of the actual (chemical) process by which the
original chiral object was obtained, we propose to term the formal structure a virtual
enantiomer. Then there is a narural cnantiomer, which is any member of the
collection of objects obtained by repeating the construction in an enantiomeric way.
3. The last distinction must also be made with the collection of structures of the
same handedness (for instance, the direction of spirality in our case); there are the
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natural homochiral members, and then there are virtual homochiral structures
obtained by artificial ‘photocopying’ of a structure.

4. The degree of chirality of a homochiral collection is expressible as a certain
mean S(o) value with a variance (which at least in the case of the DLAsS tested here
is of normal distribution characteristics).

5. Having separate enantiomeric populations of right-handed, R, and left-handed,
S, objects, we define an enantiomeric match between two individual members of
these populations as AS = S(Gjmproper)R ~ S(Gimproper)s- Intuitively, one might
guess that a minimal AS, or even AS =0, is indicative of nearing a situation of
perfect reflectivity of both. While this may be the case, it is not necessarily so, as
different fine structural details may lead to similar S(c) values. In fact, isochirality,
the property of having identical S(c) values, does not necessarily indicate structural
identity. The insensitivity of the CSM approach to detail which leads to a certain S
value is a manifestation of the globality (in the thermodynamic sense) of that
parameter. In this sense, S(G) can serve as a state function.

6. To decide on the minimal feature that dictates the chirality of the whole, one
cannot adapt the approach used for small molecules. In such a case, one looks both
for local centers of chirality (e.g. tetra-substituted atoms) and at the whole. In the
case of the DLAs, the smallest 2D features which are chiral are four pixels arranged
in the shape of an L; there is a large amount of these in a DLA, and the influence of
one such L on the chirality of the whole is negligible. A larger feature must be used,
and for the case of the chiral DLAs we propose to use the minimal cluster size for
which the S(o) value begins to stabilize (at the highest resolution). For instance, in
Figure 31, the minimal sizes are the chiral cores composed of N = 500 particles.

7. Let us recall Kelvin’s definition of chirality: ‘I call any geometrical figure, or
any group of points, chiral, and say it has chirality, if its image in a plane mirror,
ideally realized, cannot be brought to coincide with itself” (Kelvin, 1884).24 Kelvin
insisted in his definition that the ‘plane mirror [be] ideally realized.” We are now in
a position to lift this century-old restriction. Because we have at hand the possibility
to scale chirality, an ideal mirror becomes the limiting case in the rich arsenal of
natural structures.

8. Prelog’s definition?> of chirality requires that superimposability is tested by
translation and rotation; we have asked above whether extension to a third type of
symmetry operation, namely dilation, should also be considered. We have shown
that scale invariance (dilation symmetry) of S(c) is one of the structural
characteristics of a series of growing DLAs (Figures 31 and 32). Actually, our
definition of S(G) takes care of this property, because the analyzed structure is
always normalized to unit size. An important consequence of scale adjustment in
the quantitative evaluation of S(c) is that the chirality content is an intensive
structural property. Yet, care should be taken with this conclusion: at times one may
wish to evaluate the effects of (molecular) size on physical behavior (e.g. the
absorption cross section for circularly polarized light), where such scaling would be
removed.
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We have seen in this section that the classical definitions of chirality and its
properties, which have been quite suitable for small molecules, require the
introduction of more general concepts when dealing with large random objects. A
generalized definition should refer to the inherent inability to form an exact
counter-enantiomer; to the fact that chirality is resolution-dependent; to incidental
versus inherent chirality; to the restrictive nature of an ideal mirror; to the fact that
superposition can be tested by more than mere rotation-translation. Here is a
tentative proposition for an extended definition, which captures many of the needs
of supramolecular, mesoscopic and macroscopic structures that contain some
elements of randomness in them: Large-scale chirality is manifested by a
probe-dependent inability to make a structure coincide with a realization of its
mirror image by employing any proper symmetry operation. This inability is
quantifiable.

Three remarks conclude this section. First, we note that the chiral DLAs
analyzed here may be of relevance to domains beyond chemistry. Spiral galaxies,
spiral hurricane cloud formations, spiral bacterial colonies,25 are some examples of
such domains. Second, the discussion in this section, devoted to chirality which is
measured through S(c), is immediately extendable to other chiral point groups. For
instance, taking the chiral D5 point group, which characterizes the macroscopically
chiral natural quartz crystals, one can distinguish between pairs of natural
enantiomers, and virtual D3 enantiomers, obtained by reflection of a natural crystal.
Third, most of the concepts discussed in this section in the context of chirality are
applicable to symmetry in general. Thus, one can find in large random objects both
incidental symmetry (Figure 33) and remnants of inherent symmetry; and one can
identify resolution dependence of symmetry in large random objects.

4. Concepts VIII - IX: Symmetry as an Order Parameter; Symmetry as a
Structural Correlant with Physical Properties

Once symmetry can be quantified, the possibility exists to use it as an order
parameter: the more symmetric the structure, the more ordered it is. (The link to
entropy follows immediately, but we shall not comment here on continuous
symmetry-entropy relations.) Furthermore, as is evident from the previous sections,
symmetry can be uscd as a structural parameter with which one can correlate a
variety of physical parameters.

We exemplify the concepts of symmetry as an order parameter and as correlant
with physical parameters by summarizing a recent study2® of cluster symmetry as a
function of temperature. Considerable research has been devoted in recent years to
weakly bonded clusters because of their borderlinc position between the condensed
phases and the gas phase. In particular, cluster melting has been investigated
extensively.2” Many clusters display a melting-like transition in which the range and
freedom of motion of the constituent atoms or molecules increase considerably over
arelatively narrow temperature (T) range. Clusters may be trapped in the low T limit
in the vicinity of a single relatively deep minimum which is often characterized by
high symmetry. Then, as the temperature is raised, the cluster accesses a much
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Figure 33 Incidental C, symmetry in large random objects. Shown is the average
rotational symmetry content, S(C,), with respect to Cyp —> Cyy of 158
different DLAs of the type depicted in Figure 26. It is seen that the DLAs
are nearest to C; (the distribution bar for C, is small), and that the distance
to all other C,,’s is quite constant with a mild increase with n.

broader region of the phase space which includes a considerable number of
higher-lying minima.28

In this context we explored the connection between cluster melting and the loss
of structural symmetry of the ortho-deuterium (D,); 5 cluster. This cluster was shown
to display a melting/freezing-like transition29 around 4K. In the low temperature
limit the (D,);3 cluster is trapped near an icosahedral configuration, which is
generally characteristic of clusters composed of 13 spherical or approximately
spherical units. The cluster was simulated in the 2.5-5.5K T range. As T is
increased, the warmed-up clusters have an increased probability to access the
shallow potential wells of the very unharmonic potential energy surface. Figure 34
shows an icosahedral cluster configuration characteristic of low T, together with one
of the distorted configurations obtained at SK. (In this distorted configuration one of
the molecules moved away significantly from the icosahedral position.)

The structures of the disordered clusters were first expressed with the order
parameter &. This routinely used parameter is generated by averaging over the
simulation length the root mean square (rms) fluctuations in the intermolecular
distances. The results were then compared to the use of symmetry as an order
parameter. As a symmetry element to follow the structural changes, we selected out
of the 120 elements of the icosahedral point group the inversion element, i. The
reason for this selection was that as the CSM methodology always requires the
minimal S(G) value, one may experience non-monotonicity in the symmetry vs
physical parameter plot at a point where the S value of (say) the Cs rotation element
jumps from one nearest axis to another. This effect is minimized with inversion,
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Figure 34 Bottom: the icosahedral configuration of (ortho-D5) 3 characteristic of low

temperature simulations. Top: an example of a distorted configuration
obtained in a 5K simulation.

since there is only one i element per point group; hence evaluation of S(i) was
selocted.
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Figure 35 Top: behavior of the & order parameter, based on rms fluctuations in the
intermolecular distances. Bottom: behavior of the symmetry measure
parameter S(i), which measures loss of inversion symmetry as a function of

T. Diamonds: long Monte Carlo runs; circles: short runs. The robustness of
S(i) vs O is seen.

Figure 35 shows the dependence of the parameters S(i) and & on cluster
temperature. Both parameters increase around 3.4K, indicating enhanced freedom of
motion suggestive of cluster melting. However the symmetry parameter S(i) has
significantly better convergence properties: it increases gradually from zero to 0.3
in the range 3-5.5K, and the results for the two simulation lengths are nearly
identical. By contrast, the results for & (which measures the rms fluctuations in the
intermolecular distances) are quite different for the two simulation lengths. In one set
of results a significant jump in 6 occurs at 3.7K (longer runs), and in the other at 4.6K
(shorter runs). The problem with the standardly used & is that it is expected to
increase significantly at a temperature at which the atoms in the cluster start
exchanging places; but one finds that the longer the simulation is, the lower the
temperature at which such exchange is obtained. The S(G) parameter does not suffer
from that problem. Another conceptual problem with & is its definition, which
assumes distinguishability between molecules. Distance between molecule n and n'
is not a measurable quantity in a system of N identical molecules; however, the
definition of  employs distances between labeled pairs of molecules. This problem
is absent in the case of the S(i) parameter, because it is defined uniquely for a given



316

configuration of particles, and does not rely on particle labeling. Moreover, sampling
the range of deviations of cluster configurations from perfect symmetry with respect
to a given symmetry operation converges quite fast since we examine a range of
typical behaviors rather than trying to sample some rare event. A limitation of the use
of CSM as an order parameter is the need to select a specific symmetry operation.
Thus, while all S(G) values are comparable and belong to the same scale, regardless
of G, direct comparison of objects is straightforward only if a common element is
selected. Nevertheless, within a defined family, say all distorted icosahedral clusters,
the CSM approach seems to have interesting potential.

Finally we mention that S(i) proved successful in another recent study
correlating symmetry with a physical property. It has been well known for some time
that hyperpolarizability is governed by the deviation from centrosymmetricity. The
CSM approach allowed us to link the two quantitatively for the first time. The degree
of hyperpolarizability of distorted benzenes, leading to an optical non-linear effect,
was correlated to the degree of centrosymmetricity of these structures.30

5. Concept X: Symmetry as a Structural Parameter for QSAR-Oriented Drug
Design
Quantitative structure activity relations (QSAR) provides a powerful tool in the
developmental studies of new drugs.® In these studies, attempts are made to identify
predictive correlations between structural parameters of tested compounds and their
activities. The concepts we consider now are symmetry and chirality, in their
quantitative formulations, as investigative tools for QSAR studies.

We shall treat here the degree of C,-symmetry of anti-HIV drugs and its relation
to their activity. The HIV-protease has been a major target for the development of a
therapy for AIDS.3! One significant approach has utilized the C, symmetry of this
enzyme,>? and in particular the C, symmetry of the active site. Both perfectly C,
symmetric inhibitors, as well as inhibitors in which the C, symmetry was disrupted
(‘pseudo C, symmetry’), were used for that purpose. Some representative examples
of studies employing this approach include those of Erickson et al.,? Hosur et al 3
and Johti et al.3* The C, blockers have been tailored in a way, first to optimize the
fit into the active site, and second, to disrupt slightly the symmetry due to the
interaction forces with the inhibitors. From these studies, it becomes evident that
there is a lack of a basic measurement tool that would enable researchers in this field
to treat quantitatively the C, structural property of the protease, its active site and the
inhibitors. At the moment, researchers resort to the terms ‘nearly C,’, ‘almost C,’,
‘pseudo C,’, ‘not perfectly C,’ etc., although it is clear that, for a full picture of any
QSAR, a way to measure this ‘nearness’ is critically needed.

Figure 36 shows examples of experimental sets of anti-HIV drugs we analyzed
with the novel continuous symmetry, approach. One set (A) is that of Hosur et al 33
and the other (GR) of Johti et al.** The atom coordinates were taken from PDB files,

and analyzed vsing our cluant;t:\t;ve nFPronolr\ to eymmatry Qeariec A e nearly CT. and

series GR is quite far from C,. Some typical results of the analysis are shown in the
following set of figures.
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Figure 36 Two experimental sets of anti-HIV drugs. Series A is nearly C, and series
GR is quite far from C,.
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Figure 37 shows, for the first time, a quantitative correlation between the
efficiency of the HIV drug (Series A) and the C, distortion of the whole protein: the
drug which is capable of exerting greater distortion is the more active one. Figure 38
shows a most interesting observation: the more distorted (the higher the S(C,)) the
drug is, the more distorted the active site of the protease. One affects the other. Figure
39 shows the results for the GR series. Here the trend (linear on a normal/log scale)
is opposite to that of the A series, reflecting the fact that this series of drugs is so
distorted from C, that it is quite mismatched with the C,-ness of the active site.
Therefore, in this set, the better fitting drug is the more active one.

0.028

0.0275

0.0265

0.026
o ] 10

log (Ec sii)

Figure 37 Shown is a correlation between the efficiency of the HIV drug (Series A)
and the C, distortion of the whole protein.

Work aimed at developing these preliminary results into a general study of
QSAR between symmetry and activity is in progress.

6. Outlook

We believe we have shown the feasibility, practicality and usefulness of enriching
the descriptive language of symmetry from its primitive ‘either - or’ vocabulary to a
vocabulary that allows shades of gray. The vast ocean that still lies ahead of us is to
define the limits of the generality of this approach in identifying correlations between
structure and properties, in helping us to understand the role of symmetry in such
correlations, in offering useful predictions, and in phrasing new types of question
regarding nature’s sccrets of non-symmetric structures. Such structures are the rule
- not the exception.
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Figure 38 The more distorted (the higher the S(C,)) the drug is (Series A), the more
distorted the active site of the HIV protease.
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Figure 39 Symmetry/activity relation for the GR drug series.
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Appendix: The Folding-Unfolding Method
The folding-unfolding concept is at the heart of the algorithm for finding the nearest -
symmetric shape. We demonstrate two elementary cases, which nevertheless capture -
the essence of the approach.

Consider first a general triangle (a scalene one), Py, Py, P, (Figure 1a).4% We
wish to evaluate how much Cs-ness it contains, namely how far is it from being an
equilateral triangle (Figure Ic). The steps of this evaluation are based on the very
steps which are used to construct an equilateral triangle, viz:

1. Determine the centroid of the triangle (Figure 40a). Translate the object so that

Figure 40 The folding-unfolding method explained for C;: (a) Determine the
centroid, translate the object to the origin, and scale it to size 1. (b) Fold the
vertices Py, Py, P, applying to each P; the symmetry operation gi’]. A
cluster of folded points i’o, i)l , ~PA2 is obtained. (c) Average the folded
points to obtain the average point P, . (d) Unfold the average point P, : a
Cs-symmetric shape is obtained.

its centroid coincides with the origin, and scale the object to size 1 (Figure 1b).

2. Translate the symmetry group so that all operations, g;, are about the origin
(i.e. the rotations are about the origin).

3. Select an ordering of the operations of the desired symmetry group that follows
the connectivity of the P; vertices. In our case, two orderings are possible: g; = E
(the identity), gy =Cs, g3=C3” and the reverse. We proceed with the first and
return to the second in step 8.

4. Fold the vertices P,, Py, Py, applying to each P; the symmetry operation g;!. A
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cluster of folded points P, Py, P, is obtained (Figures 40b, 1b). (Had the object
been Cs-symmetric, all P;’s would coincide.) .

5. Average the folded points, to obtain the average point P, (Figure 40c).

6. Unfold the average point Py by applying to it each of the g; operations and
obtaining P Pl gi PO (=1, »Ng). The ordering is followed in order to
retrieve the original connectlvxty. A C3-symmetric shape is obtained (Figures 40d,
1c).

7. Calculate S(G) according to equation 1 (Figure 1d).

8. Minimize the S value by repeating the folding-unfolding procedure (steps 4-7)
- for all orderings and all orientations of the group elements. This step is equivalent to
finding the best cluster of folded points. In the present case, due to the cyclic
connectivity, minimization is reduced to the two orderings mentioned in step 3. As
mentioned above, rigorous proof is provided*® that this procedure leads to the
nearest symmetric shape and results in the smallest S(G). Elsewhere we showed®
that the procedure employed here does not translate the object, i.e. the center of
mass of the set P;, but coincides with the center of mass of fDi. This means that the
elements of the group arc centered at the origin as well, and the nearest element
sought must pass through it.

As discussed above, a natural extension of the CSM approach is to consider
S(Gyehiral) as a chirality measure. Our second example demonstrates how to measure
chirality of a general boundary line”%% (Figure 41).

Given an object to be symmetrized (Figure 41a), it is converted to a necklace of
an even number of boundary points, P;, as dense as one wishes (N = 30 points in our
case). When the object is already represented by vertices, this step is not needed. The
treatment of the case of an odd number of points is described in ref. 7. Its center of
mass is then determined and placed at the origin, and the distance from this center to
the farthest P; is scaled to 1 (Figure 41a). The aim is to find the nearest set of f’,- ’s
which is o-symmetric, namely, to find that reflection line which will cause the set of
P;’s to move minimally to the set of P;’s (Flgure 41b). In the symmetrized object,
each P; must have a o- symmetric counterpart, Py _;, across the reflection line (or
be located on the reflection line). The full set of P;’s is divided into subsets of two
points, and all possible divisions are tested. (Points on the reflection line are
duplicated.) Here is how a pair of points, Py, P,, are o-symmetrized with respect to
a given o (Figures 41c-41f):

1. E operates on Py and it remains in place (P = P,); o operates on P, forming
the reflected P, ; a pair of adjacent points, Py, P,, is obtained (Figures 41c, 41d).
We termed the step of applying the elements on the vertices the folding step. The
essence of our methodology is to minimize the 131 , 132 distance. In higher
symmetry groups the cluster is much larger. For instance, in order to find the
tetrahedricity measure (S(Ty)), a cluster of 24 points, (the number of the element in
the group) is formed and minimized; see ref. 5for details.

2. The folded points, Py, P, are averaged to P, (Figure 4le), and P; is
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Figure 41 The folding-unfolding method explained for 2D chirality: (a) A contour

composed of 30 points, P; (the size is scaled to 1 as shown by the arrow).
(b) The nearest c-symmetric, P;, to (a). (c)-(f) Evaluation of the S(c)
value for a pair of points, Py, P, with respect to a given mirror line. P, P,
(¢) are folded (d) to, P] 1y P2 , averaged (e) to P; and unfolded (f) into the
G-symmetric pair, P, , P, .

unfolded (Figure 41f) by applying to it the elements of the group: E leaves it in

place and o forms P, across the reflection line; the pair Py, P, is o-symmetric,
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and the sum of distances P —131”2 + ”Pz—i’z"2 is minimal.® Minimization is
performed by screening over all possible divisions into opposite pairs, namely over
all inclinations of ©.
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