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Abstract—A new theoretical model for reconfigurable processor arrays is introduced. Most of the models considered in the literature are
similar to the reconfigurable mesh (RMESH), in which each processing element (PE) is connected to its four neighbors by reconfigurable
buses. In the newmodel, called the “well-connected processor array” (WECPAR), every PE is connected to each neighbor by point-to-
point lines, and it also controls the switching between those lines. is called the connectivity of the WECPAR. Any line entering the PE can
either be connected to the PE itself, or it can be connected by the PE to another line, thus enabling complex switching configurations. This
model is suitable for arrays in which the computation andmemory areas of a PE are verymuch larger than a switch area. The concept of a
burden placed on a PE by the lines connected to or passing through it is introduced. This is used to derive a lower bound of
on the connectivity required by a WECPAR to embed any graph of degree with expansion ; for , this result is sharp. Various other
issues are examined: graph embeddings, algorithms, broadcasting, routing, and self-simulation. A novel transportation-type routing
method utilizes the connectivity for efficient routing. A sample algorithmic result is that an -point FFT can be done in logarithmic time on a
WECPAR of PEs with a connectivity of .

Index Terms—Graph embeddings, multi-connected processing elements, parallel computing, point-to-point communications,
reconfigurable processor array, routing, self-simulation, WECPAR

1 INTRODUCTION

RECONFIGURABLE processor arrays are regular intercon-
nected arrays of processors in which the connections can

be reconfigured during the execution of some program. For
some of the earlier papers on this topic, see [1]–[8].

Most of the literature on reconfiguration considers the
reconfigurable mesh (RMESH), which consists of an array of
PEs connected by reconfigurable buses. Each processor is
usually connected to its four neighbors by a single bus, and
it can control the configurationof the buses passing through it.
Manyaspectsof reconfigurationhavebeenconsidered,suchas
graph embeddings, algorithms, routing, and fault tolerance.
For an introduction to this topic, see, for example [9], [10].

In this paper, we consider a different theoretical model,
called “the well-connected processor array” (WECPAR). It differs
from the RMESH in twoways. Firstly, the communication lines
are only point-to-point (p2p), and secondly, each PE has
lines on each side connecting it to its four neighbors. For each
incoming line, aPEcaneither connect to that line (and toothers),
or it can connect the line to another line, thus forming long
communication lines between distant PEs.We also assume that
the PEs on the boundaries are connected to some external host.

In one sense, this model is more limited than an RMESH
because a PEdoes not listen to the lines passing through it. On
the other hand, the ability of a PE to connect to or configure
more than four lines offers several advantages. The capabili-
tiesweattribute to aWECPAR apply only to the basicmodel, and
this does not preclude additional capabilities, such as a

common bus or horizontal and vertical buses, or access to a
shared memory. The purpose of this introductory study is to
investigate the possibilities offered by the point-to-point mul-
tiple connections of the WECPAR. This model is suitable for
processor arrays inwhich theprocessing andmemory areas of
each PE are very significantly larger than that of a single
switching element, so all area required for the switches can be
covered by the PE area.

One motivation for this study stems from [8], which
considered a model with just one communication line be-
tween adjacent PEs. It was shown in [8] that in this model, a
complete binary tree can be embedded in a 2D array of PEs so
that (asymptotically) 100% of the PEs are utilized as tree
nodes. By comparison, thewell-knownH-tree scheme utilizes
only 50% of the PEs, and previous schemes for hexagonal
grids achieve 70% [6]. Binary tree embeddings have been
studied very extensively from various perspectives; besides
the above-mentioned papers, see also [11]–[16]. The WECPAR is
a natural extension of the model considered in [8].

The feasibility of the WECPARmodel is based on the assump-
tion that in today’s technology, there are sufficiently many
VLSI layers so that horizontal and vertical communication
lines can be laid out in two layers, and this would still leave
enough layers for the processing and switching elements. The
WECPAR can also be viewed as a fusion between a mesh of
processors and a network-on-chip; see [17]–[21] for some
references to the latter concept. The idea of having multiple
communication lines has been studied before byElGindy et al.
[22], where multiple parallel buses are used to connect a
circular array of processors. Since the WECPAR model is theo-
retical, we do not go into the details of implementation. For
some recent relevant possibilities, see, for example, [23], and
for some optical alternatives, see [24], [25].

The WECPAR idea raises the question of how it compares
with the well known RMESH from a theoretical and a practi-
cal point of view. Since it is a different concept, it cannot be
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easily compared. For example, broadcasting is obviously
faster (theoretically) on an RMESH, but a WECPAR is clearly
more suitable for simulating an evolving neural network.
From an implementation point of view, the RMESH buses
require more power to drive a signal to all the nodes in their
path, but point to point lines can potentially be implemented
with light signals which require less power. The literature on
RMESH algorithms and applications is very extensive, so a
comprehensive comparison between the two models is be-
yond the scope of this paper.

This paper examines several aspects of the WECPAR: theo-
retical properties (Section 3), graph embeddings (Section 4),
broadcasting, routing and self-simulation (Section 5), and
algorithms (Section 6). The basic switching configurations are
explained in Sections 2 and 7 concludes with some further
research directions.

2 SWITCHING CONFIGURATIONS

Weformallydefinean -WECPAR as an arrayof
PEs, with data paths between every adjacent pair of PEs.
Connections between PEs run only horizontally or vertically.
is called the connectivity of , andwewill also refer to as a
-WECPAR. The paths at the boundary PEs are assumed to be

connected to an external host.
At any given time, every path entering a PE is one of three

states: it is directly connected to the PE through a port, or it is
connected to one (and only one) other path entering the PE, or
it is simplydisconnected. ThePE is in direct control of the state
of each data path, and it is assumed that once two paths are
connected by the PE, they function as one continuous path
without interfering with other processes or connections of the
PE. Note that throughout the paper, we use the following
three terms interchangeably: (communication) path, (data)
line and wire.

Fig. 1 shows a schematic diagramof PEwith connectivity 3
and the possible switch configurations inside the PE. Each
incoming line can be connected directly to the PE through a
port, shown schematically as a circular switch. Alternately, if
the line is not connected to the PE, it can be connected to
another line via one ormorewire switches, shown as squares.
The figure also shows all possible configurations of such wire
switches.

Note that two types of loops are theoretically possible in
thismodel.One type iswhen one port of a PE is connected (via
switches in other PEs) to another port of the same PE. This
situation can be easily detected by the PE as soon as a signal is
sent fromoneport to the other. Another type of loop can occur
when a line forms a closed circuitwithout anyPE connected to
the line. This situation does not affect any PE in the WECPAR.

3 THEORETICAL RESULTS

This section presents two theoretical results: the NP-
completeness of embedding a graph in a WECPAR, and a lower
bound on the required connectivity of such an embedding.
We recall some standard definitions related to graph embed-
dings. Let and be two graphs. An embedding of (the
guest graph) in (the host graph) is a one-to-one mapping of
the vertices of into the vertices of such that the edges of
are mapped to edge-disjoint paths of . The number of

vertices of divided by the number of vertices of is called
the expansion of the embedding.Wemodify these concepts for
WECPARs.

Definition 1. An embedding of a graph in a WECPAR

is a pair such that is a 1-1 mapping from to the PEs
of and is a configuration of switches in such that for
every edge , and are connected in .
Theexpansion of the embedding is the number of PEs in
divided by . For convenience, we define , for

, as the path in from to . (If there is
more than one path from to , then one of them is chosen
arbitrarily to be ).

3.1 NP-Completeness of the Embedding Problem
The following natural question immediately arises: Can a
given graph be embedded in a given WECPAR? We formally
define the GEW (graph embedding in a WECPAR) problem as
follows: Instance: an encoding of a graph and a
WECPAR . Question: Can be embedded in ? Note that
formally, we consider GEW to be the language consisting of
all the positive instances of this problem. Not surprisingly,
we have:

Theorem 1. The GEW problem is NP-complete.

Proof. We first show that the problem is in NP. Suppose we
are given an instance of GEW with a graph

and an -WECPAR . Nondeterministically,
we choose a 1-1 function from to the PEs of , and a
configuration of the switches in . Then we check in
polynomial time that every edge is mapped
to a path in connecting and .

To show that GEW is NP-hard, we show that the
restricted problem with is NP-hard. We call the
restricted problem GEW1. For a given -WECPAR, we
label its PEs by numbering them consecu-
tively from left to right. Let us recall the minimum cut
linear arrangement (MCLA) problem [26, p.201]: Instance:
an encoding of a graph and a positive
integer . Question: is there a one-to-one function

such that for all < ,

Fig. 1. Example of a configuration of switches in a PE.

1288 IEEE TRANSACTIONS ON COMPUTERS, VOL. 63, NO. 5, MAY 2014



< ? We shall prove that
MCLA is polynomially reducible to GEW1.

We define a mapping from instances of MCLA to in-
stances of GEW1 as follows. Given an instance of
MCLA,where , wemap it to an instance
of GEW1 consisting of the same graph and a -
WECPAR , where . We shall show that

.
Assume , and let be a mapping as in

the MCLA problem. Let be a labeling
of such that for all , . We define a
mapping simply as , for

. What remains to be seen is that the edges of
can be mapped to connected paths in . This is not
immediatelyobvious, because in theMCLA,no accounting
is needed for the left and right ports of the PEs.

We begin with mapping all the edges emanating from
.Assume that there are such edges. Clearly, . In the

MCLA, these edges can be viewed as line segments con-
necting the point 1 to some other points between 2 and .
Since , we simply utilize ports on the right side of ,
and connect the communication paths from these ports in
straight paths to the left ports of the PEs corresponding to
the other vertices of the edges from .

We now continue with the edges from (except for an
edge , if it exists in ). We utilize the free ports on
the right of to map these edges to straight paths to the
left ports of PEs numbering 3 or above. Since all the paths
from were straight, all the free ports on the left of can
be connected by straight paths to PEs lying to the right of

.Due to the limit of in theMCLAproblem, it is clear that
there must be sufficiently many free ports on the left of
for this purpose. We now continue with , and so on,
in a similar manner, until all the edges are mapped to
connected paths in the WECPAR. This proves that can be
embedded in ; i.e., .

Assume now that ; i.e., is embed-
dable in . Let be a labeling of such
that for , is mapped to . We define the
mapping required for the MCLA problem as ,
for . The required bounding condition in the
MCLA holds trivially because there are only ports on
each side of a PE. Note that some of the embedded paths
maymake “turns” back and forth between the PEs, but this
is obviously not a problem. ◽

3.2 Lower Bounds on Connectivity Required for
Embedding

We consider the following problem: Given a graph with a
minimal vertex degree , what is the minimum connectivity
required to embed it in a WECPAR? Since the number of ports of
a PE is , must satisfy .However, unless the graph is
a subgraph of a 2-dimensional grid, some ports must be used
for paths that pass through the PE. The following concept will
be used to obtain a nontrivial lower bound on the required
connectivity.

Definition 2. Let be a graph, a WECPAR, and
an embedding of in . For , let and some
other PE in .We define the burden that places on , denoted
by , as the number of paths with endpoint and passing

through or terminating in . For a set of PEs, we define
, and .

Note that if we have a path with endpoints , (which is
the image of an edge of ) then is the exact
number of ports usedby thepath (1port from , 1 from , and
2 ports from every PE through which the path passes). It
follows that is the total number of ports used by
the embedding.

Theorem 2. Given a graph with vertex degree ,
and an -node square WECPAR , the connectivity required to
embed in with expansion is . For , this
result is sharp.

Proof. Let be an embedding of in , and
. We will first derive a lower bound for .

For an integer , denote by the set of PEs in
whose distance from is exactly . Let (the
size of ). Assuming that , we have

( if is a corner PE, and
if is at distance from all the boundary PEs

of ).
Clearly, because all paths from

either pass through or connect to PEs of . Consider
now the PEs of : , because with
the possible exception of 2 to 4 direct connections between

and , all the other paths from either pass
through or connect to PEs of . In general, for

, we have

Naturally, we should only consider radii for which
> . Let be the maximal integer s.t.
> , i.e., > .

Hence, .
We now get our lower bound on by summing the

lower bounds of Eq. (1):

The last equality in Eq. (2) follows from the standard
summation equations and

. Using > in Eq. (2),
we get

>

where stands for lower order terms of . Now,
.

Note now that the number of vertices of is , so the
total burden, (which is also the number of ports used) is

Therefore, the averageburdenplacedona singlePE
is . The minimal required connectivity is at least
1/4 of the average burden, so .

To see that the result is sharp for , we shall show
that for infinitely many values of , there are graphs with
vertex degrees which can be embedded in a WECPAR

with connectivity . Given an integer , we consider
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the following graph : the vertices form a square grid of
size at least , and two vertices are con-
nected by an edge iff the -distance between them is .
By calculations similar to the above, we can see that the
minimal vertex degree, obtained at a corner, is

. According to the
above result, the required connectivity to embed in a
square WECPAR of the same size (expansion ) is

.
Embedding in a WECPAR (of the same size) can be

done as follows. The vertices of are mapped in a
straightforward manner to the PEs of , and horizontal
and vertical edges are mapped to horizontal and vertical
paths. Mapping the diagonal edges is done similarly
to the diagonal paths in Fig. 4: all the diagonal paths have
just one turn of , and all the switch configurations are
identical. Burden arguments similar to the above can be
used to show that this embedding can be done with
connectivity . ◽

4 GRAPH EMBEDDINGS

Circular arrays. Fig. 2 shows how a circular array can be
embedded into a single row of a 2-WECPAR. This construction
can be done in all the rows and columns of a rectangular
2-WECPAR, resulting in a 2D circular array, which is topologi-
cally equivalent to a torus.

Binary tree in aWECPAR row.Adifferent type of embedding
is that of a binary tree of level in a single row or column of a
WECPAR, as shown in Fig. 3 for a tree of level 3. The required
connectivity is , i.e., it is logarithmic in the row length. If
this construction is done in every row and column of a
square WECPAR, the resulting graph is known as amesh of trees;
see [27, p.120].

6- and 8-connected grids. Fig. 4 shows an embedding of an
8-connected grid in a 3-WECPAR. Note that all PEs have the
same switch configurations. An hexagonally-connected grid
can also be implemented in a similar manner, requiring a
connectivity of 2.

Hypercubes. One of the most useful graphs for parallel
applications is that of a hypercube. Such a cube can also be
embedded in a WECPAR, as shown in Fig. 5 for a hypercube of
dimension 4. Using the short connecting lines, PEs 0–3 form a
2D square, and so do PEs 4–7. The two squares are connected
so as to form a 3D cubewith PEs 0–7. A similar construction is
donewith PEs 8-15, and the two 3D cubes are joined to form a
hypercube of dimension 4. It is easy to see that a hypercube of
even dimension requires a WECPAR of size , with
connectivity . If is odd, the required WECPAR is of size

.
Binary tree embeddings in a 2-WECPAR. In [8] it was shown

how a complete binary tree can be embedded into a 1-WECPAR

with asymptotically 100% utilization of the nodes. In this
context, we define a “tile” to be a rectangular array of PEs
containing a complete binary tree and one extra PE which is
used as a tree node in the recursive construction of higher-
level trees. The embedding of [8] is quite complicated, requir-
ing five types of basic “tiles”; five larger tiles, eachmade up of
four basic tiles, can then be laid out recursively to produce
the result. Furthermore, in an -WECPAR, about of
the border PEs are not utilized by the construction. Using a
2-WECPAR, we can embed a binary tree using 100% of the PEs,
and requiring only two basic tiles, each of size PEs.

Fig. 6 shows how a 2-WECPAR can be used efficiently to
embed a complete binary tree with 100% utilization. The
scheme uses two types of tiles, called and , each contain-
ing a complete binary tree. Trees of higher levels are obtained
by a recursive construction of lower-level tiles. Each tile also
contains a “spare” PE which is used for higher level nodes in
the recursive construction. At the lowest level, each tile con-
sists of a square of PEs forming a tree of level 3.

Fig. 6(a) shows the recursive construction of an -tile of
level 5 made up of one basic -tile (of level 3) in the upper
right quadrant, amirrored -tile (labeled ) in theupper left
quadrant, a -tile in the lower left quadrant, and a rotated
in the lower right quadrant.

Fig. 6(b) shows the recursive construction of a -tile of
level 5, made up of four tiles of level 3. The construction uses

Fig. 4. Eight-connected array embedded in a 3-WECPAR.

Fig. 2. Circular array embedded in a 2-WECPAR row.

Fig. 3. Embedding of a binary tree in a WECPAR row. Fig. 5. Four-dimensional hypercube embedded in a 2-WECPAR.
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two different reflections of an -tile ( and ), and two
-tiles. The tiles can be characterized as follows.
1) In all the boundary PEs, the ports near the extreme edges

are free to be used for edges of higher-level trees. These
ports are marked by open circles in the -tile of Fig. 6
(but not marked in the -tile).

2) In an -tile, the extra PE is on the bottom row, immedi-
ately to the right of the center, and it can be connected to
the root of the -tile.

3) In a -tile, the extra PE is in the top right corner.

4) The root of a -tile (at all levels) is immediately to the left
and below the tile’s midpoint.

5) The root of a -tile can be accessed from the top and
bottom of the tile by straight lines passing through ports
which are free for this purpose; these ports are marked
by empty circles in the -tile of Fig. 6(a). Furthermore,
the free paths to the root are immediately to the left of the
vertical center line of the tile; these paths are shown by
the red dashed lines in the higher level -tile of Fig. 6(b).

It can be easily verified by inspection that the above
properties carry over to higher level trees constructed
recursively.

5 BROADCASTING, ROUTING AND
SELF-SIMULATION

5.1 Broadcasting
Amost fundamental step is that of broadcasting. This cannot
be done time as in an RMESH, but we can use the size of
the connectivity to speed up the obvious logarithmic time.

Theorem 3. Let be an -WECPAR, and assume .
Then broadcasting from a corner PE to all the others can be done
in time .

Proof. Assume first that . We denote the th PE in row 0
by . Broadcasting can be done in reconfiguration
steps as follows. The initial configuration connects
with , and sends the information to

. This scheme now continues recursively in each
half of the row, and the total number of configuration steps
is clearly . In the next step, the top PE in each
row broadcasts down the column in the same number
of steps.

For > we divide the row into spans of (almost)
equal size. is connected to the leftmost PE of each
other span, and the data is transmitted. This scheme con-
tinues recursively in each span. The number of reconfigu-
ration steps is . ◽

5.2 Routing
The problem of routing on reconfigurable meshes has been
studied very extensively; see, for example [28] and the refer-
ences therein. The WECPAR offers a unique approach to this
problem by assigning some of the connections to a cyclic
reconfiguration scheme which transports the packets in a
regular and predictable manner.

The idea is demonstrated in Fig. 7 for connectivity .
The figure shows the first two stages of the scheme on a single
WECPAR row. In stage 1, the row is divided into spans of
PEs, and the leftmost PE of each span connects to all the PEs of

Fig. 6. Recursive layout of an -tile (a) and a -tile (b) for laying out a
binary tree, showing details of the basic - and -tiles. and are
mirrored versions of , and is a rotated .

Fig. 7. First two stages of the routing scheme on a 3-WECPAR row.

GORDON: WELL-CONNECTED PROCESSOR ARRAY 1291



the span. Every PE that has a packet to transmit sends it to the
leftmost PE, and if the destination is within the span, it is sent
immediately to its destination.

At stage 2, only the leftmost PEof each span is active andall
the others act as connectors.Newspans are formed, consisting
of PEs, and the leftmost active PE of each (new) span
connects with the active PEs in its span, and receives the
required data. This continues for stages, where is the
minimal number such that , where is the row
length; i.e., .

Thefirst stageswill be called “data gathering”. After these
stages, the configurations are repeated in the reverse order,
and in each span, the data is transmitted from the leftmost PE
to the active PEs in its span. Note that the st configura-
tion is identical to the th configuration, but the data travels in
theopposite direction. This isdoneuntil thefirst configuration
is reached again, and then every packet will reach its destina-
tion; these stages will be called “data distribution”. The cycle
is now repeated. The total number of reconfiguration steps in
a cycle is . For example, if < and , then ;
see Fig. 7.

To transmit data both horizontally and vertically in an
-WECPAR, we employ the same scheme also on the col-

umns so that at every time step, all row configurations are
identical, and the same holds for the columns. However, to
reduce latency, stage 1 of the column scheme coincides with
the st stage of the rowscheme, so apacketwaits stages
at most until its transmission begins.

Furthermore, once a packet gets under way, it needs at
most two cycles to reach its destination. This is explainedwith
the aid of Fig. 8, which shows an example of the stages along
the rows and columns for . The numbers represent the
configuration types, empty circles represent data gathering,
and shaded circles represent data distribution. The figure
shows the path taken by a packet starting from stage 1 along
its row. After stage 3 (gathering), it takes stage 1 along the
column until the end of the cycle, i.e., it reaches its final row.
Then, the packet continues along the row at the exact cycle
point where it left off, reaching its final destination at the end
of the second cycle. These results are summarized in Theorem
4 below.

Theorem 4. Assuming that lines per side are allotted to
communications, routing on an -WECPAR can be done in

reconfiguration steps, where .

5.3 Self-Simulations
The term “self-simulation” usually refers to the ability of a
small reconfigurable network to simulate a large network
with a minimal loss of time. In [29], it was shown that if an
RMESH is restricted to have only linear buses, then a large
mesh can be simulated in optimal (linear) time. Even though a
linear bus is similar in shape to a p2p line, the result does not
carry over to WECPARS, because it uses a certain connected-
component algorithm which relies on the broadcast capabili-
ties of a bus.

The major difference between self-simulation with buses
and p2p lines is that with buses, the message has to be
delivered to all the PEs connected to the bus, but with p2p
lines, the message only has to be delivered from one PE to the
PE at the end of a line. Thus, the self-simulation problem for
WECPAR s just reduces to a routing problem, and this can be
solved by the routing scheme of Section 5.2.

A different type of simulation is sometimes possible when
we want to simulate a WECPAR of a given connectivity by a
larger WECPAR with lower connectivity, or vice versa. This is
trivially possible for certain values of WECPAR sizes and con-
nectivity: consider Fig. 1, which shows an example of the
configuration of switches in a PE with connectivity 3. Every
suchPEcanbe replacedbya blockofPEsof aWECPARwith
nine times as many PEs and connectivity 1. Every simulated
transmission step is followed by an internal transmission step
in the blocks, in which the data is sent to the central PE, which
performs the required computation. This is followed by an-
other internal step within the blocks to deliver the data from
the central PE to the others, and then the external transfers are
done. Clearly, the reverse simulation is also possible.

Self-simulations can also be specific to certain applications,
as will be shown in Section 6.2.

6 ALGORITHMS ON THE WECPAR
6.1 Semi-Group Operations
Semi-group operations, such as computations of sums, can be
done on a WECPAR in logarithmic time, similarly to such
operations on an RMESH. Can such operations be done any
faster on a WECPAR using its connectivity? Theoretically, the
answer is negative.However,we can express the time in terms
of the time it takes a single PE to compute such anoperation on
several elements. This could be useful when the PEs have
dedicated hardware for this purpose.

Theorem 5. Let be an -WECPAR, and assume that
computing a certain semi-group operation on elements
on a single PE takes time. Then computing this operation on
all the elements of takes time.

Proof. Theproof utilizes the same configuration stepsused for
routing, as shown in Fig. 7. In stage 1, all elements transmit
their data to the leftmost PE in their span. Each such PEnow
computes the operationon its elements in time . In
stage 2, the spans are increased by a factor of , and
the scheme continues with the PEs that were leftmost in
the shorter span. This continues for steps, where

, at the end of which the leftmost
PEs contain the result for their rows. The scheme is now
applied to the first column, and the result follows. ◽

6.2 Normal Butterfly and Hypercube Algorithms
Many parallel algorithms have been developed for various
graphs of PEs. In this section, we will concentrate on some
algorithms that utilize the WECPAR’s connectivity.

One family of such algorithms consists of the so-called
normal butterfly algorithms; see [27, Section 6.2]. To describe
these algorithms, we first explain the butterfly network.

The butterfly network of rank consists of nodes,
organized as ranks, numbered , with each rank
containing nodes. Fig. 9 shows the standard butterflygraph

Fig. 8. Path followed by a packet along the row and column
configurations.
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of rank 3. The nodes of rank are numbered , and
each node of rank is connected to the nodes of ranks
and with the same number. Additional connections are
as follows: ranks 0 and 1 are divided into two spans of equal
size. The nodes of the first span of rank 0 (numbered 0 to

) are connected to the second span of nodes of rank 1
(numbered to ), and the nodes of the second span
of rank 0 are connected to the first span of rank 1, as shown in
Fig. 9. At the next level, the pattern repeats itself separately
and independently in each span: the span is divided into two,
and connections with the lower two corresponding spans
follow the same pattern. At the last two levels, the nodes are
connected in pairs: node of level is connected to node

of level , and node of level is connected to
node of level . As noted in [27, p. 221], if we “collapse” all
the columns of a butterfly of rank , then we get exactly a
hypercube of dimension .

Normal butterfly algorithms are algorithms which can be
run on the butterfly network andwhich operate as follows: at
any give time step, all the data resides in one rank of the
butterfly network, and at the next time step, the data either
stays in the same rank, or moves one rank up or one rank
down.Movement between the ranks is only allowed along the
edges of the butterfly. Two important examples of normal
butterfly algorithms are the fast Fourier transform (FFT), and
a modified odd-even merge-sort [27, p. 225].

A normal butterfly algorithm can be run on the hypercube
in the same time as on the butterfly [27, Thm. 6.4], so in order
to run it on a WECPAR, we can configure the WECPAR as a
hypercube, as in the previous section, and run the algorithm
on thehypercube.As noted in 4, the connectivity required by
a hypercube of dimension is . However, using a
WECPAR will require about half the connectivity due to the
nature of such algorithms. Similarly to the hypercube simu-
lation, every butterfly column will be simulated by a single
PE, so thevertical connections arenot needed.Additionally, at
any given time step, the diagonal links used by the butterfly
are only those between adjacent ranks, and these will be
simulated by reconfigurable connections of the WECPAR.

Fig. 10 shows a WECPAR with nodes corresponding to a
butterfly of rank 6. Every PE is numbered with the butterfly
column number which it simulates. Every quadrant of the
WECPAR contains consecutively numbered PEs, and the overall
numbering of the PEs goes from the top-left quadrant to the

top-right, then bottom-left, then bottom-right. This order is
repeated recursively in each quadrant.

The figure shows connections corresponding only to the
diagonal butterfly links between ranks 0 and 1: nodes 0–31 are
connected respectively to nodes 32–63. For the diagonal
butterfly connections between ranks 1 and 2, the WECPAR can
be reconfigured so that in the upper half, nodes 0–15 are
connected respectively to nodes 16–31, and similarly for the
lower half. This canbe repeated for anyof thediagonal links in
a butterfly connecting two adjacent ranks. The following
theorem summarizes this simulation.

Theorem 6. Any normal butterfly algorithm requiring a butterfly
network of rank and time can be run on a

-WECPAR in time .
As a practical example, consider a 1024-point FFT which

requires a (32,32)-WECPAR. If we configured the WECPAR as a
hypercube and then run the FFT, we would need a connec-
tivity of , but using the above dynamic recon-
figuration, we only need .

A related concept is that of a normal hypercube algorithm,
which is defined in [30, Section 3.1.3] as a hypercube algo-
rithm in which at any given time step, only the edges corre-
sponding to one dimension are active. It is obvious that such
algorithms can be simulated by a WECPAR similarly to normal
butterfly algorithms, and with the same connectivity.

We consider now two self simulation problems related to
normalbutterflyandhypercubealgorithms.Thefirstone is the
problemofimplementingtheaboveapproachonaWECPARwith
a smaller connectivity. Clearly, the routing mechanism of
Section 5.2 can be used for this purpose, but there is an even
simpler method for this problem, as shown by the following
theorem.

Theorem7 (Connectivity reduction for normal butterfly and
hypercube algorithms). Suppose we have a (1,n,k)-WECPAR

such that and , where . Assume that for

Fig. 9. Butterfly network of rank .

Fig. 10. WECPAR links corresponding to the diagonal edges between ranks
0 and 1 of a butterfly network of rank 6.
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, wishes to transmit a message to
. Then this transmission can be done in reconfiguration

steps.

Proof. Note first that if , then a single configuration
step suffices, as shown in Fig. 10. To simplify matters, we
will first explain the proof for and , with
the aid of Fig. 11.

Suppose that for , needs to send a mes-
sage to . In step 1, and send
messages and to and , respectively. In
step 2, sends messages and to , and

sends messages and to . Now,
and already have their respective messages, and in
step 3 they transmit the remaining messages to their
destination.

Thus, any reduction of by 1, requires three times as
many reconfiguration steps, and the result follows by
applying this approach recursively. ◽

Consider again the example of a 1024-point FFT, which
requires a connectivity of 16. If the connectivity is reduced to
8, then only the first two stages of the algorithm require the
3-stepmethod of Theorem 7. This theorem can thus be viewed
as a type of connectivity-time tradeoff result.

The second type of self-simulation problems for normal
butterfly and hypercube algorithms is that of simulating a
largeWECPAR by a small one. This can be done byusing each PE
of the small WECPAR to simulate a small square of PEs of the
large WECPAR. For example, consider the problem of executing
a 256-point FFT on a WECPAR of only 64 PEs (as in Fig. 10). In
this case, we assign four consecutive numbers to each PE and
the links would follow the same pattern as for a 64-point FFT.
However, four values will now be transmitted on each link,
and the lowest level operations of the algorithm are done
within each PE. Hence, such self-simulations do not present
any problem.

6.3 Numerical High-Performance Applications
With the advent of clusters of multi-core CPUs and GPGPUs,
high performance computing (HPC) capabilities have in-
creased very significantly in recent years. A natural question,
raised by one of the reviewers, concerns the potential appli-
cation of WECPAR s toHPC.Wewill consider two such applica-
tions: the problemof image reconstruction fromprojections in
biomedical imaging, and certain solution methods for linear
systems.

For the first problem, many parallel methods have been
proposed in the literature, including methods based on par-
allel arrays, such as [31]. The WECPAR provides a unique

approach to this problem. Assume that the (unknown) image
is overlaid by a WECPAR so that every PE covers a square of
pixels. In many types of these calculations, computations are
done along lines passing through the image pixels; the lines
model X-rays (or some other particles) passing through a slice
of an object; see, for example, [32].

Assume that we have many sets of such parallel lines, and
at each stage, we consider a single such set of parallel lines. A
typical computation alonga single line involves summationof
certain values which are calculated at each pixel through
which the line passes. Each PE calculates the relevant values
for the pixels which it covers. For the summation, we proceed
similarly to the semi-group operations in Section 6.1. To do
this,weneed to create long links in the horizontal, vertical and
diagonal directions. As can be seen from Fig. 4, the first two
directions present no problem. Furthermore, it is easy to see
from this figure that long diagonal links can also be created by
joining, for example, an incoming horizontal link to an out-
going diagonal link.

A somewhat different type of problem is the solution of
linear systems of equations.Manyparallel algorithms exist for
this purpose using clusters of nodes, and in some cases, also
utilizingGPGPUs. As an example of one potential application
of WECPAR s to this problem, we consider a specific approach
called domain decomposition (DD) [33], in which the linear
system is divided into blocks of equations, which may over-
lap. A typical solution method iterates on the following two
operations until convergence:

1. Internal operations within each block of equations.
2. Data exchange between blocks of equations.
Thedata exchange is due to the fact that blocks of equations

correspond to neighboring subdomains and there is a need to
update each subdomain with information from its neighbors.
Consider now the assignment of blocks of equations to thePEs
of a WECPAR. If two blocks need to exchange information, we
would want to assign them to neighboring PEs. Such an
assignment is simple to implement when the nonzero ele-
ments are close to the diagonal. Inmore complicated cases,we
may need to use the routing mechanism of Section 5.2 to
exchange information between blocks.

7 DISCUSSION AND FURTHER RESEARCH

This paper presented the concept of a WECPAR, which is a
reconfigurable mesh of processors, with multiple, point-to-
point communications between processors. Each processor
can dynamically reconfigure its switches. Some theoretical
results were presented, and several practical concepts were
examined, including embedding problems, algorithms, and
routing. It was shown that even though certain graphs, such
as the hypercube, can be embedded in a WECPAR, its dynamic
reconfigurability enables normal hypercube and butterfly
algorithms to be run with lower connectivity than required
by a fixed embedding of the graphs.

Several research directions can be pursued, such as addi-
tional parallel algorithms, fault tolerance, and applications in
various areas, such as the simulation of neural networks and
cellular automata, for which WECPARs seem to be suitable. A
major direction for further study is the actual implementation
of aworkingmodel of the WECPAR. This, of course, will depend
on the state of the technology, and additional hardware can be

Fig. 11. Three configuration steps required to transmitmessages from the
first half of a WECPAR row to the secondhalf, shown for row length and
connectivity .
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added to the WECPAR, such as a bus connecting all the PEs to an
external host. A mechanism for synchronization should be
included so that switching between configurations is done by
all the PEs at the same time.

If the WECPAR model is to become a practical computational
tool, some implementation and usage issues will have to be
studied. These include programming languages that will
facilitate the use of the WECPAR’s reconfigurability. Most prob-
ably, a WECPAR will serve as a special computational device
rather than a general purpose computer. To this end, a two
levels of languages are envisioned: a low-level language to
support specific WECPAR operations, and a higher-level accom-
modation of WECPAR operations in a general purpose parallel
programming language such as OpenCL [34].
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