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VS is a simple system consisting of several techniques for various volumetric problems. Based on the
marching cubes algorithm, it operates with one space sweep through the voxels and extracts all topolog-
ical information: detection of all isosurfaces, partitioning the data into connected components on the
basis of surface connectivity, and association of surfaces with any internal surfaces to arbitrary levels
of nesting. VS extends Baker’s “Weaving Wall” method by associating topological cavities with their outer
surface, and by using efficient data structures for the voxel traversal and for the connected component
detection. Its runtime, on average, is only about 2% more than the speeded-up marching cubes algorithm.
VS operates on the original voxels without using the contour tree required by other approaches. Using
linear-time preprocessing, VS constructs a data structure which can be utilized for any isovalue or inter-
val of isovalues. An accurate estimate of each component’s volume is based on the volume enclosed by
the outer surface, minus the volume of any internal cavities. VS enables noise reduction by eliminating
components (and cavities) with a small volume. Different components can be rendered with different
visual attributes, and cutaway views by arbitrary cut-planes are displayed as if the objects were solid,
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without adding any new surface patches to match the intersection.
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1. Introduction and background

Volume visualization is of prime importance in many industrial,
scientific and medical applications. The raw data is usually avail-
able as a 3D matrix of numbers which are the discrete values of
a density function F(x,y,z), representing some physical property.
For example, in computerized tomography, the property is that
of X-ray attenuation. In such an application, a user wishes to spec-
ify threshold values for some type of material (e.g., bone) and then
visualize the shape of the object(s).

Another important objective is to obtain all the topological
information from the 3D data. This includes the partitioning of
the data into connected components, i.e., the user wishes to distin-
guish between disconnected parts of the same type. Other topolog-
ical information that may exist in the data is the presence of
cavities inside the objects, and the possible presence of internal ob-
jects inside the cavities, etc., to arbitrary levels. Interaction is also
important, e.g., the ability to isolate disconnected parts and display
them separately or in any combination of parts, or with different
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visual attributes (such as color and opacity). It is also desirable to
have the ability to slice the objects with arbitrary cut-planes in or-
der to better visualize the internals of complex parts. Another use-
ful feature is quantization, i.e., the ability to measure the surface
area of each component, as well as the volume enclosed by the sur-
face. The topological data enables an accurate estimate of the vol-
ume, since the volume of internal cavities can be subtracted. Such
quantization also allows the user to eliminate noise by ignoring
“small” components and cavities.

There exist two fundamentally different approaches to visualiz-
ing volumetric data: volume-based and surface-based. Volume-
based methods operate on the entire set of voxels and display
the objects directly according to some method (see Cai and Sakas,
1998; Cohen-Or and Sheffer, 1994; Cohen-Or and Fleishman, 1995;
Frieder et al., 1985; Lacroute and Levoy, 1994; Levoy, 1988, 1990;
Meagher, 1984; Reynolds et al., 1987; Sobierajski et al., 1993; Yla-
Jdaski et al., 1991). These methods have a disadvantage of requiring
the entire dataset to be in some suitable format, but, on the other
hand, the original data is available at all times for various purposes,
such as “volume rendering” (Levoy, 1988).

Surface-based methods first extract the surfaces in a prepro-
cessing step, and then display the surfaces (Artzy et al.,, 1981;
Lorensen and Cline, 1987; Wyuvill et al., 1986; Gordon and Udupa,
1989; Wilhelms and van Gelder, 1992; Shen and Johnson, 1995;
Bajaj et al., 1996; Carneiro et al., 1996; Criscione et al., 1996; Livnat
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et al.,, 1996; Shen et al.,, 1996; Kobbelt et al., 2001; Nielson, 2003;
Zhang and, 2006). There are advantages and disadvantages of sur-
face-based methods as compared to volume-based methods (see
Bartz and Meissner, 1999). However, the amount of surface data
is proportional to the surface of the objects while the volume data
is proportional to its volume, so surface data usually takes up less
space than volume data and it is more easily manipulated and dis-
played. Furthermore, surface data is more suitable for today’s
graphics engines, which are geared towards polygonal meshes. An-
other advantage of surface data is that it is amenable to modern
surface-processing algorithms, such as those of (Touma and Gots-
man, 1998, 2000).

The boundary-detection (BD) algorithm (Artzy et al., 1981) is
probably the earliest topologically correct method of extracting
the isosurface of an object. The voxels are considered as cubes with
a uniform value inside. When an isovalue is determined, all voxels
are categorized either as 0-voxels if their value is below the iso-
value or as 1-voxels, otherwise. This approach is often referred to
as the digital model. Starting from a user-specified seed boundary
face, BD detects the (connected) outer surface of the object formed
by all voxels which are edge-connected to the seed voxel, either di-
rectly, or by a path of connected voxels. BD provides the volume
enclosed by the surface, but that volume may include internal cav-
ities, which are not accounted for. Different objects, as well as cav-
ities, require new seeds. BD is a graph traversal algorithm,
performing a breadth-first search on the digraph defined by certain
relationships between boundary faces. Gordon and Udupa (1989)
showed that for objects defined by face-connected voxels, a mod-
ified BD achieved significantly faster results. See also (Herman
and Webster, 1983) and (Kong and Udupa, 1992) for formal proofs
of correctness of BD and the modified BD, respectively.

The marching cubes (MC) algorithm of Lorensen and Cline
(1987) considers the voxel values as being assigned to grid points
in 3D space, and assumes that at any other point (x,y, z), the value
of F(x,y,z) is a trilinear interpolation of the values at the eight grid
points surrounding (x,y,z). Given a certain threshold (or isovalue),
MC sweeps once through all the volumetric dataset and outputs all
triangles defined by the isovalue. Thus, MC produces all the trian-
gles forming the surfaces of all the objects, including the surfaces
of any cavities. However, the original MC does not partition the
volumetric data into connected components. Certain topological
problems with MC were corrected in subsequent papers, such as
(Shirley and Tuchman, 1990; Nielson and Hamann, 1991; Cher-
nyaev, 1995; Carneiro et al., 1996; Nielson, 2003). Much research
has also been done on speeding up MC through the employment
of various data structures-see, for example, (Giles and Haimes,
1990; Wilhelms and van Gelder, 1992; Itoh and Koyamada, 1995;
Shen and Johnson, 1995; Shen et al., 1996; Bajaj et al., 1996; Livnat
et al.,, 1996; Cignoni et al., 1997; Sutton et al., 2000).

Wyvill et al. (1986) also assume the trilinear interpolation mod-
el, but they extract isosurfaces from seed voxels, so every con-
nected surface requires a different seed. Separating the data into
connected components can be done by volume-based methods
(see Schiemann et al., 1996): starting from a user-specified seed
voxel, all voxels that are connected to it are identified by some
classical search method such as breadth-first or depth-first search.
Such methods require a new seed for every object. Another prob-
lem is that the result is again volumetric, thus requiring large stor-
age space. The display of such data either requires volume-based
methods, or a surface extraction step to isolate the surface. Fur-
thermore, internal cavities are not identified by this method.

Udupa and Ajjanagadde (1990), using the digital model, use a
recursive algorithm to construct a “containment tree” in which
each node corresponds to a surface and its children correspond
to internal surfaces. Their method searches the interior of a surface
for a boundary face, and then applies the modified BD to produce

an internal surface. When an outer surface contains several inter-
nal surfaces (cavities), this method requires some method for
marking each internal surface that has already been found. To
the best of our knowledge, the “Weaving Wall” algorithm of Baker
(1989) is the first approach that uses a single space sweep, as in
MG, to separate the objects into connected components based on
surface connectivity. The purpose of this was aimed at following
changes in an animation sequence, but it was also used in (Baker,
1989) for tomographic surface reconstruction.

More recently, much work has been done on topology-based
techniques. Bajaj et al. (1997) introduced the use of the contour
spectrum and the contour tree, which captures the topological
relationships between all possible isosurfaces. These ideas are
based on the Reeb graph, introduced in (Reeb, 1946). The con-
tour tree is a tree (in the graph-theoretic sense), drawn in 2D,
whose vertices are either local extrema or saddle-points of the
volume function, and the edges connect local extrema to their
nearest saddle-point(s). The y-coordinate of every vertex is the
function value at that vertex, and the x-coordinate is chosen so
that the user can visualize the structure of the tree. Thus, the
intersection of a horizontal line y =y, with the graph edges cor-
responds exactly to all the separate isosurfaces defined by the
isovalue y,.

The following is a very brief review of some of the work in this
area. A detailed review is beyond the scope of this paper, and the
reader is referred to the excellent reviews in the papers of Carr
and Snoeyink (2003) and Weber et al. (2007). Pascucci and Cole-
McLaughlin (2003) improve on previous work of Pascucci by com-
puting the augmented contour tree in O(n + tlogn) time, where n
is the number of grid points and t is the size of the contour tree.
Their computation also includes the topological type of each sur-
face (its Betti number). Carr and Snoeyink (2003) replace the meth-
odology of providing seeds for every possible surface with path
seeds, which provide starting points for all surfaces. Their prepro-
cessing time is O(nlogn + to(t)), where « is the inverse Ackermann
function (which can be considered as a constant for all practical
purposes). The path seeds are used for creating sets of isosurfaces
at several different isovalues. Carr et al. (2004) introduce a method
for simplifying complex contour trees. For recent results on time-
varying Reeb graphs (see Edelsbrunner et al., 2008).

Several papers, such as (Takahashi et al., 2004; Takahashi et al.,
2005; Takahashi et al., 2006; Weber et al., 2007) utilize topological
information for volumetric rendering. This requires a preprocess-
ing time of O(nlogn). Takahashi et al. (2004) use skeletonization
to obtain the contour tree and use it for the design of transfer func-
tions. (In direct volume rendering techniques, transfer functions
control visual attributes.) Takahashi et al. (2005) deal with interval
volumes - these are volumes defined by two isovalues bounding
the volumes. Takahashi et al. (2006) provide a means for obtaining
nesting information between different volumetric objects. The lat-
ter two works reduce high-frequency noise and also provide nest-
ing information. Weber et al. (2007) introduce unique transfer
functions to different subvolumes and enable hardware-acceler-
ated volume rendering.

In this paper, we present the “VS” system, which combines sev-
eral methods for various volumetric problems. VS was developed
independently of (Baker, 1989), and it provides the following
features:

e VS uses a preprocessing step which requires only linear-time.
e Similarly to MC, VS initially performs just one space sweep
through the volume data; this stage is called the voxel-sweep.

e As in the Weaving Wall algorithm, during the voxel-sweep, VS
detects all surfaces of all the objects defined by the isovalue,
and partitions the data into connected components based on
surface connectivity.
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e The voxel-sweep uses the union-find data structure (Aho et al.,
1983) in order to efficiently maintain and merge the separate
surface components.

e At the same time, the voxel-sweep also associates any internal
cavities with their respective surrounding objects, to arbitrary
levels of nesting.

e The runtime of the voxel-sweep is only about 2% more than that
of the speeded-up MC.

e The topological data enables an accurate estimate of the volume
and surface area of each separate component.

e VS enables noise elimination by simply ignoring components
and cavities with a small volume.

e VS provides a technique called the “virtually-solid” display,
which displays components and nested surfaces as if they were
solid, even when cut by an arbitrary cut-plane. No new surface
patches are created for this display.

e Interval volumes can be easily displayed by a simple mapping of
the voxel values.

e The voxel-sweep can be easily extended to simultaneously han-
dle several different isovalues.

The triangular mesh format of the surfaces of the components is
useful both for modern display architecture and for state-of-the-
art compression methods (Touma and Gotsman, 1998; Karni and
Gotsman, 2000). The name “VS” is derived from “voxel-sweep”
and “virtually-solid” display. A preliminary version of this work
appeared in (Cohen and Gordon, 2004).

The rest of the paper is organized as follows. Section 2 explains
the entire voxel-sweep stage. Sections 3 and 4 explain the volume
estimation, noise reduction, and the “virtually-solid” display. Sec-
tion 5 presents the results of several test cases, and Section 6 con-
cludes with a discussion and potential extensions.

2. The voxel-sweep stage
2.1. Review of the marching cubes

Using the terminology of MC, we henceforth use the term “vox-
els” to refer to the grid points with which the discrete values of the
data are associated. We assume that the dataset is completely sur-
rounded by 0-valued voxels. MC proceeds by traversing the volume
data slice-by-slice. In each slice, it traverses the rows in sequential
order, and in each row, it traverses the voxels in sequential order.
We refer to a row of voxels as a “voxel-row”. There is no need to
traverse the first voxel-slice because all its values are zero. In every
consecutive slice, each new voxel-row (except the first) forms a se-
quence of cubes of voxels whose corners belong to the current vox-
el-row, the previous voxel-row, and two voxel-rows of the
previous slice. In each cube of voxels, if any edge spans the iso-
value, a surface vertex is determined on that edge by interpolation
between the two voxel values of the edge. The isosurface is approx-
imated by triangles whose vertices lie on the edges of the cube.
Note that some of these vertices could have been formed while tra-
versing the previous voxel-rows. Fig. 1 shows a cube of eight vox-
els, the three traversal directions, and a triangle formed by three
interpolated values. For precise details of how the triangles are
formed (see Lorensen and Cline, 1987).

Assuming that the isosurface is the boundary of a 3D object, we
can determine for every surface triangle, the normal pointing out-
wards from the object according to values of the voxels spanning
the triangle’s vertices. In considering the eight voxels of a subcube,
there are 256 possible combinations of voxels either being inside
or outside the isosurface; this number can be reduced by using var-
ious symmetries. Note that there is a theoretical problem in MC
when a voxel value is exactly equal to the threshold value, because

previous voxel-row

traversal of
voxel-rows

a

current|voxel-row

slice

traversal

voxel grid |
points ! b

_-~" previous slice

Fig. 1. A cube of voxels, showing the three traversal directions, and a triangle
formed by three interpolated values.

the triangle degenerates to a point. This problem is easily resolved
by changing the voxel value by some small 0.

The original MC algorithm had a topological flaw which caused
occasional holes in the surface representation, and it did not re-
solve ambiguous cases. As noted earlier, these problems were cor-
rected in subsequent papers, such as (Shirley and Tuchman, 1990;
Nielson and Hamann, 1991; Chernyaev, 1995; Carneiro et al., 1996;
Nielson, 2003), and the methods of (Chernyaev, 1995; Carneiro
et al.,, 1996) were also tested in the voxel-sweep. The ambiguities
of MC can also be resolved by the digital surface approach of
(Lachaud and Montanvert, 2000). This method depends on the a
priori decision of the user on whether 1-voxels which are edge-
connected but not face-connected should be considered as belong-
ing to the same object.

2.2. 2D analogy of the voxel-sweep

In order to explain the voxel-sweep, we first present a 2D anal-
ogy. Fig. 2 shows a grid of points at which the values of the func-
tion F(x,y) are given. We assume that all the values at the
extremal grid points are zero, and that the values inside define
the three boundaries shown in the figure. As in MC, the vertices
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Vertices of type 1: Start of new boundary segments
Vertices of type 2: Boundary segments unite or close

Fig. 2. 2D analogy of the voxel-sweep.
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of the boundaries lie between two grid points whose values span
the isovalue; the exact position of each boundary vertex is a linear
interpolation of the values at the grid points.

We assume that the horizontal sweep direction goes upwards
and at each horizontal front, the grid is swept from left to right.
As the sweep proceeds upwards, new boundary segments are
encountered. In Fig. 2, vertices marked with a “1” denote the start
of new boundary segments, and those marked “2” indicate points
at which boundary segments unite or close. Initially, three seg-
ments, starting from the three lower 1-vertices, are associated with
different surfaces. The sweep then encounters a 2-vertex of object
B which unites two separate segments; this is where the union-
find data structure is used. Then, two more 1-vertices are encoun-
tered, one in each object. In object B, the new segment closes at a 2-
vertex, forming an internal cavity. Further up in object B, the initial
segment closes at the topmost 2-vertex. In object a, the new seg-
ment unites with the previous one (at the lower 2-vertex), so there
is now only one segment, which closes at the higher 2-vertex.

2.3. The 3D voxel-sweep

The difference between MC and the voxel-sweep is that the lat-
ter uses a “union-find” (also called “merge-find”) data structure
(Aho et al., 1983) to keep the connected triangles together in one
mesh, and a mechanism for the nesting information. The union-
find data structure is applied in the following type of situation:
We start out with n objects which are initially placed in n different
sets. At all times, the sets are disjoint. After that, we process O(n)
operations of the following type:

e Find(a): returns the identity of the (unique) set to which a
belongs.

e Union(A,B): unites the sets A and B. The union’s identity will be
either A or B.

It is well-known that with this data structure one can perform a
sequence of O(n) union and find operations on n objects in amor-
tized time of O(no(n)), where «(n) is the inverse Ackermann func-
tion. This function grows so slowly that for all practical
applications, «(n) < 4; (see Aho et al., 1983, p. 189).

The union-find structure is implemented as a collection of
rooted trees, one for each set. Each tree vertex contains the identity
of one object; the tree’s identity can be simply the identity of the
object at its root. The root also contains the number of elements
in the tree. Every other tree vertex has one link, pointing towards
the root. The Find(a) operation has two stages: first, it traverses
the links from the object a to the root and obtains the set’s identity.
Then, it traverses those same links again, and “collapses” the path
by setting all the links to point directly at the root. This collapsing
stage is the major factor contributing to the efficiency of the algo-
rithm. The Union(A, B) operation takes O(1) time. It compares the
size of the two sets, sets the root of the smaller set to point to
the root of the larger set, and updates the size of the unified set.

VS uses the union-find structure during the voxel-sweep stage
as follows: Every boundary triangle is considered as an object
and connected triangles form one set. Two triangles a, b are consid-
ered as connected if they either share a common edge, or there is a
sequence of triangles cq,...,c, such that every triangle in the se-
quence a =cy,...,cx = b (except B) shares a common edge with
the next.

When a new triangle a is encountered, it is either adjacent to a
previous one, or not. If it is not adjacent to a previous one, then it is
placed in a new set. If it is adjacent to a previous triangle b, we first
find b’s set by executing the operation B = Find(b), and then we set
a’s link to point directly at B. Occasionally, the new triangle a may
be adjacent to more than one previous triangle, say by, ..., by, with

k=2 or k=3. As before, a’s set is determined as B = Find(b;).
b,,...b, are now processed, and their sets are compared with B.
If all their sets are equal to B, nothing further is done. However,
if for some 2 < i < n, we find that C = Find(b;)#B, then we perform
B = Union(B,C). This operation unites two boundary segments
which were considered as separate. If i < k, the process continues
by comparing Find(b;.;) with B.

Clearly, in testing for adjacent triangles, it is sufficient to con-
sider only triangles that share an edge with the new triangle q,
for the following topological reason: for any triangle b that shares
only a single vertex with the new triangle, there is a sequence of
triangles bq,...b, such that b is edge-adjacent to by, each b; is
edge-adjacent to b;,;, and b, is edge-adjacent to a. Therefore, a
and b will, at some stage, belong to the same set. At the end of
the sweep, all triangles connected to some initial triangle are in
one unique set, and each set forms a unique connected component
of the isosurfaces.

2.4. Detection and association of cavities

We wish to obtain the following information during the voxel-
sweep stage: for every outer surface of an object, we want to have a
list of the internal cavities, if any. Furthermore, for every internal
cavity, we wish to associate it with any internal objects, and so
on. The importance of finding internal cavities in an object is obvi-
ous. Internal objects (inside the cavities), if any, are also important
for clinical reasons, e.g., consider kidney stones. Also, such internal
objects may represent a portion of the outer object which appears
disconnected due to sampling and/or discretization errors. VS
works in principle for any level of nesting.

Our approach to this problem uses the well-known “parity prin-
ciple”. Assume that you have several objects whose interiors do not
intersect, and every connected boundary surface, including cavities
and internal objects, has a unique identity, which we assume to be
an integer. Suppose you shoot a ray R from the outside in some
direction to the end of the dataset, as shown in Fig. 3. Note that
all the boundaries have the same isovalue, so as R runs through
the dataset, its density values along the ray alternate between
being below and above the isovalue. The initial value is below
the isovalue because the dataset is surrounded by 0-valued voxels.
The points at which R intersects a surface are exactly the triangle
vertices lying on R. According to this, a surface B is internal to sur-
face A if and only if R has passed through A an odd number of times
before it meets B.

However, our problem is complicated by the fact that we do
not know ahead of time if two surface segments will eventually
unite (as in object A of Fig. 2), or if the one encountered later will
eventually close on itself to form a cavity (as in object B of Fig. 2).
Our solution to this is to consider rays passing through voxel-rows

outer surface of B

object A outer surface of A

object B

U inner surface of

inner surface of B

e/

Fig. 3. Ray intersection with inner end outer surfaces.
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and to keep track of potential pairs of different surfaces, say (A, B),
such that one of the following will be true: either A and B will
unite at some point and this information will be discarded, or A
and B will remain different until the end of the sweep, which
means that B is internal to A. Note that although the surface con-
nectivity information is derived from an entire cube of voxels,
there is only one new voxel-row in our method of sweeping
through the dataset. All the required data from the previous three
voxel-rows has already been gathered. This approach is imple-
mented as follows.

During the voxel-sweep, we maintain two dynamic data struc-
tures, P and S. P consists of pairs of surfaces (A, B) such that B is a
potential candidate for being a interior surface of A. If, during the
sweep, A and B unite, then (A,B) is removed from P, so at the
end, we will be left only with the relevant pairs of surfaces. P is ini-
tialized to empty at the start of the voxel-sweep. Also, P does not
hold any redundant transitive information, i.e., if (A,B), (B,C) € P,
then (A,C) ¢ P. S is a stack of surfaces, all of them distinct while
on S. The surfaces on S are potential candidates for having an inter-
nal surface, and they are characterized by the fact that R has passed
through each of them an odd number of times; only the last occur-
rence is kept on S. S is initialized to empty at the start of each row
sweep, and at the end, it will be empty because R will pass through
each surface an even number of times. Formally, we handle P and S
as follows:

When R meets a surface A, perform the following operations:

. Let T = Top(S).

.IfA=T, popS.

. If A#T, push A onto S and add the pair (T,A) to P.

. If A unites two existing surfaces, then one of them must be A,
and denote the other by B. We now perform the Union opera-
tion, and assume w.l.o.g. that A = Union(A, B). We now perform
the following:

e If (A,B) € P, then:

- Remove (A, B) from P.

- If for some C, (B,C) € P, then we also remove it from P
(because the united surface appeared an even number
of times before C).

e If (B,A) is in P, we do likewise.

e A or B or both may appear on S, and each can appear only
once. Therefore, we proceed as follows: if only A is on S,
we do nothing. If only B is on S, change it to A. If both appear
on S, it means that the united surface appears twice, so A and
B are removed.

There remains the question of how P and S should be organized
in order to minimize the computational overhead. The simplest
method of implementing P is to use a 2D boolean array such that
position (A,B) =1 if (A,B) € P, and 0 otherwise. Denote by P4 the
Ath row of the array. When two surfaces A and B unite, then assum-
ing the result is A, we perform the following:

AW =

1. We unite their sets of internal surfaces by setting P4 = P4 V P,
where Vv denotes the componentwise or operation.

2. We set all entries of P to 0.

3. We add B to a list of “free” surface identities, to be reused when
a new surface is found. New integers are assigned to new sur-
faces only when this list is empty.

The above operations are in addition to those described previ-
ously, and they are specific to this particular data structure for P.
Note that the required array size is unknown in advance, so it is
determined by some user estimate. If at any time the array be-
comes too small because of new surfaces, we increase its size by
reallocation. It is well-known (and easy to prove) that if the array
size is increased by some constant factor every time reallocation is

performed, then the time to handle a total of n surfaces is linear in
n. The reuse of surface identities minimizes the number of
reallocations.

Consider the above operations and how they affect the stack S. S
should be organized so that arbitrary elements on it can be re-
moved or modified. This is done by implementing S as a pair of
data structures - a linked list for the actual stack, and a pointer ar-
ray indexed by set indices. Given a set identity A (which is an inte-
ger), we use the array to access A’s position on the list and remove
or modify A as needed. The array can be reallocated similarly to P if
necessary.

2.5. Speedup of the voxel-sweep

MC has a time complexity of O(n) where n is the number of
voxels, since it traverses all the voxels. This approach is not help-
ful for real-time applications and an acceleration technique must
be applied. Lorensen and Cline (1987) used local coherence in or-
der to save time on geometric computations. This was done by
reusing calculations when moving from voxel to voxel, row to
row and slice to slice. However, the complexity of MC still re-
mains O(n).

The main class of MC acceleration methods is known as “search
structure techniques”, which use special data structures in order to
skip irrelevant voxels. Of course, setting up the data structures
takes some preprocessing time, but since the structures are inde-
pendent of any particular value of the isosurface, it can speed up
the surface detection of any subsequently chosen isovalue. These
methods can be divided into three main approaches: space-based,
range-based and surface-based.

In space-based techniques, a spatial data structure is intro-
duced to speed us the search for isosurface vertices. Among the
structures used are octrees (Wilhelms and van Gelder, 1992), pyr-
amid structures (Criscione et al., 1996), and 3D k-d-trees (Bentley,
1975). In range-based techniques, each cube is identified with the
interval it spans in the range of the scalar field, and the range
space is searched for intervals containing the isosurface. Various
implementations of this approach can be found in (Gallagher,
1991; Shen and Johnson, 1995; Shen et al., 1996; Livnat et al.,
1996; Cignoni et al., 1997). Among the data structures used in
these works are range trees, k-d-trees and interval trees. In sur-
face-based techniques one first needs to find an “active” cube
(or “seed”) of the isosurface for each connected component, and
then traverse the whole isosurface moving through face/cell adja-
cencies. The previously-mentioned works (Artzy et al., 1981; Gor-
don and Udupa, 1989) are of this type, and so is (Speray and
Kennon, 1990).

In VS, the acceleration techniques need to support both the con-
nected component feature and the association of internal surfaces
with their surrounding surfaces. The first one presents no problem
for the various acceleration techniques, but the second feature re-
quires an ordered access to the cubes of each row of cubes, as ex-
plained in Section 2.4. This is achieved by using hierarchy of
balanced binary trees, which we call the MinMax Tree, organized
as follows:

e Every voxel cube is associated with a pair of voxel values, called
the minmax range, consisting of the minimum and maximum
voxel values of the cube. Clearly, for any given isovalue v, if it
lies outside the minmax range of a cube, then the cube can be
skipped.

e Every row of cubes is associated with a binary tree, called a “row
tree”, built as follows: every tree node corresponds to a subrow
of consecutive cubes, and it also has a minmax range spanning
(exactly) the minmax ranges of its associated cubes. Thus, if a
given isovalue is outside the tree node’s minmax range, we
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can skip the entire subrow of cubes. The tree’s root corresponds
to the entire row of cubes, and its left and right children corre-
spond to the first half and the second half of the cube-row,
respectively. This continues recursively down to the leaves,
which correspond to pairs of adjacent cubes (assuming that
the number of cubes in a row is a power of 2).

o Similarly, for every slice of cubes, we construct a binary tree,
called a “slice tree”, corresponding to the minmax values of
the slice’s rows. The root corresponds to the entire slice, and
its minmax range is derived from the minmax ranges of all the
slice’s rows. The root’s children correspond the the first and sec-
ond halves of the slice, and so on.

o Finally, there is one tree (the MinMax tree) corresponding to the
entire dataset. Its root will holds the minmax range of all the
voxels, and its two children correspond to the first and second
halves of the slices, and so on.

Let N = n3 be the total number of cubes, and assume that n = 2*,
The construction of the MinMax tree can be done in O(N) time,
using O(N) space, and without even using pointers, as follows. Con-
sider a single row of cubes, denoted as cube|0], ..., cube[n — 1]. The
tree structure uses an array node[l],...,node[n — 1], so that the
root is node[1], and the children of node[j] are node[2j] and
node[2j + 1] (this is similar to the well-known heap data struc-
ture). We assume that each node[j] can hold two voxel values;
these will be the minimum and maximum of all the cube values
spanned by node[j]. In order to simplify our notation, we denote
cube[j] by node[n + j]. Let minmax(x,y) denote a function which
returns the ordered pair (min(x,y), max(x,y)). Fig. 4 shows how
the row tree is set up; the slice trees and the final MinMax tree
are set up similarly.

Given an isovalue v and a row of cubes, we need to determine
the sequence of cube indices 0 < j; < --- <j, < nof cubes such that

for i=1 to k
for j=n/2" to n/27' —1
node[ /] = minmax(node[2 ], node[2; + 1])
endfor
endfor

Fig. 4. Setting up a row tree over one row of cubes.

Input: An isovalue v and a row-tree node[-].
Output: A sorted list of indices of cubes
intersected by the isosurfaces.
S is a stack of integers, initially empty.
Push 1 on §
while S # 0
Jj=pop(S)
if (min(node[]) < v < max(node[/]))
if (j<n)
push 2j+1 on §
push 2j on S
else add j— n to list of cube indices
endif
endif
endwhile

Fig. 5. Pseudo-code for getting the list of row cubes intersected by all isosurfaces
defined by a given isovalue.

v lies in their minmax range. Essentially, this is done by traversing
the row tree node[-] in inorder, but with the added efficiency that if
v is not in the minmax range of a node, then the entire subtree
rooted at that node is pruned. Fig. 5 shows the pseudo-code for this
search. It is clear that the time to find these ¢ intersections is
O(¢logn). The higher-level trees are handled similarly.

Let s,r,c denote, respectively, the number of voxel-slices, the
total number of voxel-rows and the total number of cubes inter-
sected by all the isosurfaces defined by a given isovalue. Clearly,
the time to determine the S slices is O(slogn), the time to deter-
mine the R rows is O(r log n), and the time to determine the c cubes
is O(clogn). However, we have s <r <, so the total time is
O(clogn) = O(clogN).

3. Quantization and noise elimination

Given a triangular mesh representing the surface of a 3D object,
we can estimate its surface area by summing the areas of all the
triangles. Note that this will be an underestimate, because only
the vertices lie on the true surface; most of the triangles are inte-
rior to the surface.

We can evaluate the volume of the object by using Gauss’ diver-
gence theorem. Lancaster et al. (1992) also use the divergence the-
orem, but our method differs in some details. Gauss’ theorem
states if we are given a differentiable vector field
F(x,y,2) = (fi,f».fs), where f; are scalar functions of x,y,z, defined
on a compact three-dimensional region R which is simply con-
nected, then

// Rvﬁdv:/./sﬁ.ﬁds, (1)

where VF = 0f, /0x + 0f, /0y + 0fs/0z is the gradient of F, S is the
surface of R, N is the normal to S (directed outside the volume en-
closed by S), and “.” is the dot product of two vectors.

Consider now the special case where F is taken as
F(x,y,2) = (x,y,2), so VF = dx/dx + dy/dy + 0z/0z = 3. Substitut-
ing into Eq. (1), we get:

3///Rdv://s(x,y,z)-ﬁds. (2)

The left-hand-side of Eq. (2) is simply 3 times the volume of R, so
the volume is

V:%//S(X,%z) - Nds. (3)

The surface integral of Eq. (3) can be approximated by a Riemann
sum based on the surface data. Let n be the number of points which
we want to use for sampling the surface. We need to determine a
set of points on or near the surface p; = (x;,¥;,z),1 <i<n, and
associate a normal vector N; and a suitable surface area A; with each
point. The surface area is approximated by

1. o
Vz§2pi~N,-Ai. (4)
i1
The approximation data can be chosen in two ways:

1. Consider all the triangles forming the surface, p; are taken as
their centroids, N; are the triangle normals, and A; are the trian-
gle areas.

2. Each p; is a triangle vertex, N; is the average normal of all the
triangles containing p;, and A; is one third of the sum of the
areas of the triangles containing p;.

Both methods will underestimate the true volume because the
triangles are mostly interior to the surface; if R is convex, then



I. Cohen, D. Gordon/Medical Image Analysis 13 (2009) 245-256 251

all the triangles are interior. This means that the triangle areas
underestimate the surface area. However, in the first method, the
position of p; is also interior to the surface, while in the second
method, p; is on the isosurface. Thus, the second method is more
accurate. Note that the average normals required by the second
method can be used for Gouraud shading of the surface, so their
calculation does not impose an additional computational burden.

Estimating the true volume of an object is now simple: We
estimate the volume enclosed by the outer surface and subtract
the volume of internal cavities, if any. If there are any objects
interior to the cavities, then their consideration depends on the
application; if it is judged that their separation from the sur-
rounding object is due to sampling errors, then their volume(s)
can be added.

Udupa (1981) obtains an estimate of the volume in the digital
model during the boundary-detection stage by choosing some axis,
e.g., the x-axis, and using a counter. The counter adds the x-coordi-
nates of boundary faces facing the positive x-direction and sub-
tracts the x-coordinates of faces facing the opposite direction.
The result is the total number of cubes in the interior of the bound-
ary. If the surface is an interior one, then one gets a negative result.
Hence, the counting method can be applied to any set of surfaces to
obtain their net volume, but the determination of interior cavities
and their association with the exterior surface must still be done
manually. In one slice of voxels, this estimate is equivalent to esti-
mating an integral by the rectangle rule - a method in which the
error is O(h), where h is the size of a voxel side. Nystrém et al.
(2002) also base their method on the digital model, but they use
triangles whose vertices lie at the midpoints (instead of at the cor-
rect interpolation point). Triangle-based methods are equivalent to
estimating an integral by the trapezoid rule, in which the error is
0(h?), so they are more accurate and they improve a lot better than
cube-based methods when h is decreased. The midpoint triangles
enable the use of lookup tables for the volume calculation, which
is very fast (though less accurate than with MC triangles).

Noise reduction is trivially achieved by eliminating all objects
whose volume falls below a user-specified threshold. A less obvi-
ous observation about noise is that it can also appear as small cav-
ities in a large object, which can be eliminated by the same
method. This will have a twofold effect: one is that an object’s vol-
ume estimation will be more accurate. A second result is that such
noise will not be seen if a cut-plane passes through it and the user
wishes to visualize it using display method described in the next
section. Noise elimination should not be an automatic feature of
the application, because in clinical practice, only the expert radiol-
ogist should decide what constitutes noise and what constitutes
small but possibly significant objects or cavities.

4. The “virtually-solid display method

One of the disadvantages of surface extraction lies in the inter-
active display of the objects. As long as the user wishes to see only
entire objects, this is not a problem. However, in many applica-
tions, it is desirable to have the ability to display cutaway views
of the objects by arbitrary cut-planes. Such views enable the user
to visualize the internal structure of the objects. The outer surfaces
are not a problem, and neither are the inner surfaces (surrounding
an internal hole); both of them have normals pointing away from
the object. The problem is how to display the surface of intersec-
tion between an object and the cut-plane, because our data at this
point consists only of surfaces. A poor solution is simply to display
the back polygons in some manner, but such a display looks unnat-
ural and could be confusing to a practitioner. The most natural
solution is to create new surface patches corresponding to the sur-
faces of intersection. Correct shading of such a surface patch will

enable the accurate visualization of such cutaway views. However,
such a solution is computationally time-consuming, so it is unde-
sirable for real-time interaction.

The VS system includes a display method that creates the re-
quired views without adding new surface patches, and the cut-
away views appear natural. This gives the impression that the
objects are actually solid, so we call this method the “virtually-
solid” display. Tarini et al. (2006) employ such a technique for
molecular visualization, but their method does not account for
interior cavities and interior objects.

Assume that the “—" side of a given cut-plane is to be discarded
and only the “+” side is to be displayed. For every component, we
maintain the minimum and maximum x, y and z values of its ver-
tices. This data can be efficiently gathered during the voxel-sweep:
when two components unite, the minimum x of the union is is sim-
ply the minimum of the two minimal x’s of the components, and
similarly for y and z and for the maximum. This data gives us a
bounding box for every component. The first step of the display
method is to discard entire components whose bounding box lies
entirely in the “—” side of the cut-plane. Furthermore, any compo-
nent whose bounding box is entirely in the “+” side can be dis-
played without any additional testing.

Of the remaining components, all triangles are tested against
the cut-plane’s equations. If all the vertices are on the “-” side,
the triangle is discarded, and if they are all on the “+”, it is dis-
played. If a triangle’s vertices are on both sides of the cut-plane,
then the triangle is divided into two parts, and only the part in
the “+” side is displayed, as shown in Fig. 6. The displayed part of
the triangle may be a smaller triangle as in the left part of Fig. 6,
or it may be a quadrilateral. The quadrilateral may either be split
into triangles as shown in the figure, or it can be displayed as it
is. From a practical point-of-view, these operations are easily han-
dled by OpenGL.

Consider now only the portions of the surfaces that lie in the “+”
side of the cut-plane. As with any rendering, our method always
displays the closest surface to the screen, but the cut-plane is ex-
cluded from this. All surface normals (of the displayed triangles)
are either pointing towards the screen or away from the screen.
Any portion of a surface (internal or external) whose normal points
towards the screen is displayed in the usual manner.

Observe now that wherever the cut-plane intersects an object,
and their intersection needs to be displayed, then the closest sur-
face behind it necessarily has a backward-pointing normal. This is
illustrated in Fig. 7: the surface patches (closest to the screen) with
backward-pointing normals are enhanced. So, in order to render
the cut surface correctly, all we need to do is to render the pixels
corresponding to such surfaces as if they were displayed from
the cut-plane. In Fig. 7, these portions of the screen are marked
as “cut A” and “cut B”. Such pixels are rendered with the same col-
or as the rest of the object, but shaded according to some simple
scheme suitable for a flat surface, such as constant (or flat) shading.
Note that the rightmost “cut A” is due to two different back-facing
surface patches of object A.

visible parts

Fig. 6. A cut-plane intersecting surface triangles. The shaded portions are displayed.
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Ob']eCt A back-facing

i back-facing

object B

screén

cut A int. A cut B ext. Bint. A cutA ext. A

Fig. 7. The virtually-solid display: A cut-plane intersects objects A and B, and B is
internal to A. The “—" side of the plane is discarded, and surface elements closest to
the screen are displayed. No new surfaces are formed by the plane. All the forward-
facing surfaces are displayed in the usual manner. If the normal of a surface is back-
facing (see enhanced curved patches), then the corresponding pixel is displayed as if
it was projected from the cut-plane.

One of the important topics in medical visualization is that
of rendering speed. Real-time frame rates are the ideal goal
for some applications, e.g., for visualizing a beating heart. Gre-
vera et al. (2000), Grevera et al. (2005) report on extremely fast
frame rates achieved with shell rendering and T-shell rendering,
as compared to MC triangles rendered with OpenGL on a GPU
(graphics processing unit). These methods are based on the dig-
ital model, but the T-shell rendering uses triangles with vertices
at the midpoints of edges. Two technical points regarding ren-
dering speeds should be borne in mind when using OpenGL
on a GPU: the first one is the use display lists, as in (Grevera

et al., 2000; Grevera et al., 2005). These take some initial time
to set up, but rendering from different viewpoints is much fas-
ter. However, display lists are limited by the memory of the
GPU. Another point is that triangle meshes can be rendered
much faster by utilizing the triangle strip option of OpenGL, in
which, after the initial triangle, just one vertex is needed for
every additional triangle.

5. Results

The voxel-sweep and the marching cubes were implemented in
C++ in the .NET environment. The program was run on an Intel
Pentium 4 with 1 GB of memory and clock speed of 2.67 GHz, with
an Nvidia G4-Ti4600 graphics card. The results were displayed
with OpenGL, using the hardware Z-buffer, with Gouraud shading.

Fig. 8 shows the results of the VS algorithm on two objects: a CT
scan of a human head (CThead), and a chain, created by three non-
intersecting linked tori. The separate components are shown in dif-
ferent colors — we can see that in the skull, the lower jaw and the
upper jaw are all separated. In the chain, each torus was identified
as a separate component and assigned a different color. Other vi-
sual attributes, such as different levels of opacity, can also be as-
signed to different components

Fig. 9 describe four steps of VS on the “Tree” example, which
consists of a hierarchical partitioning of a block into sub-blocks.
Initially, all the separate components are shown in different colors
since they are in different sets. As the sweep proceeds upwards,
some sets combine and their colors also combine. Fig. 10 shows
the “Boston teapot” during an intermediate step of the voxel-
sweep.

Table 1 shows the run-times of MC and VS (in seconds) on the
above datasets. Also shown in the table are some of the parameters
of the datasets. It can be seen that both VS and the accelerated VS
require, on average, only about 2% more time than MC and the
accelerated MC, respectively.

The times in Table 1 do not include the preprocessing time for
setting up the MinMax tree. These times are extremely fast since
only arrays are involved and the tree is constructed in linear-time.
All preprocessing times were less than one second. We also per-
formed statistical experiments on random voxel arrays of sizes
256° and 512°. Voxel values were taken as “short” integers and
the testing program was compiled on the same machine under
Linux, with the gcc compiler and the simplest “—0” optimization

Fig. 8. CThead (left) and chain (right), showing connected components.
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Fig. 9. Clockwise from top left: four steps of the tree example, showing union of components.

Fig. 10. Boston teapot with a lobster inside.

Table 1
Details of the four objects and the runtimes (s) of the marching cubes (MC), voxel-
sweep (VS), and their accelerated versions (AMC and AVS).

Dataset Dimensions Triangles MC VS AMC AVS
CThead 256 x 256 x 113 464,414 4.49 4.58 29 2.94
Chain 64 x 64 x 64 10,560 0.109 0.11 0.06 0.062
Tree 64 x 64 x 64 151,824 0.836 0.88 0.8 0.81
Teapot 178 x 256 x 256 532,600 8.34 8.36 4.72 4.80

option. The average runtimes for the two array sizes were 0.237
and 1.892 s. These times conform to the theoretical linear running
time of the preprocessing.

Fig. 11 shows the result of noise reduction of two different ob-
jects. Fig. 12 shows an image created by the virtually-solid display
method. The left image shows the interior of a skull with part of it
cut away by the cut-plane. The interior surface of the skull is
shaded normally. The image on the right shows a sphere within
a cavity in a surrounding sphere.

Fig. 13 shows a screen shot of the interactive user-interface
built for the VS system. The image on the bottom right shows
the image of a single slice, and the buttons below it move the im-
age from one slice to another. The left half shows a 3D view of the
object(s) after the voxel-sweep; the objects can be manipulated
interactively

The graph on the right is a histogram of the voxel values, and
above it are two sliders which determine the upper and lower
bound of the region of interest. The sliders determine the positions
of two markers on the histogram, so the user can choose these val-
ues according to certain particular features in the histogram, such
as dips.

Note that while we discussed throughout the creation of an
isosurface from a single isovalue, this can be extended trivially
to account for two isovalues such that the region of interest
lies between them. Assume all values are normalized to be be-
tween 0 and 1, and consider two values a,b such that
0<a<b<1 and the user wishes to display all objects whose
values lie between A and B. Denote ¢ = (a+b)/2 and consider
the mapping
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f(x):{x ifx<c

2c —x otherwise

Let m = min(0,2c — 1). f maps the original range [0, 1] to the
interval [m,c], so the region of interest is mapped to [a, c]. Hence,
in the new interval [m,c], we can simply use the single isovalue
A. Two points should be noted: the first is that m can be negative,

but we always have m > —1. Previously, we assumed that all voxel
values at the boundary are zero, so if we want to display interval
values, we should consider the exterior voxel values as —1. A sec-
ond point is that the MinMax tree can be used for interval isosur-
faces: instead of testing whether a single isovalue is within a given
minmax range of a tree node, we should test whether the interval
[a, b] intersects the minmax range.

Fig. 11. Noise reduction by elimination of small components.

Fig. 12. Demonstration of the virtually-solid display method.
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Fig. 13. The user interface of the VS system.

6. Conclusions

We have introduced the VS surface-based system, which en-
ables several operations on voxel datasets. Using a very fast lin-
ear-time preprocessing step, it uses one sweep through the data
to produce all isosurfaces determined by a given isovalue, sepa-
rates them into connected components, and associates internal
surfaces (cavities) and objects with their outer surface. The prepro-
cessing can be used for any isovalue or interval of isovalues. The
runtime is only about 2% more than the runtime of the speeded-
up marching cubes algorithm. VS can be easily extended to handle
several distinct isovalues by multithreading.

The association of an outer surface with internal cavities en-
ables an accurate estimate of its enclosed volume by subtracting
the volume of internal cavities from the volume enclosed by the
outer surface. Noise can be eliminated by discarding objects and
cavities with a small volume. A “virtually-solid” display method al-
lows the user to introduce arbitrary cut-planes and to display
nested surfaces and objects as if the objects were solid, without
adding new surface patches to close up the intersection of the
cut-plane and the objects.

Future research will concentrate on adding more features to the
VS system. Of these, the most important is to allow a user to
manipulate the isovalues within a small range and to obtain the re-
sults in real time, i.e., without running the voxel-sweep stage
again. This concept is known as “exploring” the isosurfaces; (see
Speray and Kennon, 1990; von Rymon-Lipinski et al., 2004; Zhang
and, 2006). Improvements in rendering speeds are, as always,
worthwhile future pursuits. Another topic for future research is
the clinical evaluation of the VS system on many different medical
datasets obtained with different modalities.
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