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Abstract

A new approach to the problem of object segmenta-
tion and isosurface detection is introduced. Draw-
ing on the fundamental marching cubes algorithm
of Lorensen and Cline, it operates with one space
sweep through the voxels (hence it is called the
voxel-sweep). It detects all isosurfaces and parti-
tions the objects into connected components on the
basis of the continuity of the surfaces. The sur-
face of each connected component is obtained as an
oriented triangular mesh, and is thus amenable as
input to mesh-processing programs and hardware.
Each separate component is automatically associ-
ated with its topological holes. These properties
enable accurate volume and surface-area estimation
of each component, as well as noise reduction (by
eliminating “small” components). The runtime of
the voxel-sweep is just a negligible increase over
the runtime of the marching cubes algorithm. An-
other option of the voxel-sweep is to visualize the
resulting surfaces at the same time as they are be-
ing formed. Ideally, this option should enable real-
time modification of the iso-values defining the sur-
faces.

1 Introduction

The issue of volume visualization is of prime im-
portance in many industrial, scientific and medical
applications. The raw data is usually available as a
3D matrix of numbers which are the discrete values
of a density function F(x,y,z), representing some
physical property. For example, in computerized to-
mography, the property is that of X-ray attenuation;
different types of objects within a body attenuate
X-rays differently. In such an application, a user

wishes to specify threshold values for some type of
material (e.g., bone) and then visualize the shape of
the bone(s).

Another important objective is that of object seg-
mentation, i.e., the user wishes to distinguish be-
tween disconnected parts of the same type (the dif-
ferent parts will have similar function values). It
would be most convenient if disconnected pieces
could be isolated and displayed separately or in any
combination of parts. Even if different parts are
displayed together, better visual cues are obtained
if the separate pieces are assigned different colors.
Other useful objectives include interactive manipu-
lation of the visible objects, and estimation of vol-
ume and surface areas.

There exist two fundamentally different ap-
proaches to visualizing volumetric data: Volume-
based display, and surface-based display. Volume-
based methods operate on the entire set of voxels
and display the objects directly according to some
method – see [5, 8, 7, 9, 13, 14, 15, 18, 20, 24, 28].
These methods have a disadvantage of requiring the
entire dataset in some suitable format, but, on the
other hand, the original data is available at all times
for various purposes.

Surface-based methods first extract the surfaces
in a preprocessing step, and then display the sur-
faces [2, 17]. There are advantages and disad-
vantages of surface-based methods as compared to
volume-based methods – see [4]. However, the
amount of surface data is proportional to the surface
of the objects while the volume data is proportional
to its volume, so surface data usually takes up less
space than volume data and it is more easily manip-
ulated and displayed. Furthermore, surface data are
more suitable for most of today’s graphics engines,
which are geared towards polygonal meshes.

The “boundary-detection” (BD) algorithm of
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Artzy et al. [2] treats the voxels as cubes with a uni-
form value inside. Starting from a seed, which is a
user-specified boundary face, it detects the visible
surface connected to the seed. BD provides the vol-
ume enclosed by the surface, but that volume may
include internal holes. Different objects, as well as
holes, require new seeds. Since the polygons pro-
duced by BD are faces of cubes, the display occa-
sionally seems jagged. BD was speeded up by alter-
ing the definition of “adjacent boundary faces” [11],
but it contained basically the same limitations.

The “Marching Cubes” (MC) algorithm of
Lorensen and Cline [17] considers the voxel val-
ues as being assigned to grid points in 3D space,
and assumes that at any other point (x,y,z), the
value of F(x,y,z) is a trilinear interpolation of the
grid points surrounding (x,y,z). Given a certain
threshold (or isovalue), MC sweeps once through
all the volumetric dataset and outputs all polygons
defined by the isovalue. Thus, MC produces not
just one connected object but all the objects. Much
research has also been done on speeding up the
Marching Cubes algorithm through the employ-
ment of various data structures – see, for example,
[10, 27, 12, 23, 22, 3, 16, 6, 25]

Separating the data into connected components
is done by volume-based methods – see [21]. Start-
ing from a user-specified seed voxel, all voxels that
are connected to it are identified by some classi-
cal search method such as breadth-first or depth-
first search. Such methods require a new seed for
every object. Another problem is that the result is
again volumetric, thus requiring large storage space.
Also, such data needs volume-based methods for its
display, or a surface-extraction step to isolate the
surface.

In this paper, we introduce a new method, called
the Voxel Sweep – or VS for short – with the follow-
ing properties:
• Similarly to MC, VS operates in just one space

sweep through the volume data.
• VS detects all surfaces of all the objects de-

fined by the isovalue, including internal holes.
• All the objects are automatically separated into

connected components.
• Internal holes are associated with their respec-

tive surrounding objects.
• The runtime of VS is only about 2% more than

that of MC.
The above properties enable us to calculate the

surface area and volume of each component taking
the holes into consideration. Noise can be elim-
inated by avoiding the display of “small” compo-
nents. The mesh format of the components is useful
both for modern display architecture and for state-
of-the-art compression methods – see [26]. Work
on speeding up the performance of VS is currently
in progress.

The rest of the paper is organized as follows. Sec-
tion 2 explains the Voxel Sweep in terms of the
Marching Cubes. Section 3 presents the results of
several test cases, and Section 4 concludes with a
discussion and potential extensions.

2 From Marching Cubes to the Voxel
Sweep

Using the terminology of the Marching Cubes algo-
rithm (MC) [17], we henceforth use the term “vox-
els” to refer to the grid points with which the dis-
crete values of the data are associated. MC creates
a representation, consisting of triangles, of an iso-
value surface. It uses a divide and conquer approach
to locate the surface in a logical cube created from
eight voxels; four each from two adjacent slices.
The algorithm determines how the surface intersects
this cube, and then ”marches” to the next cube in
scanline order. To find the surface intersection in a
cube, MC assigns the value ‘1’ to a cube’s vertex if
the data value at that vertex exceeds or equals the
given isovalue, and the value of ‘0’ to cube vertices
with values below the isovalue. The surface inter-
sects those cube edges where one vertex is outside
the surface (1) and the other is inside the surface
(0). MC thus determines the topology of the sur-
face within a cube, and by using linear interpolation
between voxel values computes the location of the
triangles vertices. The result of considering all sub-
cubes in this way is a collection of triangles which
approximates the location of an isosurface. In con-
sidering the eight voxels of a subcube, there are 256
possible combinations of voxels either being inside
or outside the isosurface. MC takes advantage of ro-
tation and reflection to reduce the number of unique
cases from 256 to 15. The original MC algorithm
did not resolve ambiguous cases, resulting in oc-
casional holes in the surface representation. Am-
biguous cases can be resolved using the gradient of
voxel values – see [19].

The difference between MC and VS is that VS
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uses a union-find (aka “merge-find”) data structure
[1] to keep the connected triangles together in one
mesh. The union-find data structure is applied in
the following type of situation: We start out with n
objects which are initially placed in n different sets.
At all times, the sets are disjoint. After that, we
process O(n) operations of the following type:
• Find(a) – returns the (unique) set to which a

belongs.
• Union(A,B) – merges the two sets A and B.

It is well-known that with this data structure one can
perform a sequence of O(n) union and find opera-
tions on n objects in amortized time of O(nα(n)),
where α(n) is the inverse Ackermann function.
This function grows so slowly that for all practical
applications, α(n)≤ 4 [1, p. 189].

In broad terms, the union-find method is applied
in VS as follows: Each part (or segment) of a
boundary that is considered as an object, and en-
tire closed surfaces will be the sets. Initially, each
new boundary segment that is encountered is placed
in a set of its own. As the sweep progresses, we
encounter cases where two separate segments join
together. We apply the Find operator to each seg-
ment to get the two sets containing the segments.
We then apply the Union operator to the two sets.
At the end of the sweep, all connected segments are
in one unique set.

2.1 The Voxel Sweep

2.1.1 2D Analogy of the Voxel Sweep

In order to explain the Voxel Sweep, we first present
a 2D analogy. Figure 1 shows a grid of points at
which the values of the function F(x,y) are given.
We assume that all the values at the extremal grid
points are zero, and that the values inside define
the three boundaries shown in the figure. As in
the Marching Cubes algorithm, the vertices of the
boundaries lie between two grid points whose val-
ues span the isovalue; the exact position of each
boundary vertex is a linear interpolation of the val-
ues at the grid points.

We assume that the horizontal sweep direction
goes upwards and at each horizontal front, the grid
is swept from left to right. As the sweep proceeds
upwards, new boundary segments are encountered.
In Figure 1, vertices marked with a “1” denote the
start of new boundary segments. Initially, three seg-
ments, starting from vertices of type “1”, are as-
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Figure 1: 2D analogy of the Voxel Sweep.

sociated with different surfaces, but eventually, the
sweep encounters a vertex marked “2” and the two
rightmost segments unite (or merge). This is where
the union-find data structure is used.

2.2 The 3D Voxel Sweep

The Voxel-Sweep algorithm creates a representa-
tion of an isosurface from volume data, as in the
marching cubes. The algorithm considers subcubes
of eight voxels at a time, at each cube the algorithm
constructs the triangles that represent the isosurface
(if the isosurface intersect that cube). Then, simi-
larly to MC, the Voxel Sweep “marches” to the next
cube in scanline order. In general, the sweep direc-
tion proceeds through slices of the dataset, and, in
each slice, it proceeds as in the 2D analogy.

The root of each tree in the union-find data struc-
ture represents a different connected object. To use
this data structure, each triangle vertex needs to be
calculated only once. To achieve this, VS saves the
previous cube line and slice intersections. Each new
vertex receives a value that represents its parent in
the union-find data structure. By using the Find
operation on that value, the algorithm receives the
value of the object that this vertex belongs to.

As the sweep advances, new triangles are de-
tected, and each new triangle is constructed from
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three vertices. These vertices can be new or old, and
they can belong to the same object or to a different
one. The characteristics of the three vertices deter-
mine whether the new triangle is the start of a new
object, or needs to be added to an existing object,
or whether it unites two objects that until this point
were considered as separate. It is also possible to
detect a new object that belongs to an existing outer
surface; it may later turn out to be an inner surface
(a hole), or it can later unite with the outer surface.

In the next subsections, which describe the differ-
ent cases, we will refer to the new triangle vertices
as a,b,c, as shown in Figure 2.

Figure 2: A new triangle and its vertices in a cube.

2.2.1 Case 1

All the vertices a,b,c are new. This case describes
the detection of a new surface. As shown in Fig-
ure 3, the new triangle can only be in the far corner
of the cube (in the scan direction). Because those
are the only new vertices that are calculated in this
cube; all the other vertices (if existing) have already
being calculated in previous cubes. This observa-
tion is important to the understanding of the detec-
tion of holes (inner surfaces), that will be described
later.

The operations that needs to be taken in this case
are: add a new object to the union-find data struc-
ture (and place it in a new set) and then assign the
new object value to the new vertices.

Figure 3: Case 1: The new triangle is in the far
corner of the current cube.

2.2.2 Case 2

As described in the example of Figure 4, in this case
at least one vertex is old, but all of the old vertices
have the same object value. This case describes a
new triangle that needs to be added to an existing
object. If there are new vertices in the triangle, we
also need to assign to them the existing object value.

Figure 4: Case 2: Vertices a and b were calculated
previously and belong to the same object. c is new
and is now assigned to that object.

2.2.3 Case 3

As described in the 2D example of Figure 5, in this
case at least two old vertices belong to different ob-
jects. This means that there are two (or more) old
vertices in the new triangle and not all of them be-
long to the same object. This case describes the sit-
uation where two different objects are united by the
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new triangle that connects them. In this case we
perform the Find operation on the two objects and
then the Union operation on the sets which contain
them.

sweep

object 1 object 2

a

b direction

new edge joining two objects

Figure 5: A 2D example of Case 3: Vertices a,b
were calculated previously, but they belong to dif-
ferent objects (1 and 2), which now unite.

2.2.4 Detection and Association of Holes

As shown in Case 1, detection of a new object will
always be at the far corner in the scan direction (Fig-
ure 3). This property makes it easy to determine if
a new object is an inner surface or an outer surface:
If the value at the corner is higher than the isovalue,
the new object is an outer surface and needs to be
assigned a new object number. If the corner value is
lower than the isovalue, the new object is an inner
surface of an existing object and need to be associ-
ated with it.

To understand how an inner surface is associated
with its outer surface, we need to understand an-
other property. As shown in Figure 6, if we shoot a
ray from the outside and it intersects an inner sur-
face, then it must have already intersected its outer
surface, and the last ray-surface intersection before
the current one was the intersection with this outer
surface. As we sweep through a row of cubes, we
keep the last outer surface that we intersect in the
line of the far corners. When we intersect a new
inner surface we associate it with the last outer sur-
face that we found. In principle, this idea could also

be extended to enable association of an object with
its nested objects (if any).

Figure 6: Ray intersection with inner end outer sur-
faces.

3 Results

The Voxel Sweep and the Marching Cubes were im-
plemented in C++ in the .NET environment. The
program was run on an Intel Pentium 4 with 1GB
of memory and clock speed of 2.67 MHz, with
an Nvidia G4-Ti4600 graphics card. The results
were displayed with OpenGL, using the hardware
Z-buffer, with Gouraud shading.

Figure 7 shows the result of the VS algorithm on
a CT scan of a human head (CThead). The separate
components are shown in different colors – we can
see that the skull, the lower jaw and the upper jaw
are all separated. In figure 8 (Chain) we can see
three non-intersecting, linked toruses. Each torus
was identified as a separate component and assigned
a different color. Figure 4 describe three steps of VS
on the “Tree” example. Initially, all the “roots” are
shown in different colors since they are in different
sets. As the sweep proceeds upwards, some sets
combine and the color of the roots also combine.
Figure 10 is the result of VS on the Boston-Teapot
example with a cut plane. Inside the teapot we can
see a lobster whose claws are separated.

Table 1 shows the run-times of MC and VS (in
seconds) on the above datasets. Also shown in the
table are some of the parameters of the datasets. It
can be seen that VS requires, on average, only about
2% more time than MC.
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Dataset Size Triangles MC time VS time

Chain 64×64×64 10,560 0.109 0.11

Tree 64×64×64 151,824 0.836 0.88

CThead 256×256×113 464,414 4.49 4.58

Teapot 178×256×256 543,524 8.34 8.36

Table 1: Runtimes (in sec.) of Marching Cubes and Voxel Sweep

4 Conclusions

The Voxel Sweep extends the Marching Cubes by
separating the objects into connected components
and associating holes with their surrounding ob-
jects. Besides the obvious benefits for visualization,
this feature enables logically correct estimations of
volume size and surface area of the different com-
ponents. The additional required runtime is negligi-
ble.

Another option is that the objects can be visu-
alized at the same time as the VS operates. This
option can be utilized to enable interactive modifi-
cation of the isovalues defining the surfaces.

Future research will concentrate in the following
directions:
• Speeding up the Voxel-Sweep by the use of ap-

plicable data structures.
• Implement more user-oriented capabilities,

such as cut planes.
• Incorporate several isovalues into the Voxel

Sweep, as well as automatic surface determi-
nation defined by “large jumps” in the values
between adjacent grid points (such jumps cor-
respond to discontinuities in the function val-
ues and represent object boundaries).

• Extend the Voxel Sweep so that it operates
on voxel connectivity instead of surface con-
nectivity. Different types of objects could
be detected in one sweep, and the union-find
method will enable the separation of all object
types into their respective connected compo-
nents.
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K. Höhne. Segmentation of the visible hu-
man for high quality volume based visualiza-
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Figure 7: CThead, showing connected components.

Figure 8: Chain: Three non-intersecting, linked
toruses.

Figure 9: Three steps of the tree example, showing
union of components.

Figure 10: Boston teapot with a lobster inside.
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