
Math. Systems Theory 20, 43-52 (1987) Mathematical
Systems Theory
©1987 Springer-Verlag New York Inc.

On the Computational Power of Totalistic Cellular Automata

Dan Gordon*

Department of Mathematics and Computer Science, University of Haifa, Haifa 31999, Israel

Abstract. Totalistic cellular automata, introduced by S. Wolfram, are cel-
lular automata in which the state transition function depends only on the
sum of the states in a cell's neighborhood. Each state is considered as a
nonnegative integer and the sum includes the cell's own state. It is shown
that one-dimensional totalistic cellular automata can simulate an arbitrary
Turing machine in linear time, even when the neighborhood is restricted to
one cell on each side. This result settles Wolf ram's conjecture that totalistic
cellular automata are computation-universal.

1. Introduction

Since their introduction by von Neumann [16], cellular automata (or cellular
spaces) have been studied very extensively. For the classical theory of cellular
automata, see [1]-[3], [13], and [16]. This model of computation is well suited
to simulation of biological systems [7], has given rise to the theory of L-systems
[14], and has been used to model physical systems [18 and other papers in same
book]. Needless to say, computational problems such as decidability, computa-
bility, language acceptance, and computational complexity have all been exten-
sively studied and are the subject of ongoing research--see, for example, [9],
[10], and [15].

Recently, Wolfram has introduced the concept of a totalistic cellular atomaton
[17], [18]. In this model, an automaton state is considered as a nonnegative
integer and the state transition function dePends only on the sum of the states
in a cell's neighborhood. The sum includes the cell's own state. Wolfram studied

* Research performed while visiting the Department of Computer Science, University of Cincinnati,
1984/85.

44 D. Gordon

totalistic automata in one dimension and, based on an extensive statistical
evaluation, he conjectured that totalistic automata are computation-universal.
For a short, informal introduction to totalistic automata see [4].

In this paper we prove Wolfram's conjecture by showing that totalistic
automata can simulate any Turing machine in linear time. It is well known that
cellular automaia can simulate an arbitrary Turing machine [1]-[3], [13], [16],
and Smith [15] has given simple constructions for the one- and two-dimensional
cases. However, in these simulations, the cellular automata are nontotalistic.

One well-known example of a simple cellular space which can simulate any
Turing machine is the game of "Life" [5], [6]. This two-dimensional space has
only two states, but it is not totalistic, since the state transition function depends
both on the cell's state and the sum of its neighbors' states (we shall call such
spaces semitotalistic). The computation-universality of "Life" thus still leaves
open the questions of semitotalistic spaces in one dimension and totalistic spaces
in one and two dimensions.

With the advent of VLSI technology [11], [12] it has become feasible to
implement very large one- and two-dimensional arrays of interconnected process-
ing elements. In one dimension, each processing element is connected to its two
immediate neighbors, and in two dimensions we can have either a square grid
pattern of interconnections or a hexagonal pattern, where each element is con-
nected to six neighbors. The implications of this technology are that cellular
spaces can be implemented in VLSI, but that this can be done more easily when
an automaton's neighborhood contains only its immediate neighbors. This restric-
tion is observed by our computation model.

The rest of the paper is organized as follows: Section 2 gives the basic
definitions; Section 3 contains the main simulation result; Section 4 discusses
the semitotalistic case; and Section 5 concludes with some open questions.

2. Definitions

Our definitions will follow closely those of Codd [3] and Smith [15]. Let Z denote
the set of integers and IAI the cardinality of a set A.

Definition 1. A one-dimensional cellular space is a 4-tuple (N, V, vo, f) where
N is a finite set of integers called the neighborhood template; V is a finite set of
states; Vo c V is called the quiescent state; and f : V LNI--> V, called the state transition
function, satisfies f (vo , . • •, Vo) = Vo.

We can view a cellular space as an infinite set of cells, one cell for each i c Z,
which we denote by CELL(i) . The neighborhood of CELL(i) is the set of cells
{CELL(i + n)ln ~ N}. Usually, the neighborhood will include the cell itself, i.e.,
O~ N. A configuration c is some particular assignment of states to cells: c: Z ~ V;
c(i) can be viewed as the state of CELL(i) . In the following, we assume that
nl, n2 , . . . , nlN I are the elements of N in increasing order.

On the Computational Power of Totalistic Cellular Automata 45

Definition 2. Let (N, V, vo, f) be a cellular space. The global transition function
G is defined as a mapping from the set of all configurations to itself as follows:
let c be a configuration, then G(c) is the configuration obtained from c by
changing the state of each cell according to the transition function f applied to
each cell's neighborhood: G(c)(i) = f (c(i + n~), c(i + n2) , c(i + niNi)).

Definition 3. Let (N, V, vo, f) be a cellular space such that 0 s N, V is a set of
nonnegative integers and the quiescent state is vo = 0.

(a) The cellular space is called totalistic if there exists a function g of one
variable such that for all V l , . . . , VIN I e V, f (v ~ , . . . , VIN I) = g(~;cN Vi).

(b) The cellular space is called semitotalistic i f there exists a function g of
two variables such that f (v ~ , . . . , VlNI) = g(Vk, ~ieN--{k} Di), where k is O's
position among N 's elements (in increasing order).

We shall be mainly interested in totalistic cellular spaces in which a cell's
neighborhood consists of itself and its two immediate neighbors, i.e. N =
{ - 1, 0, 1}. We call such a space a three-neighbor cellular space.

We assume that the reader is familiar with the concept of a two-way tape
Turing machine [8]. Recall that an instantaneous description (ID) is a coding
of the nonblank tape symbols, the machine's internal state, and the position of
its read/write head.

We also need the concept o f a Turing machine simulation by cellular automata
in k times real time (k an integer). Briefly, it means that successive IDs of the
Turing machine are coded by every kth configuration of the cellular space. The
formal definition appears in [15], and it will also be obvious from our construction
how to formalize this notion.

3. Turing Machine Simulation by Totalistic Automata

3.1. Outline

Let M be an (m, n) Turing machine [15], i.e., M has m tape symbols and n states.
We shall simulate IDs of M by configurations of a cellular space as follows:
squares of M's tape (containing tape symbols) will be coded onto alternate cells
of the cellular space. The in-between cells will have a special intermediate state
designed so that the tape symbols will remain unchanged in successive configura-
tions (unless M's read/write head moves over them). For convenience, we shall
refer to cells which code M's tape squares as primary cells and to the others as
secondary cells.

M's read/write head will be simulated by three adjacent cells, the middle
one being the primary cell over which the head is positioned. The adjacent
secondary cells will code both M's state and the scanned tape symbol, so that
their other primary neighbors can determine M's next move. However, the coding
will be different for the left and right secondary cells, enabling the adjoining
primary cells to tell if the head is to their left or right.

46 D. Gordon

The initial configuration will code M's initial ID by a finite number of nonzero
cells; all other cells will be in the quiescent state 0. This conforms to the usual
assumption that in an initial configuration, all but a finite number of cells are in
the quiescent state.

Since tape cells are separated by intermediate cells, consecutive IDs cannol
be simulated by consecutive configurations. After every "primary" configuration
simulating an ID, there is an "intermediate" configuration designed to pass
information to the left or right (according to the head's move) so that the next
configuration will again be a "primary" one simulating M's next ID.

3.2. Coding of Tape Symbols

The m tape symbols (when not scanned by M's head) will be coded by "alphabet
states" of the cellular space. These will simply be the integers 1, 2 , . . . , m. On
either side of a primary cell coding a tape symbol, there will be a secondary cell
in an "intermediate state" of value I = 2m. Figure 1 shows how the left portion
of a string is coded into cells and how the transition function operates on these
cells. Our scheme follows the following lines:

(1) If a (primary) cell is in state a, 1 -< a --- m, then the neighborhood total
is 21+ a, and 4m + 1---21+ a-< 5m. Whenever the total is in this range,
the new state is obtained by subtracting 2I from the sum, leaving the
cell in the same state a,

(2) A (secondary) cell in state I will have states a, b, on either side, with
0 < - a -< m and 1 <- b --- m (a = 0 means that one of the cell's neighbors is
in the quiescent state). The neighborhood total will be a + I + b and
2m + 1 ~ a + I + b-< 4m. In this case, the new state is defined to be I,
leaving the cell unchanged.

(3) A quiescent cell (state 0) bordering a cell in state I will always have its
other neighbor in the quiescent state, so its neighborhood total will be
I = 2m. In this case, the transition function is defined as 0, leaving the
cell in the quiescent state.

Cell states

Neighborhood totals T

Range of values of T

Operation of
transition function

New cell states

0

0

[0, 0]

T ~ 0

0 I a I

I l + a 2 I + a a + I + b

[2m, 2m] [2 m + l , 4 m] [4 m + l , 5 m] [2 r a + l , 4 m]

T ~ O T ~ I T-~ T - 2 I T ~ I

o , ° l , t

!
b

Fig. 1. Representation of a Turing machine's tape containing the symbols a b . . . , showing operation
of the totalistic automatas' transition function.

On the Computational Power of Totalistic Cellular Automata 47

3.3. Representing the Read/Write Head

As mentioned, the head and the scanned tape symbol are coded onto three
adjacent cells in an asymmetrical manner. This is illustrated in Figure 2, where
we see seven cells, with M's state q and scanned symbol s coded into the three
center cells. The cells labeled 1, 3, and 5 are primary cells--the others are
secondary--and the two extreme cells are in state 0 or L Throughout, we shall
use (I) to indicate an integer which is either 0 or L Cells 1 and 5 are respectively
in states a and b, where 0 - a , b - < m. If a-> 1, it means that the cell codes the
tape symbol a; similarly for b. The integer s is the scanned tape symbol and the
integer q is the machine's internal state, so 1 --- s -< m and 1 - q - n.

A, B, and C are three integer constants, dependent on m and n, whose values
will be determined later. The left secondary cell (bordering the scanned cell)
codes s and q as s A + q B + C; the right secondary cell codes s and q as s A + q B +
2C; and the center cell is coded simply as 3C. The bottom part of Figure 2 shows
the neighborhood totals for cells 1-5. Our purpose is to be able to extract from
these totals all the relevant information for each of these cells. The coding is
designed so that in each of the five totals containing multiples of C, the coefficient
of C is unique. By extracting that coefficient from the sum, the cell can determine
its exact position relative to M's head.

If C is made larger than the maximum possible value of the totals without
the C factors, then C's coefficient would be the quotient after dividing (integer
division) the total by C. So we choose

C = max{3m + mA + nB, m + mA + nB, 2mA + 2nB} + 1 = 2mA + 2nB + 1.

Note that cells 1 and 5 and cells 2 and 4 have remainders of the same type,
so we consider them jointly in the following discussion. The remainders after
division by C are: (I) + a + sA + qB, for cells 1 and 5; a + sA + qB, for cells 2 and
4; sA + qB, for cell 3 (after dividing the remainder by 2).

We continue to extract information from the remainders in a similar manner:
by choosing B =3m + m A + 1, we can obtain M's state q as the quotient after
division by B. The remainders after divison by B are: (I) + a + sA, for cells 1 and

1 2 3 4 5

sA+qB+C 3C sA+qB+2C O<-b<-m
Cell

states

Totals

(I) O<-a<m

(l)+a+sA
+qB+C

a+sA
+qB+4C

2sA + 2qB
+ 6 C

b+sA
+qB+5C

(I)+b+sA
+qB+2C

(I)

Fig. 2. The asymmetric representation of a Turing machine in state q scanning tape symbol s
(originally in cell 3).

48 D. Gordon

5; a + sA, for cells 2 and 4; sA for cell 3. To obtain s (the scanned tape symbol),
we choose A = 3 m + 1.

Substituting back, we get B=3m2+4m+l and C=6m2(n+l)+8mn+
2(m + n) + 1. Clearly, this value of C is large enough to detect the presence of
the read/write head in a cell's neighborhood.

We now divide the last remainders by A. The quotient is s and the remainders
are: (I)+a, for cells 1 and 5; a, for cells 2 and 4; 0, for cell 3. For cells 1 and
5, we can distinguish between I + a and a because 0 - a <-m; if the remainder
is I + a, we obtain a by subtracting L

3.4. The Intermediate Configuration

Let us assume the configuration shown in Figure 2, and that M's transition
function changes M's internal state from q to p, the scanned symbol from s to
t, and that the head moves one square to the left. Figure 3 shows the first
configuration in the top row (cells 1-5 are the same as in Figure 2) and thd
configuration representing M's next ID in the bottom row. The intermediate
configuration is shown in the second row, with the neighborhood totals in the
third row.

As shown before, each of the cells 1-5 has the following information: its
position relative to the scanned tape symbol, the value of the scanned symbol
(s), M's state q, and its own state, a or I, as applicable. From this information
and from M's transition function, each of these cells can determine its state in
the next (intermediate) configuration. The intermediate configuration is designed
to code the following information: value and position of the next scanned symbol

Configuration 0 < - d
1 <--m

Intermediate
configuration d

Intermediate
totals

Configuration
2 d

0 1 2 3
I

(I) a sA+qB+C [3C

aA + pB
(l) + 3 C 5C t+9C

(l)+d+aA (1)+aA t+aA+pB t+l+14C
+pB+3C +pB+gC +17C

aA+pB I aA+pB
+ C 3C [+ 2 C t

4 5

sA + qB
+ 2 C b

I

t+l
+ b + 9 C

I b

Fig. 3. The intermediate configuration representing a move of the Turing machine's head to the left.

On the Computational Power of Totalistic Cellular Automata 49

(a in cell 1); the next state of M (p, coded together with a in cell 1); new value
and position of the previously scanned symbol (t in cell 3).

The coding method for the intermediate configuration is similar to that of
the "pr imary" configuration. Three multiples of C are used as shown in Figure
3, chosen so that all the multiples of C in the sums will be distinct and different
from the previous ones. It is easily seen that all the relevant information can be
extracted from the sums as before by dividing by C, then by B, and then by A.
After decoding the information from the sums, each of the cells 0-5 enters its
new state as shown in Figure 3.

There is one detail to note concerning cell 1: if a = 0, it means that cell 1
was quiescent and that the head is moving over a tape square that was not scanned
before and was not part of M's original input string. In a Turing machine, such
tape squares are assumed to contain the blank symbol ~¢, so in order for the
simulation to be correct, cell 1 enters state ,B'A+pB + 3C (for convenience, we
assume t h a t / f is the integer between 1 and m corresponding to a blank).

If cells 1-5 have determined that M's head moves to the right, then the
intermediate configuration will be as shown in Figure 4. We omit further details,
but note only that the neighborhood total for cell 2 includes 9C, which has already
appeared before. This is not a problem, because in both cases the cell enters state
I in the next configuration.

3.5. Main Results

From the above simulation we get:

Theorem 1. A Turing machine with m tape symbols and n states can be simulated
in twice real time by a one-dimensional, three-neighbor totalistic cellular space with
54m2(n + 1) + 72mn + 19m + 18n + 9 states.

Fig. 4.

Intermediate head position

1 2 "3 4 5 6 7

bA + p B
t + 9 C 3C +7C (I)

t + b A + p B i (l) + b A (l) + e + b A
l + t + 1 2 C +19C +pB+IOC + p B + 7 C

bA + pB bA + pb
t + C 3C +2C

Intermediate
configuration

Intermediate
totals

Configuration
2

a I

[a 1

a + l
+t

+9C

0_<e
~ m

The intermediate configuration representing a move of the Turing machine's head tothe right.

50 D. Gordon

Proof. In the simulation described above, every second configuration corre-
sponds to an ID of the Turing machine, and this is twice real time by the definitions
of [15]. It is easy to see that the maximal value of a state is 9C + m, which yields
the above expression. []

Corollary 1. There exists a computation-universal one-dimensional, three-neighbor
totalistic cellular space with 9139 states.

Proof. Minsky [13] gives a universal Turing machine with four tape symbols
and seven states. Substituting m = 4 and n = 7 into the expression in Theorem 1
yields 9139. []

4. Semitotalistic Cellular Automata

In the semitotalistic case, every cell can represent one tape square, but we still
need an asymmetrical representation for the read/write head. This is done by
having the cell to the left of the scanned cell also code the machine's state and
the scanned symbol.

Let M be a Turing machine with m tape symbols and n states. Our coding
technique is illustrated by an example in Figure 5, where we see 10 tape symbols
with the string abcdef in squares 3-8, with blanks on either side and M in state
q scanning square 6. The assumed blanks on either side of the string are repre-
sented as before by the quiescent state (though a blank written by M will be
represented by a positive integer). The symbols in squares 3, 4, 7, and 8 are
represented simply by integers in the range 1 , . . . , m. The cell to the left of the
scanned cell codes its own symbol c, the scanned symbol d, and state q as
cA + dB + qC. The scanned cell codes symbol d and state q as dB + qC.

The neighborhood totals shown in the bottom row of Figure 5 do not include
the cell's own state. The purpose of the coding is to enable the cells to extract
all the relevant information from their own state and from the sum of their
neighbors' states, and the technique is similar to the totalistic case. If the neighbor-

Tape symbols

Cell states

Neighborhood
totals

1 2 3 4 5 6 7 8 9 10

,b~ / (a b c d e f ,k(,b"

0 0 a b cA+dB+qC dB+qC e f 0 0
I

a + cA e + cA I
+dB+qC b+dB+qC +dB+qC [f + d B + q C 0 a b e f 0

Fig. 5. Representation of a Turing machine 's head position, state and tape by semitotalistic automata.

On the Computational Power of Totalistic Cellular Automata 51

hood total is - 2 m , then the cell remains in its present state in the next configura-
tion. Otherwise the cell is in proximity to the read/write head (cells 4-7 in Figure
5) and it extracts its needed information by dividing the total by C, then the
remainder by B, and then by A.

Note that the multiple of A in the scanned cell is 0 and in its left neighbor
it is c; since this fact is used to distinguish between the two cells, we must have
c - 1. Therefore, even if the scanned symbol is the leftmost, t h e / ¢ to its left is
represented by the corresponding positive integer (and not by 0). It is straightfor-
ward to verify that every cell near the head can obtain its required information
from its own state and neighborhood total. By arguments similar to the totalistic
case, we get A = m + 1, B = (m + 1) 2, and C = m3+3m2+2m + 1. Our simulation
result can be stated as:

Theorem 2. A Turing machine with m tape symbols and n states can be simulated
in real time by a one-dimensional, three-neighbor semitotalistic cellular space with
(n + l) (m a + 3 m 2 + 2 m + l) - I states

Proof. All that remains to do is to note that the maximal value of a state is
mA + mB + nC, which yields the above expression. []

Corollary 2. There exists a computation-universal one-dimensional, three-neighbor
semitotalistic space with 967 states.

Proof Take Minsky's [13] universal Turing machine with m = 4 tape symbols
and n = 7 states. []

5. Conclusions and Further Research Possibilities

We have seen how an asymmetrical representation of the read/write head enables
the cells to distinguish between the left and right sides of the head. The number
of automata states required by our simulations is a polynomial in the number of
tape symbols (m) and number of states (n) of the simulated Turing machine. In
this respect our results are weaker than those of Smith [15], where the number
of states is linear in m and n..However, our simulation times (twice real time
and real time) are no worse than those of [15].

One question raised by these results is whether one can reduce the number
of automata states--say even down to linear in m and n - -a t the possible expense
of an increase in the simulation time. If so, what are the precise tradeoffs?

Lower Bounds on Number of States. Consider the fact that cells adjacent to the
read/write head need to extract the following information from their neighbor-
hood totals: their own state, the scanned symbol, the machine state, and their
position relative to the head. The number of possibilities is O(m2n) and our
simulation achieves that bound in the number of states. In the semitotalistic case,
note that cell 4 (in Figure 5) needs to extract from the total the machine state q,
the symbols of cells 5 and 6 as well as to distinguish them from the symbol of

52 D. Gordon

cell 3. Altogether, there are three symbols and one machine state involved, yielding
m3n different combinations, and our simulation does indeed use ®(m3n) states.

Based on these observations, we conjecture that Ut(m2n) and ~ (m 3 / ' l) are

lower bounds on the number of states required to simulate a Turing machine in
the two cases, assuming twice real time and real time for, respectively, totalistic
and semitotalistic automata.

Computation-Universality. If one is interested only in computation-universality
and not in the simulation time, then we are left with the question of what is the
minimal number of states required for computation-universality in totalistic and
semitotalistic automata. Here, we could have another possible tradeott relation:
between the neighborhood size and the number of states. In the two-dimensional
semitotalistic case, "Life" has the obviously minimal number of states (two),
assuming that a cell's neighborhood includes all eight closest neighbors. One
could also consider the case where a cell's neighborhood includes only the four
cells sharing a common boundary, and the hexagonal case where a cell has six
neighbors.

References

[1] M.A. Arbib, Theories of Abstract Automata, Prentice-Hall, Englewood Cliffs, NJ, 1969.
[2] A.W. Burks, ed., Essays on Cellular Automata, University of Illinois Press, Urbana, II, 1970.
[3] E.F. Codd, Cellular Automata, Academic Press, New York, 1968.
[4] A.K. Dewdney, Computer recreations, Sci. Amer., 252 (1985), 18-30.
[5] M. Gardner, Mathematical games, Sci. Amer., 224 (1971) and 226 (t972).
[6] M. Gardner, Wheels, Life and Other MathematicalAmusements, Freeman, San Francisco, 1983.
[7] G.T . Herman and G. Rozenberg, Developmental Systems and Languages, North-Holland,

Amsterdam, 1975. /
[8] J.E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Computation,

Addison-Wesley, Reading, MA, 1979.
[9] O.H. lbarra and S. M. Kim, Characterizations and computational complexity of systolic trellis

automata, Theorer Compur Sci., 29 (1984), 123-153.
[10] S. R. Kosaraju, On some open problems in the theory of cellular automata, IEEE Trans.

Comput., 33 (1974), 561-565.
[11] H.T. Kung, Let's design algorithms for VLSI systems, Proceedings of the Caltech Conference

on VLSI, Pasadena, CA, 1979, pp. 65-69.
[12] C. Mead and L. Conway, Introduction to VLSI Systems, Addison-Wesley, Reading, MA, 1980.
[13] M. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall, Englewood Cliffs, NJ,

1967.
[14] G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems, Academic Press, New

York, 1980.
[15] A.R. Smith, lII, Simple computation-universal cellular spaces, J. Assoc. Compur Mach., 18

(1971), 339-353.
[16] J. yon Neumann, The Theory of Self-Reproducing Automata (A. W. Burks, ed.), University of

lllinois Press, Urbana, IL, 1966.
[17] S. Wolfram, Statistical mechanics of cellular automata, Rev. Modern Phys., 55 (1983), 601-644.
[18] S. Wolfram, Universality and complexity in cellular automata, in Cellular Automata (Proc.

Interdisciplinary Workshop, Los Alamos, 1983) (D. Farmer, T. Toffoli, and S. Wolfram, eds.),
North-Holland, Amsterdam, 1984.

Received August 16, 1985, and in revised form February 26, 1987, and in final form April 20, 1987.

