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a b s t r a c t

Several studies have presented compact fourth order accurate finite difference approxima-
tion for the Helmholtz equation in two or three dimensions. Several of these formulae
allow for the wave number k to be variable. Other papers have extended this further to
include variable coefficients within the Laplacian which models non-homogeneous mate-
rials in electromagnetism.

Later papers considered more accurate compact sixth order methods but these were
restricted to constant k. In this paper we extend these compact sixth order schemes to var-
iable k in both two and three dimensions. Results on 2D and 3D problems with known ana-
lytic solutions verify the sixth order accuracy. We demonstrate that for large wave numbers,
the second order scheme cannot produce comparable results with reasonable grid sizes.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Kreiss and Oliger [18] investigated the behavior of errors of central differences in space for the time dependent convection
equation. They found that the error grows in time like t1=p where t is the time and p is the order of accuracy of the scheme in
space. They concluded that the optimal order of accuracy is between fourth and sixth. More accurate schemes lead to only a
minimal reduction in the global error which does not justify the additional work involved. For the problem in Fourier space,
i.e., the Helmholtz equation, Bayliss et al. [3] and later Babuška and Sauter [2] found that the number of grid points required
for a given accuracy increases with the wave number, but at a slower rate as the order of accuracy of the scheme increases.
More precisely, if k is the wave number and N is the mesh size (the number of subintervals in one dimension), and p is the
order of a finite difference or finite element scheme, then

N ¼ Ck
pþ1

p ; ð1Þ

where C is a constant that depends only on the accuracy achieved. This means that if we wish to modify k and maintain the
same accuracy, then we should modify N according to (1). This relation, which is called the pollution effect (or dispersion),
shows the advantage of high order accurate schemes from the standpoint of efficiency, because the higher the value of p, the
closer the quantity pþ1

p is to one. Hence, similarly to Kreiss and Oliger, one expects that the optimal order of accuracy of a

general scheme for the Helmholtz equation is approximately sixth order.
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Using straightforward central differences, higher order accuracy requires a larger stencil. This has two disadvantages.
Firstly, the larger the stencil the more work may be needed to invert the matrix with a larger bandwidth and more non-zero
entries. Even more serious are the difficulties near boundaries. A large stencil requires some modification near the bound-
aries where all the points needed in the stencil are not available. This raises questions of the efficiency and stability of such
schemes. These problems are eliminated if one constructs a compact scheme (3� 3 in two dimensions and 3� 3� 3 in three
dimensions). In this case, no additional boundary conditions are required at the discrete level beyond those needed for the
Helmholtz equation itself.

It has been shown in [21] that sixth order accuracy is the best that can be achieved, for the Poisson (and certainly Helm-
holtz) equation in two dimensions using a 3� 3 stencil. A lower order compact scheme uses the same stencil and so requires
as much work, yet it is less accurate than the sixth order scheme. A second order scheme requires less computation for the
same grid dimension because it uses 5 nodes in 2D and 7 nodes in 3D vs. 9 and 27 nodes, respectively, for a compact sixth
order accurate scheme. However, one can see from our results (Section 5) that a second order scheme is not competitive due
to its lower accuracy and the pollution effect; the extra computations for a compact sixth order scheme are negligible com-
pared to the increased accuracy. Hence, for compact schemes, sixth order accuracy is optimal.

Another advantage of compact schemes pertains to parallel methods that operate as follows: the domain is partitioned
into subdomains which are processed in parallel, with some inter-domain communications of the boundary values. An
example of this is the CARP-CG algorithm [12] used in this work. With compact high order schemes, the amount of inter-
processor communications required by such methods is the same as that of the second order scheme, so no additional com-
munications overhead is incurred by these schemes.

The wave equation for vðx; y; z; tÞ is given by

1
c2ðx; y; zÞ

@2v
@t2 ¼ Dv � f ðx; y; z; tÞ ð2Þ

where c is the propagation speed of the waves. We assume that the solution is periodic in time (or equivalently, Fourier
transform in time). Then vðx; y; z; tÞ ¼ eixtuðx; y; zÞ and f ðx; y; z; tÞ ¼ eixtFðx; y; zÞ. Substituting into (2) we get

Lu ¼def Duþ k2ðx; y; zÞu ¼ Fðx; y; zÞ; where kðx; y; zÞ ¼ x
cðx; y; zÞ ð3Þ

kðx; y; zÞ is called the wave number. If the medium is homogeneous, then c (and hence k) are constant. However, in many cases
the medium is non-homogeneous, in which case c depends on the position.

Previous research developed compact fourth order accurate finite difference approximation for the Helmholtz equation in
two or three dimensions, including a variable wave number [15,22]. These were later extended to polar coordinates and
other generalizations of the Laplacian for inhomogeneous media [5,6]. Others considered more accurate sixth order methods
but were restricted to constant k [20,24,25]. In this paper we derive a compact sixth order accurate finite difference approx-
imation for the case of variable k in both two and three dimensions. The basic approach to developing the sixth order scheme
for variable k uses equation based differencing, where derivatives of the Helmholtz equation are used to eliminate higher
order derivatives in the discretization error. This is the same approach that was used before [5,6,15,22,24]. However, the
extension to sixth order accuracy for variable coefficients is very nontrivial. Since the emphasis is variable wave number,
we shall not present a dispersion analysis, see, e.g., [1,15].

Our aim is to discretize the equation on a compact stencil with sixth order accuracy, assuming the function u is suffi-
ciently smooth. In particular, we assume that the solution has six bounded derivatives and that k and F have four bounded
derivatives. If fewer derivatives exist, e.g., in a layered medium, then the current approach will have reduced accuracy
depending on the smoothness of k and F. Nevertheless, in [19] it is shown how one can recover the formal accuracy of
the scheme for generally shaped boundaries and interfaces using Calderon’s projections.

If the source F has a delta-like behavior, then the solution of the differential equation, along with its derivatives, is un-
bounded at the position of the delta source. In that case, any finite difference scheme, compact or conventional, would lose
consistency. One then needs to use an approximate representation of the delta function, and to exclude a neighborhood of
the delta source in the error estimates. For example, Hicks [16] suggests using a windowed Sinc function. Interestingly, if the
delta function is located at a node then the Sinc function reduces to a discrete delta function. However, since we account for
derivatives of the forcing function the contributions will be non-zero at all points. Of course, the window function needs to
be sufficiently smooth. This approximation will lead to additional errors. The effect of all of these approximations will be
discussed in a future paper. We also assume that the functions k and F and their derivatives are known explicitly. If the deriv-
atives cannot be calculated explicitly, then they can be approximated by finite differences to the appropriate order. This
would require a larger stencil for k and F but not u. We note that the reasons given above for the use of a compact scheme
apply only to compactness in the stencil for the solution u. Using a non-compact stencil for the wave number k or the forcing
term F does not affect the computational effort.

2. Derivation of the compact scheme

Let dx and dxx (and similarly in the other directions) be central difference approximations to the first and second deriva-
tives respectively using the immediate neighbors. So we define:
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hdxu ¼ uiþ1;j;k � ui�1;j;k

2

h3dxyyu ¼
uiþ1;jþ1;k þ uiþ1;j�1;k � ui�1;jþ1;k � ui�1;j�1;k � 2 uiþ1;j;k � ui�1;j;k

� �
2

and similarly in the other directions. We also have

h2 dxx þ dyy þ dzz
� �

u ¼ uiþ1;j;k þ ui�1;j;k þ ui;jþ1;k þ ui;j�1;k þ ui;j;kþ1 þ ui;j;k�1 � 6ui;j;k

h4 dxxyy þ dxxzz þ dyyzz
� �

u ¼ uiþ1;jþ1;k þ ui�1;jþ1;k þ uiþ1;j�1;k þ ui�1;j�1;k þ uiþ1;j;kþ1 þ ui�1;j;kþ1 þ uiþ1;j;k�1 þ ui�1;j;k�1 þ ui;jþ1;kþ1

þ ui;j�1;kþ1 þ ui;jþ1;k�1 þ ui;j�1;k�1 � 4 uiþ1;j;k þ ui�1;j;k þ ui;jþ1;k þ ui;j�1;k þ ui;j;kþ1 þ ui;j;k�1
� �

þ 12ui;j;k

h6dxxyyzzu ¼ uiþ1;jþ1;kþ1 þ ui�1;jþ1;kþ1 þ uiþ1;j�1;kþ1 þ ui�1;j�1;kþ1 þ uiþ1;jþ1;k�1 þ ui�1;jþ1;k�1 þ uiþ1;j�1;k�1 þ ui�1;j�1;k�1

� 2 uiþ1;j;kþ1 þ ui�1;j;kþ1 þ ui;jþ1;kþ1 þ ui;j�1;kþ1 þ uiþ1;j;k�1 þ ui�1;j;k�1 þ ui;jþ1;k�1 þ ui;j�1;k�1
�

þuiþ1;jþ1;kui�1;jþ1;k þ uiþ1;j�1;k þ ui�1;j�1;k
�
þ 4 uiþ1;j;k þ ui�1;j;k þ ui;jþ1;k þ ui;j�1;k þ ui;j;kþ1 þ ui;j;k�1

� �
� 8ui;j;k

By a Taylor series expansion we get

dxu ¼ ux þ
h2

6
uxxx þ

h4

120
uxxxxx þ Oðh6Þ

dxxu ¼ uxx þ
h2

12
uxxxx þ

h4

360
uxxxxxx þ Oðh6Þ ð4Þ

Define the (second order) discrete approximation to the left hand side of (3):

Dhu ¼ dxxuþ dyyuþ dzzu ð5aÞ

Lhu ¼ Dhuþ k2u ð5bÞ

Then, by a Taylor Series expansion we have

Lhu ¼ Luþ h2

12
uxxxx þ uyyyy þ uzzzz
� �

þ h4

360
uxxxxxx þ uyyyyyy þ uzzzzzz
� �

þ Oðh6Þ ð6Þ

Define:

I1 ¼ uxxxx þ uyyyy þ uzzzz

I2 ¼ uxxxxxx þ uyyyyyy þ uzzzzzz ð7Þ
and

Q ¼ dxxdyyðk2uÞ þ dxxdzzðk2uÞ þ dyydzzðk2uÞ � ðFxxyy þ Fxxzz þ FyyzzÞ
R ¼ ðk2uÞxx þ ðk

2uÞyy þ ðk
2uÞzz ¼ Dðk2uÞ

S ¼ ðk2uÞxxxx þ ðk
2uÞyyyy þ ðk

2uÞzzzz

We need to approximate I1 to fourth order accuracy and I2 to second order accuracy. By a Taylor series expansion we get

Lu ¼ Lhu� h2

12
I1 þ Oðh4Þ
� �

� h4

360
I2 þ Oðh2Þ
� �

þ Oðh6Þ ¼ f ð8Þ

Lemma 1

ux ¼ dxuþ h2

6
dxyyuþ dxzzuþ dxðk2uÞ � Fx

h i
þ Oðh4Þ ð9Þ

Proof

dxu ¼ ux þ
h2

6
uxxx þ Oðh4Þ

ux ¼ dxu� h2

6
uxxx þ Oðh4Þ ð10Þ

Differentiating the Helmholtz equation with respect to x we get

uxxx ¼ � uxyy þ uxzz þ ðk2uÞx
� �

þ Fx
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So substituting into (10)

ux ¼ dxuþ h2

6
uxyy þ uxzz þ ðk2uÞx � Fx

� �
þ Oðh4Þ ð11Þ

We replace the derivatives by central differences with an error Oðh2Þ and substitute into (11) yielding (9). h

uy and uz are derived similarly.

Lemma 2

Dðk2uÞ ¼ k2F þ Dðk2Þ � k4
� �

uþ 2 ðk2Þxux þ ðk2Þyuy þ ðk2Þzuz

� �
ð12Þ

Proof

ðk2uÞxx ¼ ðk
2Þxxuþ 2ðk2Þxux þ k2uxx

So adding each direction

Dðk2uÞ ¼ Dðk2Þuþ 2 k2
� �

x
ux þ k2

� �
y
uy þ k2

� �
z
uz

� �
þ k2DðuÞ

¼ k2F þ Dðk2Þ � k4
� �

uþ 2 k2
� �

x
ux þ k2

� �
y
uy þ k2

� �
z
uz

� �
�

Combining this with Lemma 1 we have found Dðk2uÞ to fourth order accuracy.

Dðk2uÞ ¼ k2F þ Dðk2Þ � k4
� �

uþ 2ðk2Þx dxuþ h2

6
dxyyuþ dxzzuþ ðk2Þxu� Fx

h i !

þ 2ðk2Þy dyuþ h2

6
dxxyuþ dyzzuþ ðk2Þyu� Fy

h i !
þ 2ðk2Þz dzuþ h2

6
dxxzuþ dyyzuþ ðk2Þzu� Fz

h i !

þ Oðh4Þ ð13Þ

We wish to approximate ðk2uÞxxxx þ ðk
2uÞyyyy þ ðk

2uÞzzzz with second order accuracy. A straightforward expansion requires
fourth derivatives of k2. If k2 is a complicated formula then its fourth derivatives become exceedingly complex. Instead,
we derive another formula that requires only second derivatives of k. Thus, an explicit formula for these derivatives is
simpler.

Lemma 3

h2

12
S � h2

12
ðk2uÞxxxx þ ðk

2uÞyyyy þ ðk
2uÞzzzz

h i
¼ Dhðk2uÞ � Dðk2uÞ þ Oðh4Þ ð14Þ

where Dðk2uÞ is given to fourth order accuracy by (13) and Dhðk2uÞ ¼ ðd2
x þ d2

y þ d2
z Þu.

Proof

dxxðk2uÞ ¼ ðk2uÞxx þ
h2

12
ðk2uÞxxxx þ Oðh4Þ

Adding from each direction we get

h2

12
ðk2uÞxxxx þ ðk

2uÞyyyy þ ðk
2uÞzzzz

h i
¼ Dhðk2uÞ � Dðk2uÞ þ Oðh4Þ �

We begin with approximating I2 to second order accuracy. Differentiating (3) four times, with respect to xxxx; yyyy; zzzz we
get

uxxxxxx þ uxxxxyy þ uxxxxzz ¼ �ðk2uÞxxxx þ Fxxxx

uxxyyyy þ uyyyyyy þ uyyyyzz ¼ �ðk2uÞyyyy þ Fyyyy ð15Þ

uxxzzzz þ uyyzzzz þ uzzzzzz ¼ �ðk2uÞzzzz þ Fzzzz

E. Turkel et al. / Journal of Computational Physics 232 (2013) 272–287 275
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Adding we get

I2 � uxxxxxx þ uyyyyyy þ uzzzzzz

¼ � uxxxxyy þ uxxxxzz þ uxxyyyy þ uyyyyzz þ uxxzzzz þ uyyzzzz
� �

� ðk2uÞxxxx þ ðk
2uÞyyyy þ ðk

2uÞzzzz

h i
þ Fxxxx þ Fyyyy þ Fzzzz
� 	

ð16Þ

Differentiating the Helmholtz equation with respect to xxyy; xxzz; yyzz, we have

uxxxxyy þ uxxyyyy þ uxxyyzz ¼ �ðk2uÞxxyy þ Fxxyy

uxxxxzz þ uxxyyzz þ uxxzzzz ¼ �ðk2uÞxxzz þ Fxxzz

uxxyyzz þ uyyyyzz þ uyyzzzz ¼ �ðk2uÞyyzz þ Fyyzz

Adding these 3 equations we get

uxxxxyy þ uxxxxzz þ uxxyyyy þ uyyyyzz þ uxxzzzz þ uyyzzzz ¼ �3uxxyyzz � ðk2uÞxxyy þ ðk
2uÞxxzz þ ðk

2uÞyyzz

h i
þ Fxxyy þ Fxxzz þ Fyyzz
� 	

¼ �3uxxyyzz � Q þ Oðh2Þ ð17Þ

Inserting (16) and (17) into (7) we get

I2 � uxxxxxx þ uyyyyyy þ uzzzzzz ¼ 3uxxyyzz þ Q � Sþ Fxxxx þ Fyyyy þ Fzzzz
� 	

and so

h4

360
I2 ¼

h4

120
dxxdyydzzuþ

h4

360
Q þ Fxxxx þ Fyyyy þ Fzzzz

� 	� �
� h2

30
h2

12
Sþ Oðh6Þ

¼ h4

120
dxxdyydzzuþ

h4

360
dxxdyy þ dxxdzz þ dyydzz
� �

ðk2uÞ � h2

30
h2

12
S

þ h4

360
Fxxxx þ Fyyyy þ Fzzzz � Fxxyy � Fxxzz � Fyyzz
� 	

þ Oðh6Þ ð18Þ

In Lemma 3 we have found h2

12 S ¼ ðdxx þ dyy þ dzzÞðk2uÞ � Dðk2uÞ þ Oðh4Þ. So combining we get

h4

360
I2 ¼

h4

120
dxxdyydzzuþ

h4

360
dxxdyy þ dxxdzz þ dyydzz
� �

ðk2uÞ � h2

30
ðdxx þ dyy þ dzzÞðk2uÞ þ h2

30
Dðk2uÞ

þ h4

360
Fxxxx þ Fyyyy þ Fzzzz � Fxxyy � Fxxzz � Fyyzz
� 	

þ Oðh6Þ ð19Þ

We next consider

I1 ¼ uxxxx þ uyyyy þ uzzzz

which we need to fourth order accuracy. Differentiating the Helmholtz equation twice with respect to xx; yy; zz respectively,
we get

uxxxx þ uxxyy þ uxxzz ¼ �ðk2uÞxx þ Fxx

uxxyy þ uyyyy þ uyyzz ¼ �ðk2uÞyy þ Fyy

uxxzz þ uyyzz þ uzzzz ¼ �ðk2uÞzz þ Fzz

Adding we get

I1 ¼ uxxxx þ uyyyy þ uzzzz ¼ �2 uxxyy þ uxxzz þ uyyzz
� �

� Dðk2uÞ þ DF

But

dxxdyyu ¼ uxxyy þ
h2

12
ðuxxxxyy þ uxxyyyyÞ þ Oðh4Þ

and so adding each direction

dxxdyy þ dxxdzz þ dyydzz
� �

u ¼ uxxyy þ uxxzz þ uyyzz þ
h2

12
uxxxxyy þ uxxyyyy þ uxxxxzz þ uxxzzzz þ uyyyyzz þ uyyzzzz
� �

þ Oðh4Þ

But from Eq. (17) we have

uxxxxyy þ uxxxxzz þ uxxyyyy þ uyyyyzz þ uxxzzzz þ uyyzzzz ¼ �3uxxyyzz � ðk2uÞxxyy þ ðk
2uÞxxzz þ ðk

2uÞyyzz

h i
þ Fxxyy þ Fxxzz þ Fyyzz
� 	

¼ �3dxxdyydzzu� Q þ Oðh2Þ

276 E. Turkel et al. / Journal of Computational Physics 232 (2013) 272–287
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So

uxxyy þ uxxzz þ uyyzz ¼ dxxdyy þ dxxdzz þ dyydzz
� �

uþ h2

4
dxxdyydzzuþ

h2

12
Q þ Oðh4Þ

Thus,

I1 ¼ �2 dxxdyy þ dxxdzz þ dyydzz
� �

u� h2

2
dxxdyydzzu� h2

6
Q � Dðk2uÞ þ DF þ Oðh4Þ ð20Þ

We have found already (13) Dðk2uÞ to fourth order accuracy. So we have found I1 and I2 to their necessary accuracy. We also
have I1 to second order

I1 ¼ �2 dxxdyy þ dxxdzz þ dyydzz
� �

u� Dhðk2uÞ � k2F þ DF þ Oðh2Þ ð21Þ

So the Helmholtz equation approximated to fourth order accuracy is given by

Dhuþ k2uþ h2

12
Dhðk2uÞ þ 2 dxxdyy þ dxxdzz þ dyydzz

� �
u

h i
¼ F þ h2

12
DF ð22Þ

Adding (20) and (19) we have

h2

12
I1 þ

h4

360
I2 ¼ �

h2

6
dxxdyy þ dxxdzz þ dyydzz
� �

u� h2

30
dxx þ dyy þ dzz
� �

ðk2uÞ � h2

20
Dðk2uÞ � h4

30
dxxdyydzzu

� h4

90
dxxdyy þ dxxdzz þ dyydzz
� �

ðk2uÞ þ h2

12
DF þ h4

360
Fxxxx þ Fyyyy þ Fzzzz
� 	

þ h4

90
Fxxyy þ Fxxzz þ Fyyzz
� 	

þ Oðh6Þ

Thus, the Helmholtz equation Lu ¼ f is approximated by Lhu� h2

12 I1þ h4

360 I2

� �
þ Oðh6Þ ¼ F. Multiplying by h2 yields

h2 dxx þ dyy þ dzz
� �

1þ k2h2

30

 !
uþ k2h2uþ h4

6
dxxdyy þ dxxdzz þ dyydzz
� �

1þ k2h2

15

 !
uþ h4

20
Dðk2uÞ þ h6

30
dxxdyydzzu

¼ h2 F þ h2

12
DF þ h4

360
Fxxxx þ Fyyyy þ Fzzzz
� �

þ h4

90
Fxxyy þ Fxxzz þ Fyyzz
� �" #

þ Oðh8Þ ð23Þ

where

h4Dðk2uÞ ¼ h4 k2F þ Dðk2Þ � k4
� �

u
h i

þ 2ðk2Þxh3 hdxuþ h3

6
dxyyuþ dxzzuþ dxðk2uÞ � Fx

h i !

þ 2ðk2Þyh3 hdyuþ h3

6
dxxyuþ dyzzuþ dyðk2uÞ � Fy

h i !

þ 2ðk2Þzh
3 hdzuþ h3

6
dxxzuþ dyyzuþ dzðk2uÞ � Fz

h i !
þ Oðh8Þ ð24Þ

This contains terms that depend on F that need to be transferred to the right hand side of the equation. Thus, we require the
first derivatives of kand Dðk2Þ either analytically or computationally to fourth order accuracy. We also require fourth deriv-
atives of F either analytically or with fourth order accuracy.

We now rewrite (23) in terms of the points (9 in 2D and 27 in 3D) in the stencil. To simplify the notation we note that all
the terms except for parts of Dðk2uÞ are in self-adjoint form even on the discrete level to sixth order accuracy. However, parts
of Dðk2uÞ are discretely self-adjoint only to fourth order accuracy but lose that property for the sixth order accuracy which
will complicate the formulae. Hence, we split our discretization into two parts, A represents the self-adjoint portion while B
represents the non-self-adjoint part. Define:

A ¼ h2 dxx þ dyy þ dzz
� �

1þ k2h2

30

 !
uþ k2h2uþ h4

6
dxxdyy þ dxxdzz þ dyydzz
� �

1þ k2h2

15

 !
uþ h6

30
dxxdyydzzu

þ h4

20
Dðk2Þ � k4
� �

u
h i

ð25Þ

B ¼ 2h3

20
ðk2Þx hdxuþ h3

6
dxyyuþ dxzzuþ dxðk2uÞ
h i !

þ ðk2Þy hdyuþ h3

6
dxxyuþ dyzzuþ dyðk2uÞ
h i !"

þ k2Þz hdzuþ
h3

6
dxxzuþ dyyzuþ dzðk2uÞ
h i ! #

ð26Þ
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RHS¼h2 1�k2h2

20

 !
Fþ h2

12
DFþ h4

360
FxxxxþFyyyyþFzzzz
� �

þ h4

90
FxxyyþFxxzzþFyyzz
� �

þ h4

60
ðk2ÞxFxþðk2ÞyFyþðk2ÞzFz

h i( )

ð27Þ

Our final equation is then

Aþ B ¼ RHS

We first rewrite A in stencil notation.

Acc is the coefficient of the 8 corner points
ðiþ 1; jþ 1; kþ 1Þ; ði� 1; jþ 1; kþ 1Þ; ðiþ 1; j� 1; kþ 1Þ; ði� 1; j� 1; kþ 1Þ;
ðiþ 1; jþ 1; k� 1Þ; ði� 1; jþ 1; k� 1Þ; ðiþ 1; j� 1; k� 1Þ; ði� 1; j� 1; k� 1Þ

Asc is the coefficient of the 12 corner-side points
ðiþ 1; j; kþ 1Þ; ði� 1; j; kþ 1Þ; ði; jþ 1; kþ 1Þ; ði; j� 1; kþ 1Þ;
ðiþ 1; j; k� 1Þ; ði� 1; j; k� 1Þ; ði; jþ 1; k� 1Þ; ði; j� 1; k� 1Þ;
ðiþ 1; jþ 1; kÞ; ði� 1; jþ 1; kÞ; ðiþ 1; j� 1; kÞ; ði� 1; j� 1; kÞ

Ass is the coefficient of the 6 immediate neighbors
ðiþ 1; j; kÞ; ði� 1; j; kÞ; ði; jþ 1; kÞ; ði; j� 1; kÞ; ði; j; kþ 1Þ; ði; j; k� 1Þ

A0 the coefficient of the center point ði; j; kÞ. Then we have

A0 ¼ �
64
15
þ 14k2h2

15
� k4h4

20
þ h4

20
Dðk2Þ ð28Þ

Ass ¼
7

15
� k2h2

90
Asc ¼

1
10
þ k2h2

90
Acc ¼

1
30

We strongly stress that the various points in the corner and side do not have the same coefficients since the k2 that ap-
pears is evaluated at the appropriate stencil point.

For B we do not have a self-adjoint form and so we need to give explicitly all the coefficients. So

B¼ðk
2Þxh3

20
1
3
þk2h2

6

 !
uiþ1;j;k�

1
3
þk2h2

6

 !
ui�1;j;kþ

1
6

uiþ1;jþ1;kþuiþ1;j�1;kþuiþ1;j;kþ1þuiþ1;j;k�1�ui�1;jþ1;k�ui�1;j�1;k�ui�1;j;kþ1�ui�1;j;k�1
� �" #

þ
ðk2Þyh3

20
1
3
þk2h2

6

 !
ui;jþ1;k�

1
3
þk2h2

6

 !
ui;j�1;kþ

1
6

uiþ1;jþ1;kþui�1;jþ1;kþui;jþ1;kþ1þui;jþ1;k�1�uiþ1;j�1;k�ui�1;j�1;k�ui;j�1;kþ1�ui;j�1;k�1
� �" #

þðk
2Þzh3

20
1
3
þk2h2

6

 !
ui;j;kþ1�

1
3
þk2h2

6

 !
ui;j;k�1þ

1
6

uiþ1;j;kþ1þui�1;j;kþ1þui;jþ1;kþ1þui;j�1;kþ1�uiþ1;j;k�1�ui�1;j;k�1�ui;jþ1;k�1�ui;j�1;k�1
� �" #

ð29Þ

Note, that for k constant B ¼ 0 and in (28) Dðk2Þ ¼ 0. Reorganizing into the additions to A0;Ass;Asc;Acc we get

B0 ¼ 0 ð30Þ

Bss ¼
ðk2Þxh3

20
1
3
þ k2h2

6

 !
uiþ1;j;k �

1
3
þ k2h2

6

 !
ui�1;j;k

" #
þ
ðk2Þyh3

20
1
3
þ k2h2

6

 !
ui;jþ1;k �

1
3
þ k2h2

6

 !
ui;j�1;k

" #

þ ðk
2Þzh

3

20
1
3
þ k2h2

6

 !
ui;j;kþ1 �

1
3
þ k2h2

6

 !
ui;j;k�1

" #

Bsc ¼
h3

120
ðk2Þx þ ðk

2Þy
� �

uiþ1;jþ1;k þ ðk2Þx þ ðk
2Þz

� �
uiþ1;j;kþ1 þ ðk2Þy þ ðk

2Þz
� �

ui;jþ1;kþ1 þ ðk2Þx � ðk
2Þy

� �
uiþ1;j�1;k

h
þ ðk2Þx � ðk

2Þz
� �

uiþ1;j;k�1 þ ðk2Þy � ðk
2Þz

� �
ui;jþ1;k�1 � ðk2Þx � ðk

2Þy
� �

ui�1;jþ1;k � ðk2Þx � ðk
2Þz

� �
ui�1;j;kþ1

� ðk2Þy � ðk
2Þz

� �
ui;j�1;kþ1 � ðk2Þx þ ðk

2Þy
� �

ui�1;j�1;k � ðk2Þx þ ðk
2Þz

� �
ui�1;j;k�1 � ðk2Þy þ ðk

2Þz
� �

ui;j�1;k�1

i

Bcc ¼ 0

If we eliminate the Oðh6Þ we get a fourth order accurate scheme. In this case Acc ¼ 0 and the stencil contains only 21 points
instead of 27. Similarly B greatly simplifies and in particular Bsc ¼ 0.
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In two dimensions we have only the corner points Ac and the side points As and this reduces to

Ac ¼
1
6
þ k2h2

90
As ¼

2
3
þ k2h2

90
A0 ¼ �

10
3
þ 41k2h2

45
� k4h4

20
þ h4

20
Dðk2Þ ð31Þ

and

B0 ¼ 0 ð32Þ

Bc ¼
h3

120
ðk2Þx þ ðk

2Þy
� �

uiþ1;jþ1 þ ðk2Þx � ðk
2Þy

� �
uiþ1;j�1 � ðk2Þx � ðk

2Þy
� �

ui�1;jþ1 � ðk2Þx þ ðk
2Þy

� �
ui�1;j�1

h i

Bs ¼
h3

20
ðk2Þx

k2h2

6
þ 2

3

 !
uiþ1;j � ðk2Þx

k2h2

6
þ 2

3

 !
ui�1;j þ ðk2Þy

k2h2

6
þ 2

3

 !
ui;jþ1 � ðk2Þy

k2h2

6
þ 2

3

 !
ui;j�1

" #

As before k2 is evaluated at the appropriate stencil point. However, the derivatives ðk2Þx; ðk
2Þy; ðk

2Þz;Dðk
2Þ are evaluated at the

center point of the stencil ði; j; kÞ.
Note,
� For constant k we do not need the formulae for the first derivative (9).
� For constant k this formula is different from those in [20,24,25] but the difference is of higher order.
� Because of the term dxxdyydzzu there are terms in three dimensions that have no two dimensional counterpart.

3. Boundary conditions

When a Dirichlet boundary condition is imposed then the previous formulae can be used at all interior points. For Neu-
mann boundary conditions, when k is constant, a fourth order accurate technique was developed in [22]. We now develop a
sixth order accurate method for a Neumann condition ux ¼ gðy; zÞ when g has at least 3 continuous derivatives in y and z.
Similar formulae hold in the other directions. To be specific, we consider the coordinate line i ¼ 0 and introduce a ghost point
i ¼ �1 (for ease of notation we omit the j; k indexes). At the boundary i ¼ 0 we specify both the Helmholtz equation and the
Neumann boundary condition. Furthermore, we take tangential derivatives of the Neumann boundary condition. This offers
a considerably more straightforward venue (compared to [20]) toward removing all higher order derivatives from the trun-
cation error expansion in the approximation of the boundary condition. We have:

uxx þ uyy þ uzz þ k2u ¼ F

uiþ1 � ui�1

2h
¼ ux þ

h2

6
uxxx þ

h4

120
uxxxxx

uxxx ¼ �uxyy � uxzz � k2ux � ðk2Þxuþ Fx

uxxxxx ¼ � uxxxyy þ uxxxzz
� �

� k2uxxx � 3ðk2Þxuxx � 3ðk2Þxxux � ðk2Þxxxuþ Fxxx ¼ uxyyyy þ 2uxyyzz þ uxzzzz þ k2u
� �

xyy

þ k2u
� �

xzz
� Fxyy � Fxzz þ k2 uxyy þ uxzz þ k2ux þ ðk2Þxu� Fx

� �
� 3ðk2Þxuxx � 3ðk2Þxxux � ðk2Þxxxuþ Fxxx ¼ uxyyyy

þ 2uxyyzz þ uxzzzz þ k2uxyy þ 2 k2
� �

y
uxy þ k2

� �
yy

ux þ k2
� �

x
uyy þ 2 k2

� �
xy

uy þ k2
� �

xyy
u

� �
þ k2uxzz þ 2 k2

� �
z
uxz

�
þ k2
� �

zz
ux þ k2

� �
x
uzz þ 2 k2

� �
xz

uz þ k2
� �

xzz
u
�
þ k2 uxyy þ uxzz þ k2ux þ ðk2Þxu

� �
� 3ðk2Þxuxx � 3ðk2Þxxux

�ðk2Þxxxuþ Fxxx � Fxyy � Fxzz � k2Fx

Using the Neumann boundary condition ux ¼ g and its tangential derivatives we obtain:

uxxx ¼ �gyy � gzz � k2g � ðk2Þxuþ Fx

uxxxxx ¼ gyyyy þ 2gyyzz þ gzzzz þ k2gyy þ 2 k2
� �

y
gy þ k2

� �
yy

g þ k2
� �

x
uyy þ 2 k2

� �
xy

uy þ k2
� �

xyy
u

� �
þ k2gzz þ 2 k2

� �
z
gz

�
þ k2
� �

zz
g þ k2

� �
x
uzz þ 2 k2

� �
xz

uz þ k2
� �

xzz
u
�
þ k2 gyy þ gzz þ k2g þ ðk2Þxu

� �
� 3ðk2Þxuxx � 3ðk2Þxxg � ðk2Þxxxu

þFxxx � Fxyy � Fxzz � k2Fx ¼ gyyyy þ 2gyyzz þ gzzzz þ 2k2 gyy þ gzz

� �
þ 2 k2

� �
y
gy þ 2 k2

� �
z
gz þ k2

� �
yy
þ k2
� �

zz

�

�3ðk2Þxx þ k4
�

g þ ðk2Þx �3uxx þ uyy þ uzz þ k2u
� �

þ 2 k2
� �

xy
uy þ 2 k2

� �
xz

uz þ k2
� �

xyy
þ k2
� �

xzz
� ðk2Þxxx

� �
u

þFxxx � Fxyy � Fxzz � k2Fx
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Discretizing, centered at ð0; j; kÞ, we subsequently get

dxuþh2

6
ðk2Þxu� h4

120
�3ðk2Þxdxxuþðk2Þx dyyuþdzzu

� �
þ2ðk2Þxydyuþ2ðk2Þxzdzuþ ðk2Þxyyþðk

2Þxzzþk2ðk2Þx�ðk
2Þxxx

� �
u

� �

¼ g�h2

6
gyyþgzzþk2g�Fx

� �
þ h4

120
gyyyyþ2gyyzzþgzzzzþ2k2 gyyþgzz

� �
þ2 k2
� �

y
gyþ2 k2

� �
z
gzþ k2

� �
yy

�


þ k2
� �

zz
�3ðk2Þxxþk4

�
gþFxxx�Fxyy�Fxzz�k2Fx

�

This yields a stencil of 5 points in 2D and 7 points in 3D for the Neumann boundary points. The matrix is now inverted
including the extra artificial line i ¼ �1, and similarly for other boundaries with a Neumann condition.

We next consider the case that along the right boundary we have a simplified radiation condition of the form

@u
@x
þ ibu ¼ 0 at x ¼ x0 ð33Þ

Radiation boundary conditions are imposed in the far-field where we assume that the medium, and hence k, is constant.
Therefore, we choose a constant b in the neighborhood of the right boundary. Furthermore, since the position of the artificial
surface is arbitrary we assume that (33) is valid in a layer about x0. Hence, we can differentiate (33) in the x direction. We
note that having Eq. (33) hold in a layer of finite thickness in the x direction is essentially equivalent to having the solution
transition from its domain x < x0 to a duct with one-way wave propagation for x > x0. This, however, does not present a lim-
itation for our subsequent discussion, because we need boundary condition (33) only for methodological purposes to elim-
inate real eigenvalues, see Section 5.4. We do not necessarily assume that it represents a physical setting.

We approximate the x derivative in (33) by (dropping the index in the y direction for simplicity)

uNþ1 � uN�1

2h
¼ @u
@x
þ h2

6
@3u
@x3 þ

h4

120
@5u
@x5 þ Oðh6Þ ð34Þ

where the N þ 1th grid point lies outside the computational domain, and hence is a ghost point. Therefore, we need to elim-
inate uNþ1. Differentiating (33) several times, we obtain a relation for the third-order and fifth-order derivatives in (34):

@3u
@x3 ¼ ð�ibÞ3u ¼ ib3u

@5u
@x5 ¼ �ib5u

Substitution of the above relation into (34) yields

uNþ1 � uN�1

2h
¼ @u
@x
þ ib3h2

6
1� b2h2

20

 !
uN þ Oðh6Þ

or

@u
@x
¼

uNþ1 � ib3h3

3 1� b2h2

20

� �
uN � uN�1

2h
þ Oðh6Þ

and hence from (33) we derive

0 ¼ @u
@x
þ ibu ¼

uNþ1 þ 2ibh 1� b2h2

6 þ
b4h4

120

� �
uN � uN�1

2h
þ Oðh6Þ ð35Þ

This is combined with the discretization of the Helmholtz equation at the N-th grid point (i.e., the right boundary point) to
eliminate the uNþ1 term (see also [10]).

If we wish to use an accurate absorption condition one can introduce a PML. This requires the approximation of an equa-
tion with variable coefficients within a generalized self-adjoint form of the Laplacian in 2D: @xðaðx; yÞ@xuÞ þ @yðbðx; yÞ@yuÞ.
This equation can be discretized with fourth order accuracy, see [6]. Since the accuracy inside the PML is irrelevant, it does
not affect the overall global accuracy inside the physical domain (see [23]).

4. Solver

For three dimensional problems solving directly using Gaussian elimination or some other direct method is not feasible.
Hence, we shall use an iterative solver. For the solver, we used the block-parallel CARP-CG algorithm [12]. It is simple to
implement on structured and unstructured grids, and it is particularly useful for linear systems with large off-diagonal ele-
ments, including cases with discontinuous coefficients [13]. On one processor, it is identical to the CGMN algorithm [4].
CARP-CG has also been successfully used for the high frequency Helmholtz equations [14] with high order schemes from
[15,22,25], but only for constant k in 3D. Note that this algorithm is suitable for both symmetric and non-symmetric systems.
The following is a very brief description of CARP-CG; for more details, see [12].
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CARP-CG is a CG acceleration of CARP (component-averaged row projections) [11], which is a block-parallel extension of
KACZ – the Kaczmarz algorithm [17]. KACZ is inherently sequential: starting from an arbitrary initial point, it sweeps
through the equations by successively projecting the current iterate towards the hyperplane defined by the next equation.
The extent of the projection is determined by the value of a relaxation parameter. It is well known that KACZ is SOR (suc-
cessive over-relaxation) on the normal equations system AAT y ¼ b; x ¼ AT .

CARP divides the equations into blocks (which may overlap) and assigns each block to a processor. Every variable shared
by several blocks is copied to all processors whose assigned block of equations contains that variable. The following two
steps are then repeated until convergence:

1. Operating in parallel, each processor executes a KACZ sweep on the equations of its assigned block. For each shared
variable, the processor uses its copy of that variable.

2. The new value of every shared variable is obtained by averaging all its copies, and it is then distributed to the pro-
cessors which share it.

For PDE problems defined over some domain, CARP can be used as a form of domain decomposition, with blocks corre-
sponding to subdomains. This way, shared variables are limited to grid points at subdomain boundaries.

The interesting point about CARP is that in some superspace, it is equivalent to KACZ with cyclic relaxation parameters
(i.e., each equation has its own fixed relaxation parameter). This provides a convenient theoretical proof of convergence and
enables the CG acceleration of CARP as follows: by running CARP in a double (forward and backward) sweep of the equations,
one obtains a symmetric positive semi-definite iteration matrix B (even if the original matrix is nonsymmetric). Thus, CG can
be applied to B to obtain CARP-CG. B is never formed explicitly: matvec operations with B are obtained by running CARP in a
double sweep. This technique extends the one used in [4] to KACZ with cyclic relaxation parameters.

5. Results

We note that in three dimensions a second order accurate scheme requires only a stencil with 7 points. For a fourth order
scheme we need 21 points while for the sixth order scheme we require the full compact stencil with 27 points. A Krylov
iterative method requires an inner product and so the work increases when the number of points in the stencil increases,
even though the stencil remains compact. Thus, a sixth order accurate method should require 2–4 times the number of oper-
ations of a second order scheme for the same grid. Alternately, one can use a second order scheme with a mesh about 50%
finer in all directions, and then the two algorithms would require about the same storage and computational time per iter-
ation. As will be seen in the results, even when taking this into account, the sixth order method is much more efficient than
the second order method. In fact for many three dimensional problems a second order scheme would not give any reasonable
results due to memory restrictions on the grid size. This is especially true for high frequencies where, because of the pollu-
tion effect, the grid requirement for a second order scheme behaves as k3=2, while for a sixth order accurate scheme the re-
quired grid increases only as k7=6.

5.1. Setup of the numerical experiments

Tests were run on a Supermicro cluster consisting of 12 nodes connected by an Infiniband network. Each node has two
Intel Xeon E5520 quad CPUs running at 2.27 GHz, so the cluster can provide a total of 96 cores. The two CPUs share 8 GB of
memory and each has its own 8 MB cache. The cluster runs under Debian Linux, and message passing used the MPICH2 pub-
lic domain MPI package. For the timing experiments, CARP-CG was run in parallel mode using 12 cores, one from each node.
All the experiments were run with u0 ¼ 0 as the initial estimate, and the relaxation parameter was taken as 1.6.

We used three standard measures of convergence, defined as follows. Let u0;u;u� denote the initial estimate, the current
iterate and the analytic solution, respectively. The measures are

� rel-res (the relative residual) is kAu� bk2=kAu0 � bk2.
� L2-err (the relative L2 error) is ku� � uk2=ku�k2.
� max-err denotes the maximal component-wise error: maxiju�i � uij.

We consider two and three dimensional problems with nonzero right hand side and known analytic solutions. The exam-
ples use the same variable k, with three parameters a; b; c:

kðxÞ ¼ a� b sinðcxÞ with a > b P 0 ð36Þ

Thus, a and b control the range of values of k, and j c j controls the number of oscillations of k in the domain. Fig. 1 shows a
plot of kðxÞ.

5.2. Problem 1 (2D)

We consider the Helmholtz equation with the following analytical solution.
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uðx; yÞ ¼ e�
kðxÞ

c sinðbyÞ; where b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

q
defined over the domain D ¼ p� p. A 3D plot of uðx; yÞ with a ¼ 10; b ¼ 9; c ¼ 10 is shown in Fig. 2.

The right hand side is

Lu ¼ Duþ k2u ¼ F ¼ �bð2aþ cÞ sinðcxÞe�
kðxÞ

c sinðbyÞ

Choosing c ¼ �2a gives us a homogeneous case. For the computations, the derivatives of k and F are evaluated analyti-
cally. The number of grid points per wavelength is given by Ng ¼ 2p

kh ¼ 2N
k . Note that k is the dimensional wave number. Since

the length of the domain is p, the non-dimensional wave number is �k ¼ pk.
We first consider two cases, both with c ¼ 10, so k has 5 periods as in Fig. 1.
Case 1a: a ¼ 10; b ¼ 4ð6 6 k 6 14;18:85 6 �k 6 43:98Þ.
Case 1b: a ¼ 10; b ¼ 9ð1 6 k 6 19;3:14 6 �k 6 59:69Þ.
Table 1 shows the results of the second and sixth order accurate schemes for cases 1a and 1b of Problem 1, for various grid

sizes. Also shown are the minimal values of Ng in each case. The second order accurate scheme with a grid of 403� 403 has
an error which is about 5–8 times larger than that of the sixth order accurate scheme with a mesh of 52� 52 (i.e. 1

60th the
number of grid points of the second order scheme).

We now present some plots of the relative residual and error for a third case.
Case 1c: a ¼ 5; b ¼ 2; c ¼ 10ð3 6 k 6 7;9:425 6 �k 6 22Þ.
Fig. 3 shows the convergence of the relative residual for Case 1c with a grid of 112� 112 (the 27� 27 grid will be ex-

plained below). Note that both schemes show a good convergence, with the sixth order scheme being somewhat better.
Fig. 4 shows the L2-error for Case 1c, with the second and sixth order schemes. We can see that on the 112� 112 grid, the

sixth order scheme produces much better results, even though the relative residual results were not so different. We can only
conclude from this that the second order scheme does not model the problem well on this grid, and that relative residual
results alone can be misleading. Furthermore, if we are satisfied with an error goal of 10�2 (which is the error obtained with
the second order scheme), then we can achieve it with the sixth order scheme on a much smaller grid of 27� 27, in only 0.5%
of the time. The fast convergence of the relative residual on this smaller grid is shown in Fig. 3. These results clearly dem-
onstrate the computational advantage of the sixth order scheme over the second order scheme.

5.3. Problem 2 (3D)

Our 3D example uses the same kðxÞ as before, but u is extended to three dimensions as follows.

uðx; yÞ ¼ e�
kðxÞ

c sinðbyÞ sinðczÞ; where b2 þ c2 ¼ a2 þ b2

defined over the domain D ¼ p� p� p. The right hand side is

Lu � Duþ k2u ¼ F ¼ �bð2aþ cÞ sinðcxÞe�
kðxÞ

c sinðbyÞ sinðczÞ

The three dimensional example consists of 3 cases.
Case 2a: a ¼ 10; b ¼ 9; c ¼ 10; c ¼ 9ð1 6 k 6 19;3:14 6 �k 6 59:69Þ.

x [m]

k(
x)

0 0.7854 1.5708 2.3562 3.1416-5

0

5

10

15

20

25

Fig. 1. Plot of kðxÞ for a ¼ 10; b ¼ 9; c ¼ 10.
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For this case, we compare the efficiency of the second and sixth order schemes in 3D by finding the number of iterations
and CPU time required for two predetermined L2 error goals of 0.01 and 0.001. The results in Table 2 show the obvious supe-
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Fig. 2. Plot of uðx; yÞ for a ¼ 10; b ¼ 9; c ¼ 10.

Table 1
Problem 1 (2D), Cases 1a and 1b: second and sixth order error results for various grid sizes, and the corresponding minimal values
of Ng .

a b N min Ng 2nd order 6th order

L2-err max-err L2-err max-err

10 4 52 7.29 2.62E�1 2.97E�1 5.19E�4 5.18E�4
103 14.57 6.78E�2 9.16E�2 7.94E�6 8.19E�6
203 28.86 1.59E�2 1.95E�2 1.31E�7 1.36E�7
403 57.43 3.96E�3 4.73E�3 2.11E�9 2.19E�9

10 9 52 5.37 8.29E�2 1.08E�1 3.40E�4 5.29E�4
103 10.74 2.08E�2 2.75E�2 4.73E�6 7.59E�6
203 21.26 6.95E�3 1.02E�2 7.64E�8 1.25E�7
403 42.32 1.68E�3 2.64E�3 1.22E�9 2.00E�9
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Fig. 3. Problem 1 (2D), Case 1c: relative residual for the second and sixth order schemes.
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riority of the sixth order scheme with CPU gain factors of about 17 (1% error) and 696 (0:1% error). So the gains are especially
impressive for the higher accuracy goal.

Case 2b: a ¼ 80; b ¼ 40; c ¼ 40ð40 6 k 6 120;125:66 6 �k 6 376:99Þ.
In Table 3 we find the mesh needed to achieve 1% and 0.1% accuracy, for various values of the oscillation parameter c. Also

shown are the number of iterations and runtimes, as well as the minimal values of Ng for each grid size. Only the results for
the sixth order scheme are shown because the second order scheme could not achieve the error goals with grids of manage-
able sizes. Note that for c ¼ 10, we get 1% accuracy with a grid size of N ¼ 147, which is less than 2.5 points per wavelength!
An important point to observe here is that the number of oscillations of k (determined by c) has a very significant effect on
the required grid size and hence on the time to achieve the required goal. There is a very obvious reason for this: the grid
should not only sample the waves, but for variable k, it should also be fine enough to provide a good sampling of k. For
c ¼ 80, our resources did not suffice to reach the error goal of 0.001; the best we could do, with a grid of 4023, was to reach
an error of 0.001736 in 10,000 iterations, in 267 min.

Case 2c: This case consists of one example of variable k (with a ¼ 80; b ¼ 40; c ¼ 60) and three examples of constant
valued k (with a ¼ 40;80;120 and b ¼ 0). c ¼ 10 in all cases, and c is chosen so that c � b. A fixed grid of 1473 was used
for all four examples. Table 4 shows the L2 error values of these four examples. These results show that the error with
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Fig. 4. Problem 1 (2D), Case 1c: L2-error for the second and sixth order schemes.

Table 2
Problem 2 (3D), Case 2a: comparison of second and sixth order schemes for a fixed error goal. a ¼ 10; b ¼ 9; c ¼ 10; c ¼ 9.

L2-err goal Scheme N min Ng # iter. Time (s) Time ratio

0.01 2nd ord. 103 10.74 540 5.52 17
6th ord. 31 3.16 251 0.33

0.001 2nd ord. 333 34.95 1970 703 696
6th ord. 45 4.63 350 1.01

Table 3
Problem 2 (3D), Case 2b: grid sizes, number of iterations and time required to reach two error goals, for a ¼ 80; b ¼ 40; c ¼ 40,
and various values of the oscillation parameter c. The minimal values of Ng are also shown.

L2-err goal c N min Ng # iter. Time (sec)

0.01 10 147 2.43 10 0.85
50 187 3.10 26 4.31
70 216 3.58 137 33.4
80 242 4.02 425 147

0.001 10 229 3.80 200 122
50 266 4.42 280 289
70 312 5.18 893 642
80 > 402 (See text for explanation)
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the oscillatory k is approximately equal to the error obtained when k is fixed at the minimum value of the oscillatory k. Note
that these results were obtained with a moderate value of the oscillation parameter c (compare with Table 3).

Note further from line 2 of Table 4 that for an L2 error of 0.01, we only need Ng ¼ 7:30 for k ¼ 40 (�k � 125). For other wave
numbers the required value of Ng is affected by pollution. However, for a sixth order accurate scheme this effect is quite mild.
To see this, consider the pollution formula (1) (according to which N � kðpþ1Þ=p), and the definition of Ng as 2N

k , from which we
get Ng � k1=p. The constant of proportionality, as calculated from the line with k ¼ 40, is 7:3=401=6 ¼ 3:95. So, for example, if
we wish to double k to 80 and maintain the same accuracy of 0.01, the required number of grid points per wave length
should be Ng ¼ 3:95� 801=6 ¼ 8:2. A similar calculation with the pollution formula (1) shows that the mesh size should
be increased from 147 to 330.

Fig. 5 shows the L2-error for the second and sixth order schemes for Case 2c corresponding to the oscillatory example in
Table 4 (a ¼ 80; b ¼ 40; c ¼ 10; c ¼ 60). On the 4023 grid, the sixth order scheme provides better accuracy. Also, we can get
the accuracy of the second order scheme (3� 10�2) with the sixth order scheme in 1% of the time by using a grid of 1273.

5.4. Verification of the pollution formula

As discussed in the introduction, the number of grid points needed to maintain a given error grows as k increases. Hence,
in order to achieve good accuracy for problems with high frequency, a low order finite difference or finite element method
requires a very fine grid, i.e., a large grid dimension. However, this ‘‘pollution’’ effect is mitigated by using high order accu-
rate schemes. For these schemes (non-spectral), a point of diminishing returns occurs, where the extra work associated with
the higher order of approximation no longer justifies the small decrease in the error. As previously shown, for compact
schemes this point is achieved at sixth order accuracy. For fourth order accurate schemes, the connection between kand h
has been verified in [5,10].

When a Dirichlet boundary condition is specified along the entire boundary, we found that the accuracy we obtained
deviated from that predicted by the pollution formula (1). To explain this, we recall that if the Helmholtz equation
Duþ k2u ¼ 0 has a non-trivial solution u on a given domain subject to zero Dirichlet boundary conditions, then �k2 is called
an eigenvalue of the Laplace operator, see, e.g., [8, Chapter V]. In this case, the eigenfunction can be added to a solution of any
non-homogeneous Dirichlet problem for the Helmholtz equation on the same domain. In other words, the solution to this
problem is not unique, which is called a resonance. For the domain ½0;p� � ½0;p�;�k2 is an eigenvalue if k2 ¼ m2 þ n2, where

Table 4
Problem 2 (3D), Case 2c: comparison of variable k (first row) with constant values of k, on a fixed grid of 1473

with c ¼ 10, for the sixth order scheme.

k Ng a b c L2-err

40–120 2.43–7.30 80 40 60 9.43E�3
40 7.30 40 0 30 9.65E�3
80 3.65 80 0 60 6.72E�1
120 2.43 120 0 85 9.55E�1
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Fig. 5. Problem 2 (3D), Case 2c: L2 error for the second and sixth order schemes.
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m;n P 0 are integers, and the corresponding eigenfunction is uðx; yÞ ¼ sinðnxÞ sinðmyÞ. For the discretization, the eigenvalues
may appear nearby the exact value depending on the details of the scheme and the grid. Therefore, when k2 � m2 þ n2, the
resulting system matrix is close to singular. The near singular behavior of the system matrix presents a serious problem for
direct methods. However, the iterative projection methods, such as Kaczmarz (and hence CARP-CG), converge to a solution
which depends on the initial guess [4]. This explains the irregular behavior of the error that we observed. The chances of �k2

being close to an eigenvalue cannot be ignored: for example, 27.5% of all integers between 1 and 10,000 are sums of two
squares, and this affects the values of k between 1 and 100. We will therefore use the following problem, which has a unique
solution, to verify the pollution formula.

Problem 3 (2D): Consider a homogeneous Helmholtz equation on the domain ½0;p� � ½0;p�. The boundary condition at the
side y ¼ p is taken as uy � ibu ¼ 0 [cf. formula (33)], and is implemented in the sense of (34), (35). Dirichlet boundary condi-
tions are given on the remaining three sides. The solution (with constant k) is given by u ¼ sinðnxÞeiby, with n2 þ b2 ¼ k2, and
we choose n ¼ 1. The reason for using a Sommerfeld-type boundary condition uy � ibu ¼ 0 at y ¼ p is purely methodological:
to move the eigenvalues to the complex plane and hence eliminate any possibility of resonances at real eigenvalues; see [26,
Chapter VII], as well as [9, Chapter IV, Section 5]. From this standpoint, any boundary condition that would help us do that
serves the purpose. In doing so, it need not be physically relevant; we rather want to use it simply as a means of removing
the real eigenvalues. At the same time, it does need to admit a sixth order accurate approximation by compact finite differ-
ences. For the Sommerfeld-type condition uy � ibu ¼ 0, this can be achieved under the assumptions made in Section 3.

We use Problem 3 to verify the pollution formula (1). We chose N ¼ 80 and k ¼ 10 as the base from which to calculate the
relation N ¼ Ckðpþ1Þ=p, where C is a constant calculated as C ¼ 80=10ðpþ1Þ=p. Table 5 shows the relative L2 errors for the stan-
dard second order scheme and the fourth order scheme of Singer and Turkel [22]. Table 6 shows the results for two sixth
order schemes: the scheme from [10] and the present scheme with k constant. We find that the results with the new scheme
are somewhat better than those of [10]. The values of C are also given in the tables. These results provide a good numerical
validation of the pollution formula (1).

6. Conclusions

We have developed a compact sixth order accurate finite difference scheme for the Helmholtz equation with variable
wave number for 2D and 3D. We have also derived a sixth order accurate approximation to a Neumann boundary condition
and a simplified farfield absorbing boundary condition. The new scheme was tested in both two and three dimensions. The

Table 5
Problem 3: L2 error obtained with the standard second order scheme and the fourth order scheme of [22] for different
values of N and k.

N 2nd order 4th order [22]

k L2-err k L2-err

40 6.2996 1:33� 10�1 5.7435 8:46� 10�4

80 10 1:21� 10�1 10 8:87� 10�4

120 13.1037 1:23� 10�1 13.8316 9:07� 10�4

160 15.8740 1:16� 10�1 17.4110 8:90� 10�4

200 18.4202 1:19� 10�1 20.8138 9:09� 10�4

240 20.8008 1:14� 10�1 24.0832 8:97� 10�4

280 23.0522 1:20� 10�1 27.2430 8:94� 10�4

320 25.1984 1:21� 10�1 30.3143 8:95� 10�4

N ¼ 2:5298� k3=2 N ¼ 4:4987� k5=4

Table 6
Problem 3: L2 error obtained with the sixth order schemes of [10] and the present scheme
for different values of N and k.

N k L2-err [10] L2-err [new scheme]

40 5.5204 4:49� 10�6 1:95� 10�6

80 10 5:13� 10�6 1:81� 10�6

120 14.1558 5:47� 10�6 1:42� 10�6

160 18.1145 4:49� 10�6 1:44� 10�6

200 21.9327 5:42� 10�6 1:59� 10�6

240 25.6425 5:43� 10�6 1:59� 10�6

280 29.2647 5:56� 10�6 1:36� 10�6

320 32.8134 5:45� 10�6 1:57� 10�6

N ¼ 5:4503� k7=6
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scheme allows, in particular, the accurate solution of acoustic wave propagation problems in the frequency space for heter-
ogeneous media. This setting frequently occurs in geophysical applications.

Computational experiments verify that the new compact scheme is much more efficient than a second order scheme.
Since the scheme is compact, no extra numerical boundary conditions are needed. Coupled with the CARP-CG iterative algo-
rithm, the scheme has enabled solution of high frequency problems in three dimensions that were beyond the computer re-
sources of a multi-processor parallel computer. Our results also strengthen the finding from [14] that relative residual results
with the second order scheme can be misleading: even if they indicate a good convergence of the relative residual, the actual
error from the true solution can be very significant.

The pollution effect states that as the wave number k increases, the required number of subintervals (per domain side), N,
to obtain a given accuracy increases according to the relation N � kðpþ1Þ=p, where p is the order of accuracy of the scheme.
Thus, N increases faster than linear with k, but the higher the accuracy, the slower the growth in N. Hence, higher order accu-
racy is even more important for high frequency problems. We have also verified numerically this relation between k and N. In
addition, the iterative method CARP-CG also works even better for high frequency problems. Hence, the combination of the
sixth order accurate discretization with CARP-CG leads to a very efficient overall algorithm for the high frequency Helmholtz
equation in non-homogeneous media.

We have also studied the accuracy of the scheme when the variable wave number k itself is highly oscillatory. It was
found that the accuracy and convergence were equally good even when there was a large ratio between kmax and kmin.
For a moderate number of oscillations within the domain (e.g., 10), the accuracy obtained was close to that obtained for con-
stant k ¼ kmin. We also found that as the number of oscillations within k increased, the grid had to be refined in order to
maintain a given accuracy. Thus, it was not sufficient to choose a mesh based only on kmin but one also needed to account
for resolving the oscillations within k.
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